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ABSTRACT. Between 1999 and 2001 a 724 m long ice core was drilled on Akademii Nauk, 

the largest glacier on Severnaya Zemlya. The drilling site is located near summit. The core is 

characterized by high melt- layer content. The melt- layers are caused by melting and even by 

rain during the summertime. We present high resolution data of density, electrical 

conductivity (DEP), stable water isotopes and melt- layer content for the upper 136 m (120 m 

w.e.) of the ice core. The dating by isotopic cycles and electrical conductivity peak 

identification suggests that this core section covers approximately the past 275 years. 

Singularities of volcanogenic and anthropogenic origin provide well defined additional time 

markers. Long term temperatures inferred from 12 years’ running mean averages of δ18O 

reach the ir lowest level in the entire record around 1790. Thereafter the δ18O values indicate 

a continuous ly increasing mean temperature on the Akademii Nauk ice cap until 1935, 

interrupted only by minor cooling episodes. The 20th century is found to be the warmest 

period in this record.  

 



 

INTRODUCTION 

 

In the Eurasian Arctic, Severnaya Zemlya is the easternmost archipelago, which is covered 

by considerable ice caps. This allows to access regional climate signals from ice core records. 

The Akademii Nauk ice cap, covering an area of 5,575 km2, is the largest in the Russian 

Arctic with a maximum elevation of about 800 m a.s.l. (Dowdeswell and others, 2002). The 

first 761-m-long surface-to-bedrock core on this ice-cap was drilled in 1986/87 by a Russian 

team (Klement’yev and others, 1991; Savatyugin and Zagorodnov, 1988). The core has been 

sampled in a relatively low resolution. A chronology was published for that core indicating a 

Late Pleistocene near-bottom age (Klement’yev and others, 1988, 1991; Kotlyakov and 

others, 1990).  

Between 1999 and 2001 the new ice core discussed here was drilled to bedrock on Akademii 

Nauk (Fig. 1) to improve the data resolution and to revise the previous time-scale. For this 

new core the drilling site was selected close to summit considering the form and flow of the 

ice cap (Dowdeswell and others, 2002). Fritzsche and others (2002) report details about the 

drilling site at 80°31'N, 94°49'E as well as recent accumulation rates. For technical details of 

operation see Savatyugin and others (2001). The mean annual air temperature at the drilling 

site was –15.7 °C for the period between May 1999 and April 2000 (Kuhn, 2001). During 

summer air temperature can even be above 0°C. In April 2000 a temperature of –10.2 °C was 

measured at 10 m depth. Latent heat from percolating water has an effect on the difference 

between mean annual air temperature and temperature in firn. In 2000/01 the borehole 

temperature was between -12.40 °C at 100 m depth and – 7,49 °C at the bottom, with a 

minimum of -14.35 °C at 209 m depth (Kotlyakov and others, 2004). Consequently 

Akademii Nauk is a cold glacier. 



Reconstructing annual signals (e.g. δ18O) in ice cores from the percolation zone of glaciers 

can be problematic owing to the effect of meltwater infiltration (Koerner, 1997). The 

variation of stable isotopes in ice (δD and δ18O) can be eroded, but at least in particular cases 

seasonal cycles still persist (Pohjola and others, 2002). Sometimes the deuterium excess d (d 

= δD - 8*δ18O) resolves the annual variation better than the corresponding δD or δ18O data, 

as shown for the Vernagtferner (Oetztal Alps, Austria) (Stichler and others, 1982).   

We present density, δ18O, δD and d profiles as well as the melt-layer content from the 

uppermost 136 m of the new Akademii Nauk ice core. These parameters are compared to 

electrical conductivity obtained by dielectrical profiling (DEP) of the same core sequence. A 

chronology is given based on the annual layer thickness determined from δ18O and d and 

using the time markers from volcanic events detected by DEP measurements. According to 

this depth-age model the core section under investigation covers approximately 275 years.  

 

 

ANALYTICAL METHODS 

 

The core was processed in the cold laboratory of the Alfred Wegener Institute in 

Bremerhaven. Processing included the following steps: 

(1) Quasi-continuous density measurements (γ-densimeter) and dielectric profiling (DEP) 

(Moore and Paren, 1987) were taken non-destructively at 5 mm resolution on a combined 

bench, which was used also for analysis of ice cores from Greenland (NGRIP) and Dronning 

Maud Land, Antarctica (EPICA). For a detailed description refer to Wilhelms (2000). 

