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Abstract. This study investigates principle suitability of a kinematic approach
to invert the velocity field from internal-layer architecture in firn. Internal layers
are isochrones and the depositional age of a layer particle is treated as tracer.
The linear system to be inverted takes into account two-dimensional steady-
state advection of age and conservation of mass. Different inversion strategies
with varying combinations of additional velocity constraints are prescribed, thus
covering under- and overdetermined systems. The systems are solved using
singular-value decomposition, allowing analysis of the singular-value spectrum,
model and data resolution and uncertainties. In addition, inversion results are
evaluated by comparing the inverted velocity fields with the synthetic input data.
For four different flow scenarios stationary age–depth distributions are created
by prescribing horizontal advection as plug flow, a density–depth function, and
a spatial variation in accumulation. Three scenarios consider non-divergent
flow, one scenario covers longitudinally divergent flow. For almost all inversion
strategies realistic results require truncation of the singular spectrum, evident
from its structure. Results indicate that some constraints on either horizontal or
vertical velocity or their properties along a boundary is necessary. Compared to
conventional accumulation estimates the inversion has the advantage that effects
of lateral advection are taken into account, thus enabling improved separation of
spatial and temporal variations in accumulation.

1. Introduction

Internal layering is widely observed by radar sounding in
cold firn and ice, on high alpine and polar glaciers as well
as ice sheets. Layer architecture results from the interplay
of spatio-temporal variation of surface accumulation, bottom
melting, and advection caused by ice dynamics. Most layers
are isochrones, i.e. of equal age. Whereas age information
retrieved from ice cores is only representative for the imme-
diate vicinity of the drilling location, the layer architecture
provides a spatial picture. It represents an integrated view of
the temporal evolution of an ice mass.

Several studies exploited this property to enhance the
view of past and understand present conditions. The most
simple application is the one-dimensional direct inversion of
layer depth and density distribution for accumulation, cover-
ing shallow depth and a view millennia at most (see Annals
of Glaciology 39 and 41, and references therein, for a sum-
mary of studies). However, effects of advection are not con-
sidered and introduce errors in the inverted accumulation.
Recently, Arcone and others [2005] used an accumulation
rate model to investigate how accumulation rate anomalies
and ice speed affect stratigraphic variations of internal lay-
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ers. Other approaches utilize forward modeling of the whole
ice column and least-squares technique to solve for the accu-
mulation rate by minimizing differences between calculated
and measured internal layer architecture [Siegert and others,
2003; Jacobel and Welch, 2005]. Parrenin and others [2005]
gave analytical solutions for observed layer stratigraphy, de-
pending on accumulation, flow field, and ice thickness. Of
special interest are the inversion of flow trajectories to im-
prove firn and ice-core dating and separate spatial from tem-
poral variations. Based on observed thickness anomalies be-
tween isochrones, Leonard and others [2004] quantified the
effect of a high-accumulation region upstream of the Vostok
ice core on the paleoclimatic reconstruction. Morse [1997]
attempted to iteratively solve a non-linear least-squares min-
imisation problem to invert the surface velocity field at Tay-
lor Dome for ice rheology and flow parameters. Waddington
and others [2004] invert a forward model for calculating sur-
face height, particle paths, and internal layer shapes, based
on layer architecture, which they apply to the area around
Taylor Dome.

In this study I present an attempt to kinematically invert
the observed layer architecture in firn, i.e. the age–depth dis-
tribution, to determine horizontal and vertical velocities. The
direct inversion of the flow field from internal layers in the
firn column with variable density poses a problem that has
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not been investigated so far. Because of the variable density,
the modeling of firn rheology is much more difficult than
that of solid ice. Studies concerned with deeper layers (be-
low a few hundred meters depth) therefore usually consider
density to be constant over the whole ice column. The kine-
matic approach has the advantage that no assumptions about
firn rheology are needed.

2. Inverting Tracer Fields for Velocity

The dispute in the oceanographic community on the ques-
tion “Can a tracer field be inverted for velocity?”, as formu-
lated by Wunsch [1985] two decades ago, showed that it is
in principle possible. Without going into details here it can
be said that useful information can be extracted from a tracer
distribution about the underlying flow field, even for under-
determined problems. A number of physical and chemical
parameters can be used as tracers in ice masses. Of particu-
lar interest is the age of deposition of a certain material par-
ticle at the ice-sheet surface, hereafter simple referred to as
age. In comparison to physical or chemical tracers like iso-
topic composition or aerosols, age can definitely be consid-
ered a conservative tracer, in the sense that it is neither sub-
ject to diffusion nor reaction. In the context of ice-core deep
drilling for the purpose of paleoclimate research, glaciologi-
cal applications mainly focused on forward modeling of this
tracer under estimated environmental and dynamical condi-
tions [e.g. Nereson and Waddington, 2002; Clarke and oth-
ers, 2005]. Typical application examples are the reconnais-
sance of suitable drilling sites, or ice-core dating by flow
modeling.

Before applying a kinematic inversion scheme to real
field data, it is important to understand its strengths and iden-
tify pitfalls. This can best be achieved by creating synthetic
data to test algorithms, as all parameter fields are known be-
forehand. I use a simple prognostic forward model to create
synthetic stationary age distributions under prescribed con-
ditions for different flow scenarios of varying complexity for
the upper 100 m of the ice sheet, the firn column. Subse-
quently I apply a diagnostic inversion model to the synthetic
age distribution to invert for the velocity field. The inversion
is based on the singular-value decomposition (SVD). SVD
has several advantages over other schemes, like e.g. least
squares, especially in terms of analysing the inversion results
[as summarized, for instance, by Wunsch, 1996]. Various
combinations of boundary conditions and matrix weighting
for the different flow scenarios are used as inversion strate-
gies, covering the full range from under- to overdetermined
systems. Comparison of reference velocities calculated by
the prognostic model with the inverted velocities then pro-
vides a means to evaluate the performance and reliability of
the SVD inversion strategies. After introducing the flow sce-
narios, the basic inversion formalism and strategies in this
section, the main part of the paper exploits SVD peculiari-
ties for interpreting the results.

2.1. Kinematic Equations

The approach presented here is based on a kinematic
consideration of the firn volume, therefore the fundamen-
tal equations for conservation of energy and impulse are not
taken into account. In general, the distribution of any tracer
in a medium can be described by an advection-diffusion
equation. (Details on the tracer transport and formulation
in ice sheets are extensively discussed by Clarke and others
[2005].) In our case, the corresponding tracer is depositional
age, A = A(r, t), a non-diffusive property, which obeys

∂tA + v · ∇A = 1. (1)

All calculations are carried out in two-dimensional (2D)
space, r = (x, z) (z positive and increasing downward). ∂t

denotes the partial derivative with respect to the subscripted
variable, here time t. Equation (1) is sometimes referred to
as age equation [Hindmarsh and others, 2005, e.g.]. The
right-hand side represents a source term and is responsible
for the actual aging of the firn with time.

The second governing equation is the conservation of
mass,

∂tρ +∇ · (ρv) = 0. (2)

where ρ = ρ(r, t) is the density. These two equations form
the fundamental system of linear equations used in the for-
ward model and the inversion.

2.2. Assumptions and boundary conditions

A number of assumptions are employed for the sake of
simplicity, however without depreciating the general appli-
cability of the inversion. The considered firn volume extends
from the surface (z = 0) to an arbitrary depth (z = zmax).
The density distribution is taken to be laterally homogeneous
and time-independent, ∂xρ = ∂yρ = ∂tρ = 0 (Sorge’s
law), but depth-dependence is maintained (∂zρ 6= 0). This
assumption is well justified on a regional scale for ice-
sheet plateaus [e.g. Frezzotti and others, 2004; Richardson-
Näslund, 2004; Rotschky and others, 2004; Arcone and oth-
ers, 2005], but has to be considered with care on cold alpine
glaciers. Note that the depth-dependency of density is a
prominent difference to the incompressibility assumption of-
ten used in ice-sheet modeling. Time-dependence of equa-
tions (1) and (2) is maintained in the prognostic forward
model. The system of equations to be inverted, however, is
formulated in a time-independent way so that ∂t(·) = 0, as
the forward model produces a steady-state age distribution
as output, where (·) denotes any term to be differentiated.

No forces appear in the above equations, simplifying mat-
ters such that the upper boundary can be taken as a horizontal
surface, i.e. parallel to x. Position and direction of scalar and
vector quantities then always refer to this surface. (For illus-
trative comparison see Arcone and others [2005]: consider a
radargram which contains records of the reflector depth with
respect to the relative surface. Only during data processing a
topographic correction is applied.) The kinematic boundary
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condition at the surface is w(x, z = 0) = ḃ(x)/ρ0, where
ḃ(x) is the surface accumulation and ρ0 = ρ(z = 0) is the
density at the surface. Additional constraints are introduced
later, primarily as prescribed velocity properties.

2.3. Prognostic forward model

The forward model runs under prescribed stationary allo-
cations of density, horizontal velocity, and accumulation on
an ordinary grid, discretised with finite differences. It cal-
culates the vertical velocity from the combined effect of ac-
cumulation at the surface, advection, and densification, and
yields the synthetic age–depth distribution. Starting from an
initial laterally homogeneous, vertically increasing age dis-
tribution, the prognostic model runs in a transient mode un-
til a steady state is reached. Details on grid parameters are
listed in Table 1. The age-depth distribution constitutes the
essential output, which is passed on to the inversion model.
The prescribed horizontal velocities u

ref and calculated ver-
tical velocities w

ref of the forward model are defined for all
grid points. We further on use refer to them as the reference-
velocity field, denoted by the superscript ref , against which
the inverted velocity field is compared.

2.4. Linear system for inversion

The time-independent forms of equations (1) and (2) read

u∂xA + w∂zA = 1 (3a)

ρ∂xu + ρ∂zw + w∂zρ = 0. (3b)

The discretisation schemes for solving this linear system on
a triplex-staggered grid are taken in an adapted form from
Fiadeiro and Veronis [1982] and Wunsch [1985]. The input
fields of age and density are prescribed on a rectangular grid,
the A-grid, with a grid spacing of ∆x and ∆z in x- and z-
direction, respectively (Fig. 1). The A-grid has I×K nodes.
The grid nodes representing u and w (u- and w-grid) are
shifted by half the grid spacing in the horizontal and verti-
cal direction, respectively, relative to the nodes on which the
input parameters for age and density are prescribed (Fig. 1).
Application of staggered-grid differences to (3) leads to a
discrete system, which for a unit cell (Fig. 1a) can be ex-
pressed as

(

cα
i,k cβ

i+1,k cγ
i,k cδ

i,k+1

cκ
i,k cλ

i+1,k cµ
i,k cν

i,k+1

)









ui,k

ui+1,k

wi,k

wi,k+1









=

(

1
0

)

Detailed expressions of the staggered-grid differences and
variables {cα,...,ν

i,k } = f(A, ρ) are omitted for brevity. Whereas
all values of ui,k, wi,k within the dashed region in Fig. 1,
the solution domain, are implicit functions of the prescribed
variables A and ρ, their values on the boundaries cannot be
fully determined. However, this formulation has the advan-
tage that no other specific conditions are necessary at the
boundaries of the SVD domain. The number of unknown

variables u and w differs along a certain dimension (x or z)
within the solution domain: nx

u = I − 1, nz
u = K − 2,

nx
w = I − 2, nz

w = K − 1. The total number of elements of
each variable within the solution domain are nu = nx

unz
u and

nw = nx
wnz

w. Defining the following vectors and matrix,

d = (1, 1, . . . , 0, 0)T ∈ RM , M = 2nz
unx

w,

v = ({ui,k}, {wi,k})
T

= (uT ,wT )T ∈ RN , N = nu + nw,

M = ({cα
i,k}, . . . , {c

ν
i,k}) ∈ R

M×N , (4)

allows one to set up the matrix equation

Mv = d. (5)

In standard terms, d represents the data in data space RM

and v represents the model parameters in model space RN .
M is the number of (known) equations, N is the number
of unknowns, in our case the velocities within the solution
domain1. The relationship of model parameters and data is
described by the model matrix M, sometimes referred to as
the data kernel [Menke, 1989].