 

(2) Following the DEP measurements two slices were cut with a horizontal band saw parallel 

to the core axis. The first 11 mm thick segment was sampled for isotopes (δ18O, δD); the 



second, a 30 mm thick plate, was polished for optical scanning of the internal structure, and 

subsequently sampled for chemical investigations (Weiler and others, 2004).  

 

(3) The stable isotopes were sampled from the segment in 25 mm long increments. To get a 

first overview samples for each 1 m segment of core were collected by abrading 1 to 2 mm 

off the surface over the whole segment- length with a microtome knife. The frozen samples 

were melted for the determination of δD and δ18O with a Finnigan-MAT Delta S mass 

spectrometer. The analytical precision is better than ±0.8 ‰ for δD and ±0.1 ‰ for δ18O 

(Meyer and others, 2000).  

 

(4) The melt- layers were visually identified on scanned pictures of coplanar slices. The 

scanning resolution is better than 0.1 mm, but because of irregular boundaries between melt-

layers and firn the fixing of layers was less precise. Accurate distinction between firn- ice and 

melt- impacted layers was difficult in the deeper parts of the core, but less problematic in the 

section discussed in this paper.  

Following Madsen and Thorsteinsson (2001) we call glacial ice formed by firn only firn- ice. 

In the manner of Paterson (1994) we use the term “firn” for aggregates of several crystals 

with interconnecting air passages between the grains. Ice consisting of firn infiltrated by a 

visible content of water we call independent of the amount of water melt- layer ice or melt-

layer. Most of melt-layers in this core are formed by infiltration of water into the porous firn 

structure. Close to the surface the firn has a porosity of 50 %, which can be filled with 

percolating water. The melt- layer content is calculated by the proportion of melt- layer ice per 

meter by weight. In general the amounts of melt- layer ice are a proxy parameter for warm 

summers, but superimposed sporadic melt features can make this interpretation complicated 

(Koerner, 1977). 

 



 

RESULTS AND DISCUSSION 

 

A shallow core (SZ 99-2) was drilled about 200 m ESE from the main coring site (SZ 99) in 

order to estimate the stratigraphic noise in the δ18O and melt-layer records. Both data sets are 

in good agreement with a 0.55m depth-offset (Fig. 2). This offset could be caused by a 

compression of the uppermost winter snow during drill tower assembly and/or by roughness 

of the snow surface. The uppermost 0.43 m of the main core and 0.2 m of the shallow core 

were lost because of their poor consolidation. Discrete, massive melt-layers are found in the 

main core, for e.g. at 2.9 m or 7.8 m depth, and equivalent layers are found in the shallow 

core at corresponding depths. Many more, but by far not every, small ice layers could be 

observed in both cores. As expected especially melt-layers consisting of partially saturated 

firn can often be found in various depths. The firn is not a homogenous medium and internal 

surfaces are undulated, thus heterogeneous flow of vertical and horizontal percolating 

meltwater is the rule. Nevertheless, the two δ18O profiles look similar but the differences in 

infiltration are clearly visible in detail. For example in 8.5 m depth of SZ 99 the deformed 

δ18O minimum indicates infiltration of less depleted water. On the whole, the correlation of 

δ18O between the two cores is good with a correlation coefficient of r = 0.67 (2.5 cm 

resolution, 906 samples each, 14 years). An increase to more than r = 0.75 is possible with a 

visual piecewise adjustment (cores shifted against each other, 6 breaks, none overlapping). 

 

Figure 3 shows the ice core density profile at 5 mm resolution. Melt- layers are obvious 

already in the uppermost meters of the core with a density about 900 kg m-3. Between these 

layers firn horizons appear with a typical density of 300 to 400 kg m-3 near the surface and 

increasing density with depth. From density profile it is apparent that the core originates from 



the percolation zone of the glacier. The transition from firn to ice occurs in about 60 m depth. 

The density profile is used to convert the depth scale into m water equivalent (m w.e.). 

Air bubbles are found throughout the entire core in varying size and concentration. Only very 

few parts of the core are almost free of bubbles. The homogeneously distributed bubbles 

suggest air entrapment between firn crystals. Hence in most cases, the melt-impacted layers 

were not made entirely from refrozen (bubble free) meltwater. For the uppermost 30 m, 

where the density of ice and firn is sufficiently different, the calculation of infiltration from 

the density log (Fig. 3) agrees well with the visual recording of the melt-layer content. 