3. Singular Value Decomposition

3.1. Basic principles

The SVD of a matrix M is a generalisation of the spec-
tral decomposition of a square to a rectangular matrix, which
always exists. Here we apply SVD to calculate the pseudo-
inverse (or generalised inverse) of M, mainly following the
notation of Wunsch [1996]. Any rectangular matrix M can
be decomposed into a factorisation of the form

M = UΛV
T , (6)

where U and V are both unitary rectangular matrices, U ∈
RM×M , V ∈ RN×N , and V

T denotes the transpose of V.
The generally non-square matrix Λ ∈ RM×N contains the
singular values (square root of eigenvalues) of M in decreas-
ing order on the main diagonal, Λij = δijλi, with the Kro-
necker symbol δij . The matrix V contains a set of orthog-
onal input base-vectors of M, spanning the N -dimensional
model (or inverse solution) space, whereas the matrix U con-
tains a set of orthogonal output base-vectors spanning the
M -dimensional data (or observation) space. The number R
of non-zero singular values is the rank of M. If some sin-
gular values are zero or M 6= N , one or more of the rows
or columns of Λ must all be zeros. One can then drop those
columns of U and V that are multiplied by zeros only, thus
reducing the matrices in (6) to the expression

M = URΛRV
T
R , (7)

where the subscript R indicates the number of columns, with
UR ∈ RM×R and VR ∈ RN×R. ΛR is the submatrix

1Note the arbitrary usage of M and N in the literature.
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a

◦ wi,k−1

• ui−1,k ⊗
Ai,k

ρk
• ui,k

◦ wi,k

b ⊗ ⊗ ⊗ ⊗ ⊗ ⊗• • • • •

◦ ◦ ◦ ◦ ◦ ◦

⊗ ⊗ ⊗ ⊗ ⊗ ⊗• • • • •

◦ ◦ ◦ ◦ ◦ ◦

⊗ ⊗ ⊗ ⊗ ⊗ ⊗• • • • •

◦ ◦ ◦ ◦ ◦ ◦

⊗ ⊗ ⊗ ⊗ ⊗ ⊗• • • • •

◦ ◦ ◦ ◦ ◦ ◦

⊗ ⊗ ⊗ ⊗ ⊗ ⊗• • • • •

◦ ◦ ◦ ◦ ◦ ◦

⊗ ⊗ ⊗ ⊗ ⊗ ⊗• • • • •

Figure 1. (a) Unit-cell scheme of the numerical grid used for solving the linear system of equation (3). (b) Scheme of the
triplex-staggered numerical grid for I = K = 6. The solution domain is bounded by the dashed line. The uppermost row
corresponds to the surface. Distance between congenerous nodes is ∆x and ∆z, between nodes of different type ∆x/2 and
∆z/2 in the horizontal and vertical direction, respectively.

of Λ with non-vanishing singular values. It can be shown
[Wunsch, 1996] that VRΛ

−1
R U

T
R is the pseudo-inverse of

M, which we use to solve (5) for the unknown model vector,
the solution

v = VRΛ
−1
R U

T
Rd , (8)

where Λ
−1
R is the inverse of ΛR, i.e. with λ−1

i on the main
diagonal (λi 6= 0). The above expressions for M, U, and V

define four spaces: the model range VR ∈ RN×R (column
space of M), the model nullspace V0 ∈ RN×(N−R), the
data range UR ∈ RM×R (row space of M), and the data
nullspace U0 ∈ RM×(M−R). Depending on the size of M ,
N , and R, not of all of these spaces need to be coexistent.
Conditions for existence, terminology, and combinations are
listed in the appendix. If there is a data nullspace U0 (R <
M ), and if the data have components in it, then it will be
impossible to fit the data exactly. The residual norm will
then be different from zero. On the other hand, if the model
has components in the model nullspace V0 (R < N ), then
it will be impossible to determine the model exactly. In that
case the model solution can be presented as a sum of the
particular solution (8), which contains only range vectors,
and an arbitrary homogeneous solution V0α of (5) of (N −
R) vectors in the model nullspace with coefficients α, about
which the equations provide no information.

The SVD is related to the least-square approach. All of
the structure imposed by SVD is also present in least-squares
solutions. One commonality is that the SVD simultaneously
minimises the residual and solution norms (minimum norm
property, e.g. Scales and others [2001, p. 66]). However,
the SVD solution generalises the least-square solution to the
case where the matrix inverses of M

T
M or MM

T , the sim-
plest forms, do not exist, for instance if the system is not
full rank [Wunsch, 1996, 157f]. An important advantage for
the application of SVD and the interpretation of the solution

is that only a single algebraic formulation is necessary, irre-
spective to over-, under-, or just-determined systems. The
SVD provides its control over the solution norms, uncer-
tainties, and covariances through choice of the effective rank
R̂ ≤ R, which leads to the so-called truncated SVD, demon-
strated later. The truncated form makes a clear separation
between range and nullspace in both solution and residual
spaces.

3.2. Resolution

A useful peculiarity of the SVD is that it provides direct
access to the resolution of mapping model and data spaces
(for discussions see Menke [1989, p.62f] and Wunsch [1996,
p.165]). The model resolution matrix, defined as

TV = VRV
T
R, (9)

determines the relationship between the general solution
and the particular solution. If no model nullspace exists
(R = N ), the general and particular solution are equal. Then
TV = IN , the N×N -dimensional identity matrix, meaning
that the model is completely resolved. In the opposite case,
non-zero terms well appear off the main diagonal in (9), so
only averages of some model parameters can be resolved.
Analogously, the data resolution matrix

TU = URU
T
R (10)

provides information on how well the observed data is repro-
duced by the generalised inverse. Both resolution matrices
are functions of the data kernel M and the a-priori informa-
tion (the model) of the problem. They do not depend on the
model parameters v and the data d.
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3.3. Error covariance and uncertainty

Every estimate of model parameters v is subject to un-
certainties. Using an estimated v in (5) yields a data vector
which differs from the true d by some residual noise, re-
ferred to as n. The covariance of the estimated model pa-
rameters depends on the noise covariance Rnn (the second-
moment matrix of n). It can be shown to be [Wunsch, 1996,
p.143]

Cvv = VRΛ
−1
R U

T
RRnnURΛ

−1
R V

T
R . (11)

In the case of uncorrelated uniform variance σ2
n of the data

(11) simplifies to

Cvv = σ2
nVRΛ

−2
R V

T
R . (12)

The covariance of the model parameters arises from noise
present in the data and generates uncertainty in the coeffi-
cients of the model range vectors. Data covariance is thus
mapped onto model covariance. To obtain the complete so-
lution uncertainty Pvv of the model parameters, the influ-
ence of the missing nullspace contribution has to be taken
into account as well. It follow as [Wunsch, 1996, p.151]

Pvv = Cvv + V0RααV
T
0 , (13)

where Rαα is the second-moment matrix of the coefficients
α of the homogeneous solution. Rαα may be entirely un-
known, or an estimate from a-priori information might be
available. The uncertainty of the residuals is

Pnn = U0U
T
0 Rnn(U0U

T
0 )T . (14)

The covariance (11) of the estimated model parameters
is very sensitive to small non-zero singular values. Solution
variance can be reduced by choosing a R̂ < R to exclude
small λi. Inspecting the singular-value spectrum of the data
kernel enables one to choose an appropriate cut-off size for
contributing singular values [Menke, 1989, p.122]. This ar-
tificial reduction of model- and data-space dimensions leads
to rank deficiency, and thus worse resolution, and increased
dimensions of the nullspaces, but decreases model covari-
ance. Choosing an effective rank R̂ therefore provides a
means to trade-off variance and resolution, or solution and
residual norm, respectively.

3.4. Scaling and weighting

Weighting is in general used to give more importance to
certain observations than to others, mainly to correct for un-
certainty. On the other hand, if a system consists of different
physical equations, then the varying norm of the equations
leads to undesired weighting. The norm of the rows of the
linear system (5) are different due to the physical variables
involved (age and density). To correct for this effect we first
apply row scaling to the matrix M through the matrix W.
Likewise, the columns of M are of different norm, so that

we require column scaling after the row scaling by the ma-
trix S. The linear system (5) is transformed to the scaled
space (denoted by ∼),

W
−T/2

MS
T/2

S
−T/2

v = W
−T/2

d

⇐⇒ M̃ṽ = d̃, (15)

where W contains the L2 norm of each equation (row norm
of M) on the diagonal and has the Cholesky decomposi-
tion W = W

T/2
W

1/2 [Wunsch, 1996, p.159]. Similarly,
S contains the column norm of the already row-scaled ma-
trix W

−T/2
M. The SVD is applied in the scaled space.

Back transformation from the scaled to the original space,
v = S

T/2
ṽ, then provides the desired solution. Despite the

fact that for a full-rank underdetermined (overdetermined)
system, row (column) scaling is irrelevant, we always ap-
ply both scalings to cover all general cases. In addition to
scaling, the use of W and S allows a degree of control of
the relative norms of solution and residual, as is the case for
least squares. Below we will apply a third scaling matrix
F, such that F

T
SF instead of S will be used in (15), and

F contains a-priori information about the covariance of the
estimated model parameters v.

3.5. Separation of mean and variation

The minimum-norm property of the SVD will result in
a solution that is smallest, in the sense of being closest to
zero. However, as we are rather interested in finding the vari-
ations of velocity around an average, it is feasible to consider
only the variations of the flow field on a homogeneous back-
ground. Hence we separate the mean flow from its spatial
variations by

v = v + v
′, (16)

where v = (uT ,wT )T is the mean flow field and v
′ =

(u′T ,w′T )T the spatial variation. Separate mean values
ū = 〈u〉, w̄ = 〈w〉 are used for horizontal and vertical ve-
locities, respectively, and u = ū inu

,w = w̄inw
, where in is

a vector of length n with all ones. Our linear system (3) can
then be reformulated as

Mv
′ = d

′ = d−Mv. (17)

For the rest of the paper we drop the attribute ∼. We as-
sume that separation of mean and variation and subsequent
scaling have been applied prior to SVD. The results are then
discussed in terms of the variational component of the veloc-
ity field v

′, as well as the complete velocity field v.

4. Simulations and Inversion

4.1. Scenarios

Different synthetic scenarios of flow are created with the
forward model, with physical parameters chosen such as to
mimic real conditions. The horizontal flow field u

ref is pre-
scribed. A Gaussian variation in surface accumulation ḃ(x)
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Figure 2. Accumulation forcing (a) and resulting age-depth
distributions using different horizontal velocities of scenario
(b) NF,(c) SF, (d) MF, (e) MDF for the upper 50 m of the
firn column (Table 1). Horizontal flow is from left to right.
Crosses in (a) indicate position of nodes on A-grid, scale on
the right is vertical velocity at the surface.

Table 1. Simulation parameters

Scenario ūref ∂xuref u′ref

(m a−1) (a−1)

NF 0 0 0
SF 1 0 0
MF 10 0 0
MDF 10 4 · 10−5 6= 0

dimension min max increment
Prognostic Forward Model

x 0 5 km 100 m
z 0 100 m 1 m

SVD inversion
x 0 5 km 500 m
z 0 50 m 5 m

NF: no flow; SF: slow flow; MF: moderate flow; MDF:
moderate divergent flow with a 20% increase in u over the
x-domain. ū is constant over the complete domain.

is superimposed,

ḃ(x) = ḃ0

(

1 + exp

[

−
(x− xµ)2

x2
σ

])

(18)

where ḃ0 = 50 kg m−2 a−1is the background accumulation,
a value typical for the Antarctic plateau. The maximum ac-
cumulation occurs at xµ = 0.5(xmin − xmax), the center
of the x-domain, with ḃ(xµ) = 2ḃ0. xσ = xµ/6 determines
the width of the distribution (Fig. 2a). Following Richardson
and Holmlund [1999], density is parameterised as

ρ(z) = ρi + (ρ0 − ρi)e
−cρz . (19)

ρ0 = 400 kg m−2 a−1and ρi = 900 kg m−2 a−1represent
values for the density at the surface and of solid ice, respec-
tively, and cρ = 0.05. This density distribution is likewise
typical for different snow regimes in Antarctica.

We consider four different flow regimes of firn with pre-
scribed horizontal velocity field (Table 1). In the most sim-
ple case, no horizontal advection takes place (scenario “no
flow”, NF). This could be considered the case for a broad
ice dome or along an ice divide. The other cases consider
constant slow (SF) ū = 1 m a−1and constant moderate flow
(MF), ū = 10 m a−1, which are also typical for polar ice
sheets [Xiaolan and Jezek, 2004; Bamber and others, 2000]
or high-altitude alpine glaciers [e.g. Lüthi and Funk, 2001;
Schwerzmann and others, 2006]. For these three scenarios
the prescribed velocity variation u

′ref = 0. For the moder-
ate velocity of ū = 10 m a−1, a fourth scenario considers
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divergent flow (MDF) of the form u(x) = ū + cu(x − xµ),
with cu such that u(x) increases by 20% from 0.9ū to 1.1ū
over the x-domain, and thus u

′ref 6= 0. As a scenario with
non-constant horizontal velocities is the most likely case to
encounter in reality, it will be in the special focus of the
later analysis. Typical speeds for fast ice-stream flow are not
taken into account in this feasibility study, as ice dynamics
become increasingly important.

The forward model is implemented on a grid spanning
5 km in the horizontal and 100 m the vertical direction, con-
taining 51 × 101 nodes (Table 1). This volume suffices to
cover the firn region of cold polar or high-altitude sites and
also comprises characteristic length scales of variations in
accumulation. The scenarios clearly show how the varying
horizontal advection affects the resulting age-depth distribu-
tion (Fig. 2). For scenario SF, the effect of the accumulation
variation tapers off before an affected ice particle leaves the
model domain. For both MF-scenarios, advection is larger,
so the accumulation effect is still present at the model out-
flow boundary.