 

The electrical conductivity record (Fig. 4 d) exhibits some of the volcanogenic time markers, 

which were used to establish the core chronology. The conductivity peak at about 20 m w.e. 

depth was related by chemical analysis (Weiler and others, 2004) to the 1956 eruption of 

Bezymianny, Kamtchatka, with an attributed volcanic explosivity index (VEI) of 5 (Siebert 

and Simkin, 2002). This is the largest conductivity peak observed in the whole core. The 

other peaks in conductivity are supposed to be of volcanogenic origin and the assigned age is 

based on correlation with ice core records from Greenland e.g. from the Hans Tausen ice cap 

(Clausen and others, 2001). The chronology of the core section discussed here is established 

by identifying peaks in the conductivity record. In between the peaks the timescale is refined 

by counting seasonal signals in the stable isotope records, mostly the d oscillations together 

with the δ18O variations. As an example Figure 5 presents the stable isotope variations 

between the Bezymianny event (1956) and the assumed Katmai eruption (1912). On the 

graph’s right-hand side our interpretation of annual cycles is marked with tags. An annual 

mark is defined by a minimum in δD and δ18O and simultaneously a maximum in d. But four 

more years (arrows) could possibly be counted as well (error +10%). When counting the 

peaks one finds probably more and not less years in this core, because of appearance of 

additional infiltration peaks. 



 

The melt- layer content (Fig. 4 a) shows maxima at around 65, 50 and between 40 and 10 

m w.e. according to the 1840s, 1880s and 1900 through 1970 respectively. Following 

Koerner (1977) the amount of meltwater can be considered as a proxy for summer warmth. 

The δ18O profile (Fig. 4c) shows a minimum at 90 m w.e. (1790 AD).  An increasing trend of 

δ18O is obvious between 90 and 27 m w.e..  The d record exhibits annual cycles (Fig. 5) but 

the long term trend is nearly constant (Fig. 4 b) — mean: d = 11.0 ‰ (dotted line).   

 

The derived annual layer thickness for the top 120 m w.e. of the core, corresponding to the 

period 1725–1999, is plotted in Figure 6. The annual layer thickness is presented as found in 

the core (none de-compressed). The modern mean annual layer thickness of about 0.46 m 

w.e. agrees with the recent mean annual accumulation rate at the drill site as calculated 

earlier from 137Cs measurements (Fritzsche and others, 2002; Pinglot and others, 2003) as 

well as with the mean accumulation rate of 0.46 m w.e. a-1 in the period 1986/87 published 

by Zagorodnov and others (1990). In deeper parts of the core (not shown here) the annual 

layer thickness was determined over discrete 1 m intervals by high-resolution analysis of 

seasonal δ18O, δD and d and variations of electrical conductivity assumed to be seasonal. We 

found an annual layer thickness of about 0.12 m w.e. for the near-bottom layers. From a 

linear decrease in annual layer thickness with depth as observed in the DEP profile and 

assuming no discontinuity in the record we calculated a bottom age of roughly 2500 years. 

This is less than the age computed by a Nye model (Paterson, 1994) with an accumulation 

rate of 0.46 m w.e.a-1. Therefore our results imply that this ice cap was not in dynamic steady 

state throughout its existence, but has been growing until modern times. Similar conc lusions 

have been drawn for the Hans Tausen ice cap in Northern Greenland (Hammer and others, 

2001).  

 



The new δ18O record from Akademii Nauk (Fig. 7) looks similar to the Vardø (Norway) 

temperature record (data: 

http://www.giss.nasa.gov/data/update/gistemp/TMPDIR/tmp.634010980003.1.1/634010980003.1.1.txt) and a 

composite of surface air temperatures in the Arctic (Polyakov and others; 2003) (data: 

http://denali.frontier.iarc.uaf.edu:8080/~igor/research/data/airtemppres.php). The good agreement suggest 

that δ18O from Akademii Nauk is a good proxy for mean annual air temperature. Our δ18O 

record shows an absolute minimum at about 1790, following the eruption of more than 10 

volcanoes with a VEI = 4 since 1750, including Laki in 1783. Thereafter the δ18O value 

increased until 1935, interrupted by a 10–20 years long reverse trend following huge volcanic 

eruptions during the 1850s. During the same time period Kotlyakov and others (2004) 

present a long term warming trend, which was reconstructed from borehole temperature 

logging in the Akademii Nauk 1986/87 bore-hole with a model considering the effects of 

vertical heat transfer by meltwater and its refreezing. The warming trend until the late 1930s 

was recorded by many meteorological stations in different regions of the Arctic, for e.g. at 