4.2. Constraints and inversion strategies

A standard approach to determine the parameters of a
physical model, assumed to be a compatible description of
a system, is to minimise an objective function which gauges
the misfit between measurements and model results. Model
physics are usually enforced as constraints on the minimi-
sation in the form of exact equations, so-called hard con-
straints [e.g. Wunsch, 1996]. For ice-flow modeling this was
for instance presented by MacAyeal [1993] in the case of es-
timating the basal friction of an ice stream and applied to
real data later [MacAyeal and others, 1995; Vieli and Payne,
2003; Joughin and others, 2004; Larour and others, 2005]. In
addition to the basic physical description of a system, certain
aspects of a solution like structure, norm, or boundary val-
ues are also sometimes known a-priori. This information is
valuable and helps restricting the in general non-unique so-
lutions of inversions. It can either be included as a hard con-
straint in the objective function, or as a soft constraint, for
instance in trading the norm of the solution vs. the norm of
the noise by weighting, leading to tapered or damped least-
squares solutions [Menke, 1989, p.52]. Although the SVD
does not explicitly employ an objective function, hard and
soft constraints can likewise be imposed.

Each of the different sets of constraints applied in the
following exercises with synthetic scenarios can in reality
also be determined from measured data. For the problem
I address here, the flow and deformation of firn, one usu-
ally has a rough idea what the flow field at the surface looks
like. Horizontal surface velocities can be measured directly
(e.g. GPS surveying of stakes) or indirectly (e.g. InSAR ob-
servations). Here, the reference velocity field v

ref represents
possible measurements, and thus provides a-priori informa-
tion about various velocity characteristics. It is thus possible
to prescribe different parts of the horizontal velocity at the

surface (k = 0),
ui,0 = uref

i,0 , (20)

or properties of the derivative, e.g. uniform, divergent, or
convergent flow,

ui−1,0 − ui,0 = ∆xuref
i,0 . (21)

Distribution of horizontal velocities with depth are deducible
from measurements of borehole deformation, enabling us to
also use k 6= 0 in (20) for values at depth at the borehole
location (i = ib), but also to infer properties on shearing,

uib,k = uref
ib,k, (22)

uib,k−1 − uib,k = ∆zu
ref
ib,k. (23)

The case ∆zu
ref
ib,k = 0, i.e. constant horizontal velocity

along the vertical, is commonly referred to as plug flow and
will be used later.

Not only can horizontal deformations be deduced from
borehole deformation, it is also possible to directly deter-
mine the vertical velocities by different methods. One way
is to observe the movement of markings in a borehole wall
[e.g. Schwerzmann and others, 2006]. This provides similar
information for the vertical velocities,

wib ,k = wref
ib,k, (24)

wib ,k−1 − wib,k = ∆zw
ref
ib,k. (25)

To infer information about the properties of the problem
posed here, like stability of the solution and general solu-
tion structure, I will employ different combinations of the
constraining equations to the linear system (3) to increase
the degree of determinacy. The constraints are enforced as
hard constraints, by expanding the number of rows of the
model matrix M and the data vector d (5). Each combina-
tion of constraints will be referred to as a strategy, which
is then applied to the simulation scenarios (Table 2). The
most simple strategy (denoted Plain strategy), just considers
equations for advection and conservation mass without any
additional constraints. It shows that the principle property
of the kinematic approach is underdeterminacy. All other
strategies are less underdetermined, with the majority be-
ing overdetermined systems (Table 2). Only the rather com-
plex MDF-scenario (moderate flow with divergence) will be
solved with all strategies and will be used later to discuss the
solution properties in detail.

The SVD inversion is implemented with the linear alge-
bra package (LAPACK) routines integrated in MATLAB. As
most of the densification takes place in the upper part of
the firn column, the inversion covers only the upper 50 m.
The inversion grid spans 11× 11 nodes, with increments of
500 m and 5 m in the horizontal and vertical, respectively.
The SVD grid has a five-fold lower resolution, but its nodes
overlap with those from the forward model. The input fields
of age and density to the inversion do thus not have to be in-
terpolated. A linear interpolation of the u- and w-reference-
velocity fields is carried out to project these values onto the
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Table 2. Prescribed additional constraints and system properties for SVD inversion strategies

Strategy u ∂xu ∂zu M R R̂

Plain – – – 162 162 90
Bu ui,0 – – 172 172 100
Pf – – 0 ∀(i, k) 242 180 170
Du – ∆xu ∀(i, k) – 243 180 171
BuPf ui,0 – 0 ∀(i, k) 252 180 180
BuDu ui,0 ∆xu ∀(i, k) – 253 180 172
DuPf – ∆xu ∀(i, k) 0 ∀(i, k) 323 180 179
BuDuPf ui,0 ∆xu ∀(i, k) 0 ∀(i, k) 333 180 179
BuPfW ui,0 – weighting 172 180 100

Age advection and conservation of mass are considered for all strategies. Strategy coding: Plain: no
additional constraints; Bu: boundary conditions of u at surface prescribed; Du: horizontal divergence of
u prescribed; Pf: plug flow (no shear) prescribed. Constraints are enforced by additional equations to
model matrix M, except for PfW, for which plug flow is enforced by matrix weighting. Symbols: ∀(i, k):
prescribed for all nodes (i, k); dimension of data space M ; dimension of model space N = 180 (for all
strategies); R mathematical rank; R̂ effective (reduced) rank used for inversion.

triplex-staggered grid (Fig. 1). Evidently, the lower resolu-
tion and the interpolation will have some influence on the
results. However, this effect could be considered equivalent
to measurement errors for real data. The influence of data
errors on the results will be considered at the end of the fol-
lowing analysis section.

5. Results and Analysis

This section compares the solutions of different strategy
for all scenarios. I first illustrate the advantages of SVD-
based concepts for comprehensive analyses by investigating
the singular-value spectrum (Fig. 3) and resolution matrices
(Fig. 4). This is exemplary discussed for the MDF scenario.
Subsequently I discuss the distribution of several norms,
which enable us to evaluate the solutions and compare the re-
sults for the other scenarios and inversion strategies. The first
norm type is the L2-norm of the residual and solution vec-
tors, ||n′|| and ||v′||, respectively. (We consider the solution
of the velocity variation v

′, our main interest, instead of the
complete field v .) The residual norm is a measure of the pre-
diction error of the estimated model parameters v

′ in relation
to the true (unknown) parameters. As discussed above, the
SVD simultaneously minimises these norms to produce the
particular solution, with the rank R̂ determining the trade-
off between residual and solution norm. The second type
is the norm of the difference between the reference veloc-
ity field (linearly interpolated to the SVD u- and w-grid)
and the inverted velocity field (||∆u

′|| = ||u′ref − u
′svd||

and ||∆w
′|| = ||w′ref −w

′svd||), hereafter referred to as ve-
locity difference norms. The latter two quantities provide a

Figure 3. Singular-value spectrum for five inversion strate-
gies applied to the MDF scenario. The strategy BuPfW is
introduced at the end of this section.
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Figure 4. Diagonal of the (a) data and (b) model resolution matrices, TU and TV, respectively, for the inversion strategies
BuPf, Bu, and Plain, given in the legend, applied to the MDF scenario. Components of d

′ (data-index, (a)) for BuPf
correspond to the age equation, conservation of mass, plug-flow constraint, and surface velocity constraint, as indicated on
the abscissa. Components of v

′ (model-parameter index, (b)) correspond to u and w, respectively, as indicated.

measure of how good a specific inversion strategy performed
with respect to the known reference data set.

5.1. Singular-value spectrum

We use four strategies to investigate the structure of the
inverted solution for the velocity field of the MDF scenario:
the underdetermined and most simple case (Plain), the al-
most determined (Bu), and the overdetermined strategies
(BuPf and BuDu), using plug flow and divergence, respec-
tively, as constraints. The latter three also constrain the hor-
izontal velocities at the surface.

More than the first third of the ordered singular values,
up to about index 72, is basically identical for all strategies
(Fig. 3). Beyond this index, the spectra of the overdeter-
mined strategies fall off only slightly, up to about an index
of 170. Whereas the singular values of strategy BuPf then
drop by 50%, those of BuDu drop almost two orders of mag-
nitude. The underdetermined strategy spectra decrease faster
with increasing index. They display two stepwise drops be-
yond index 72, before continuously decreasing by several
orders of magnitudes. The last discrete drop occurs at a sin-
gular value of∼ 0.25. This feature is common to the spectra
of all strategies, and is, in general, a typical phenomenon for
various problems [Menke, 1989]. The largest difference for
all spectra, and the most important ones for the considera-
tion of residual and solution norms, occurs for the smallest
about 20–30% of the singular values. Using the untruncated
spectra for estimating the model parameters usually results
in very small residual norms, equivalent to high resolution,
but larger solution norms. The corresponding velocity fields

show very detailed, but unrealistic velocity structures (not
shown).

Following experience from different fields where SVD
has been employed, I chose the index of the last drop-off
as the lower bound of singular values to truncate the contin-
uously and rapidly falling part of singular spectrum. This
leads to worse resolution, but smaller solution and also dif-
ference norms, and thus more realistic results (Fig. 5). Only
for strategy BuPf, the full rank is maintained. Although the
resulting smallest singular value is comparable for all strate-
gies, the corresponding reduced rank R̂ differs significantly
(Table 2). This results from the fact that, depending on the
solution strategy, the equations show a varying degree of lin-
ear independence. The smaller the singular values, the more
linearly dependent are the equations.

5.2. Model and data resolution

Another means to partly judge the inversion solution is
provided by the resolution matrices. If non-diagonal ele-
ments are non-zero, the related main diagonal element < 1,
indicating that this parameter is not fully resolved, i.e. only
averages can be determined. I now exemplarily discuss three
strategies for the MDF scenario. At full rank, the data are
fully resolved for all underdetermined strategies, and the
model parameters for all overdetermined strategies. The lat-
ter is the case for strategy BuPf, for which no reduction of
rank was necessary (Fig. 4). For the truncated underdeter-
mined strategy solutions, discussed for the MDF scenario
above, the model-resolution matrix TV indicates that the
horizontal velocities are only poorly resolved (Fig. 4), apart
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from those subject to the surface-velocity constraint in the
case of Bu. The vertical velocities are equally well resolved
for both strategies. It will become evident that this is in
full accordance with comparison of the actual velocity fields
shown in Figure 5 discussed below. Without checking the
reference-velocity field it is thus possible to assume that the
inverted vertical velocities are more reliable in the underde-
termined cases than the horizontal velocities.

For all full-rank underdetermined or truncated overde-
termined cases, the data cannot be fitted exactly, giving
rise to larger residuals. The diagonal elements of the data-
resolution matrices TU now indicate that especially the age
equations are only poorly resolved for all strategies. The
equations for conservation of mass and plug flow are bet-
ter resolved, though not fully. They show a decreasing res-
olution trend with depth (larger data index). For strategy
BuPf, the plug-flow constraint is well resolved, which will
be evident in the horizontal velocity structure discussed later.
Note that the “oscillations” in data resolution are not arbi-
trary. The order of diagonal components with index corre-
spond primary to increasing x and secondary to increasing
z. The variations thus systematically depend on the position
of the underlying equation node, with overall smaller varia-
tions in the horizontal than in the vertical. These variations
are moreover quasi identical for all three solution strategies.
Comparable to the singular spectrum, the model-parameter
and data resolution matrices also allow us to judge and im-
prove the quality of the inverted solution by inspecting the
residual and solution norm and the singular-value spectrum
without requiring a reference-velocity field.

5.3. Inverted versus reference velocity fields

The principle results obtained in the last section are more
clearly visible in the actual velocity distribution (Fig. 5).
The underdetermined strategy Plain does not reproduce the
horizontal velocity, but gives a rough idea what the verti-
cal velocity field might look like. In the almost determined
case Bu the vertical structure is reproduced correctly, but
the vertical solution velocities are, however, slightly larger
than the reference velocities. The horizontal velocities show
the expected divergence clearly only for the surface nodes,
i.e. where the horizontal velocities are constraint. The verti-
cal velocities in the overdetermined case are smaller than in
the almost determined case and closer the reference values,
especially near the surface. As the plug flow is constraint for
this strategy and well resolved, the horizontal velocities are
now in very good agreement with the reference field (Fig. 5).

5.4. Norm properties for strategies and scenarios

The difference norm for horizontal velocities, ||∆u
′||, is

very sensitive to the choice of the mean velocity ū. To pro-
vide a similar foundation for all strategies, the mean velocity
ū is always provided as the mean of the reference-velocity
field for each scenario, such that only the inverted velocity
variations are compared (Table 1). The influence of zero-
mean velocities will be discussed below.