Svalbard (Brázdil and others, 1988). This trend is also a strong signal in composite air 

temperature data sets from the Arctic as well as in data for the northern hemisphere 64–90°N 

(http://www.giss.nasa.gov). The increasing temperature in the 19th and beginning of the 20th 

century can also be found in glaciers on Svalbard (Isaksson and others, 2003) and Franz Josef 

Land (Henderson, 2002) as well as North Greenland (Hans Tausen ice cap, Hammer and 

others, 2001). 

 

 

CONCLUSIONS 

 

Our investigations on the newly drilled ice core from Akademii Nauk revealed: 



(1) Annual layers could be identified in the upper 136 m of core presented in this paper 

using a combination of high resolution (2.5 cm) d and δ18O data. 

(2) The core was dated by combining the annual layer thickness measurements from stable 

isotope studies with volcanogenic signals in the electrical conductivity record used as 

time markers.  

(3) The δ18O time series is very similar to trends in air temperature measured in the Arctic. 

Thus the δ18O data is a good proxy for mean annual air temperature.  

(4) The accumulation rate over the period 1956–1999 is about 0.46 m w.e. a-1 based on 

stable isotope investigations. This finding agrees with the rates we found earlier by 

137Cs radioactivity measurements and the annual accumulation rate published for 

1986/87 (Zagorodnov and others, 1990). It is in disagreement with a modern annual 

layer thickness of 0.26–0.28 m suggested by Klement’yev and others (1988) and used 

by Kotlyakov and others (1990) for dating of the Akademii Nauk ice core drilled in 

1986/87. 

(5) Our preliminary chronology of the ice core dates the lowermost part  to roughly about 

2500 years B.P..  
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Fig. 1. Location of Severnaya Zemlya and its glaciers.  



 
 
   

 
Fig. 2. Comparison of visible stratigraphy (a) and δ18O (b) 
in the upper part of the main core SZ 99 and the shallow 
core SZ 99-2 drilled some 200 m apart: 
(a) 1 – firn not impacted by water.  
Melt-layers: 2 – partially saturated, 3 – saturated.  
The abscissa is mirrored for easier comparison. Arrows 
indicate melt-layers occurring in both cores at the same 
depth.    
(b) Shading made for easy comparison. 



 

 
 
Fig. 3. Density-depth profile of the core (5 mm resolution) 
 



 
 
Fig. 4. Profiles from the upper 120 m w.e. (136 m depth) of 
the main core from Akademii Nauk ice cap.  
(a) melt-layer content - step function 1 m values, black 
curve 5 m running mean 
(b) D excess d, (c) δ18O – in (b) and (c): grey 25 mm data, 
black curve 5 m running mean  
(d) electrical conductivity (DEP) – 5mm resolution  
 



 
 
 
Fig. 5. Stable isotope variations between the 1956 
Bezymianny event and the layer with high electrical 
conductivity assumed to be originating from the eruption 
of Katmai in 1912. Tags on right-hand side indicate our 
interpretation of annual cycles. Arrows mark peaks which 
can be interpreted as additional years. 



 
Fig. 6. The annual layer thickness AD 1725–1999 derived 
from δ18O and d oscillations and from interpolation 
between volcanic time-markers. Dots symbolise thickness 
of a single year, black curve – 5 year running mean and 
step line – mean annual layer thickness between presumed 
volcanic eruptions. 



 
 
 

 
 
Fig. 7. Dated δ18O curve (1) for the segment of ice core 
shown in Fig. 4 – 1 m mean values and 5 m running means 
(approx. 2.3 respectively 12 years) – compared with air 
temperature (2) measured at Vardø/North Norway – 5 and 
10 years running mean values – and trend of composite 
surface air temperature in the Arctic (3) – 6 years running 
mean – deviation from mean temperature 1961–2000 (data 
from Polyakov and others, 2003).  
 

 