Figure 6. (a) ||n′||, (b) ||v′||, (c) ||∆u
′||, (d) ||∆w

′|| of
the different scenarios (Table 1) plotted with the inversion
strategies on the abscissa in increasing order of determinacy
M − N . Note that logarithmic scale is used for ||v′|| and
||∆u

′||. Scenarios are denoted with triangle (NF), downward
triangle (SF), square (MF), and circle (MDF).

Ordering the inversion strategies with increasing M (the
number of equations) would for full-rank SVD generally il-
lustrate the dependence of the residual norm on determinacy
(Fig. 6a). Naturally, for full-rank underdetermined system
(M < N ) the data can be fit exactly, resulting in ||n′|| =
0. For reduced rank, however, the residual norm ||n′|| in-
creases, but yields a small solution norm ||v′|| (Fig. 6b).
The non-divergent scenarios (NF, SF, MF) provide an al-
most constant residual and velocity norm for all strategies
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Figure 5. Horizontal (left) and vertical (right) velocity field for the MDF-scenario with strategies Plain (top), Bu (middle),
BuPf (bottom). Colormap and solid contours indicate inverted velocity fields, dashed labeled contours indicate reference
velocities (units are m a−1). The different horizontal and vertical dimensions of u and v result from the different grids used
(Figure 1).
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(at the chosen reduced ranks), with slightly higher values
for the underdetermined systems and ||n′|| (||v′||) slightly
increasing (decreasing) with the mean velocity. For the di-
vergent scenario (MDF), the residual norm is a factor of two
larger for the truncated underdetermined strategies than for
the overdetermined strategies. In each group the residual
norm is remarkably constant. An exception is the overdeter-
mined strategy constraining plug flow, for which the resid-
ual norm is equal to that of the undetermined strategies. The
velocity norm ||v′|| for the MDF scenario spans an order
of magnitude, with opposite ratio for under- and overdeter-
mined strategies as for the residual norm, as expected.

More interesting from an application point of view is the
residual between input and solution velocities (Fig. 6c and
d). The difference norms of horizontal velocities vary much
stronger than those of vertical velocities, which are basically
independent of strategy. For MDF, ||∆w

′|| ≈ 0.12, for the
non-divergent scenarios, ||∆w

′|| ≈ 0.19 − 0.21 (Fig. 6d).
Another feature is the similarity of ||∆u

′|| and ||n′|| norm
distribution. The two underdetermined strategies as well as
Pf result in ||∆u

′|| 2–4 orders of magnitude larger the for the
remaining overdetermined strategies.

Although unlikely, it can occur in reality that no a-priori
information on horizontal velocity is available. In those
cases, ū = 0 would have to be used. Employing this case for
the moderate flow scenarios, the velocity-difference norm re-
mains quasi constant, but the residual norm significantly in-
creases for those strategies that do not incorporate boundary
conditions for u. Without a pinpoint for velocity, the small-
est velocities norm result as the solution as a consequence of
the minimum-norm property of the SVD. Reducing the rank
does not provide remedy in this case.

Likewise, the exceptional norm values for strategy Pf re-
sult from the missing information about velocity divergence,
as only plug flow for u is constraint. The solution fulfills
the plug-flow constraint, but with the smallest norm. That
is, rather constant velocities in x-direction. Prescribing di-
vergence instead of plug flow in strategy Du yields mathe-
matically an almost identical rank, but moreover the solu-
tion contains a certain (constraint) variation of the horizon-
tal velocity. In this case plug flow naturally emerges as the
solution with the smallest norm for only small variations in
z-direction.

5.5. Weighting vs. full equation for plug-flow constraint

So far all constraints have been enforced as hard con-
straints by extending the linear system of equations. We
now investigate the effect of enforcing the plug-flow con-
straint by matrix weighting. In addition, the so far neglected
model uncertainties (i.e. velocities) will also be included in
the weighting matrix F. The linear system is setup similar to
strategy Bu, i.e. only boundary conditions of the horizontal
velocity at the surface are used as hard constraints. To ac-
count for velocity uncertainties the main diagonal of F is set
to 0.9 for u and w. Off-diagonal elements are set to 0.1 for
u, allowing some degree of covariance of horizontal veloci-

ties, and set to 0 for w, implying that the vertical velocities
are uncorrelated.

The plug-flow constraint is equivalent to finding the smoothest
solution of u along the vertical, which would usually involve
setting the first vertical derivative of u to zero (∆zu

ref
i,k = 0 in

(23)). To relax this condition and allow a larger uncertainty,
the relevant off-diagonal elements in F are set to 0.7. This
provides strategy BuPfW, an almost determined system with
a mathematical rank of 172. Inspection of the singular-value
spectrum indicates that only the about 50% largest values
are of comparable size for strategies Bu and BuPfW (Fig. 3).
Beyond an index of 72, the singular values of BuPfW de-
crease dramatically, yielding the smallest distribution of all
strategies. This implies that the full-rank solution is strongly
influenced by the smallest singular values. The prominent
gap for singular values around 0.1 is likewise present, as for
the other strategies (Fig. 3). Values below this gap are again
truncated, as discussed above.

The matrix-weighting strategy BuPfW at reduced rank
R̂ = 100 produces similar results as imposing the constraint
by equations, as for strategy BuPf (Fig. 7). The horizontal
velocities are matched very well at all depth for BuPf and
BuPfW, but only poorly for Bu, except for the constraint hor-
izontal surface velocities. The vertical velocities for all three
strategies are slightly higher than the reference velocities,
with decreasing discrepancies with increasing depth.

To demonstrate that the choice made for reducing the
rank is a sensible one, based on inspection of the singu-
lar spectrum, we now vary R̂ over the whole range of pos-
sible values and investigate the resulting difference norms
for BuPfW (Fig. 8). It becomes evident that the velocity-
difference norms ||∆u

′|| and ||∆w
′|| have a somewhat op-

posing trend. ||∆w
′|| is constant at about 3.5 for R̂ ≤ 96,

then falls of rapidly to steady values around 0.5 before it
rapidly increases for R̂ > 172. This distribution indicates
that for 100 ≤ R̂ <≤ 170 the vertical reference-velocity
structure is approached, although not exactly matched. The
distribution of ||∆u

′|| slightly decrease from 1.5 to 1 for
small R̂. A prominent plateau is present for 40 ≤ R̂ ≤ 105.
In this region the horizontal reference velocities are matched
almost perfectly. For larger R̂, ||∆u

′|| acceleratingly in-
creases, with largest values present for R̂ = 172.

Combining both velocity-difference norms, weighted with
the squareroot of their mean velocity, a minimum is apparent
for 100 ≤ R̂ ≤ 105. This range corresponds to the final drop
in the singular-value spectrum (Fig. 3), chosen above as the
truncation criterium. For any R̂ within this set the inverted
velocities approximate the structure of the reference veloci-
ties quite well (Fig. 7). Choosing an R̂ outside of this mini-
mum, the vertical velocity deviates more and more from the
reference structure for smaller R̂, thus dominating the com-
bined norm, whereas the horizontal velocities dominate the
combined norm for larger R̂. For R̂ = 172, both velocity-
component fields are quasi arbitrarily different form the ref-
erence fields.

The results indicate that for an underdetermined linear
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Figure 7. Velocities derived from plug-flow condition imposed by matrix weighting (BuPfW) for reduced rank (R̂ = 100) in
comparison to Bu, BuPf solutions and the reference velocities for the MDF scenario. u and w are displayed along horizontal
crosssections at three depth, indicated at the top of each panel.

kinematic system, with constraints imposed by matrix weight-
ing, it is possible to find a solution which is close to the
true one by choosing a suitable reduced rank. Our choice
for truncation made above is based on the structure of the
singular-value spectrum, and proved to be the most sensi-
ble one. Although we discussed the results only for strategy
BuPfW, similar analysis for the other strategies yield equiv-
alent findings, demonstrating that the choice of the reduced
rank made is indeed a general one.

5.6. Error and covariance estimates

The last point to investigate, fundamental to all inver-
sions, is the solution uncertainty. Input parameters are den-
sity ρ and age A. Density measurements along ice cores are
very accurate, usually with an uncertainty < 2%. However,
our assumption of a lateral homogeneous density distribution
might be wrong in some regions. The uncertainty of the age-
depth distribution determined from radar surveys depends on
numerous factors: the density (for converting radar travel-
time to depth), the age estimate from ice cores, transferring
the ice-core age to the internal horizons, tracking of individ-
ual horizons, and interpolation of the age distribution onto
the SVD grid. From analysis of Antarctic field data, Eisen
and others [2004] found a maximum error of a couple of per-
cent for the age-depth distribution in firn. In alpine regions,
or regions with a lateral inhomogeneous density distribution,
this error might be larger.

An error estimate of the model parameters requires knowl-
edge about the data covariance, according to equations (11)

Figure 8. Distribution of ||∆u
′||, ||∆w

′||, and
||∆u

′||+||∆w
′|| as a function of reduced rank R̂ for strat-

egy BuPfW for the MDF scenario, with plug flow imposed
by matrix weighting. The norms are scaled with the square-
root of their mean. Arrow indicates three values of norm
7–14 for R = 172.
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and (13). For the linear system considered here, uncorre-
lated uniform variance for the data cannot be assumed, as
different physical equations are taken into account. Instead
of prescribing an arbitrary data covariance, we perform a
Monte Carlo-based estimate of covariances, using perturbed
reference velocities, age and density distributions as input
to a forward calculation of (5). A total of 103 experiments,
each of which uses a Gaussian distributed random error of
10% for A, 2% for ρ, and 1% for v

ref results in a distri-
bution of estimated data vectors. From this the correspond-
ing distribution of noise n follows. Subsequent analysis fi-
nally yields an estimate of the noise covariance Rnn. As
could be expected from the numerical setup, the different
equations are not uncorrelated. Although the main diagonal
dominates, secondary diagonals also exhibit significant com-
ponents. The contribution of the covariance of the nullspace
vectors through Rαα to the model uncertainty is neglected,
as no a priori information is available.

We exemplarily investigate the model uncertainty again
for the solution obtained with strategy BuPfW for the MDF
scenario. Following (16) and (17), the inversion solves
for the velocity variation v on a background velocity of
ū = 10 m a−1and w̄ = 0.1 m a−1. (Note that according
to definition (4), the components of v are arranged with in-
creasing index primary with increasing x and secondary with
increasing z). The model uncertainties Pvv are relatively
constant at about 0.1 m a−1for all v

′-components (Fig. 9).
For horizontal velocity variations u

′, the uncertainty is about
one order of magnitude smaller then the largest variation of
1 m a−1. The largest differences between reference and in-
verted velocities is only about half of the uncertainty esti-
mate. The uncertainty for the vertical velocity variations w

′

is on the same order as the actual variation, but again the dif-
ferences between reference and inverted velocities are much
smaller. The estimated model uncertainty can thus be con-
sidered a realistic value and an upper error bound, as it con-
tains the observed difference for the system solved here.

The uncertainty of the residuals n significantly depend on
the rank chosen. Generally, for R̂ close to the full rank R,
the residuals are much larger than than their uncertainty. For
small R̂, however, as in the present example, the residual
uncertainty is an order of magnitude larger than the actual
residual. Again, this is the manifestation of the trade-off be-
tween resolution and model covariance.

5.7. Improving accumulation estimates

The reader may wonder why it is actually necessary to
use a mathematically rather complex inversion scheme un-
der the simplifying assumption of plug flow in firn. If the
flow is indeed plug flow, then all information on the hori-
zontal field could be deduced from measurements at the sur-
face. However, determination of accumulation from the age
distribution produces significantly different results for inver-
sion solutions and conventional techniques, i.e. by simply
calculating the quotient of cumulative mass difference and
age difference between to isochrones. The effect of advec-
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tion on layer architecture for an inhomogeneous accumula-
tion pattern leads to non-intuitive results, as demonstrated by
Arcone and others [2005]. Possible misinterpretations are
therefore likely for conventional calculations.

Considering the MDF scenario, conventional accumula-
tion estimates from different depths leads to an apparently
migrating accumulation pattern (Fig. 10). The accumulation
maximum propagates further downstream with increasing
depth (age) and the accumulation pattern experiences some
broadening. Differences to the reference accumulation are
up to 10% for surface layer, but up to 70% for the deeper lay-
ers. The Bu inversion, on the other hand, yields a stationary
accumulation pattern at the surface with a congruent shape.
Values are 0–10% larger than the reference at the location of
accumulation maximum, and up to 20% and the boundary of
the solution domain (Fig. 10). By taking into account a cer-
tain amount of advection, even the underdetermined system
Bu correctly reproduces the accumulation pattern.

Although it is in general possible to correct a convention-
ally determined accumulation pattern for advection, i.e. the
position of the maximum, as long as not interference occurs
[Arcone and others, 2005], the broadening pattern cannot
be easily overcome. The conventional result could there-
fore cause a misleading interpretation, like a temporally non-
stationary accumulation pattern. This is the fundamental rea-
son for endeavouring an inversion scheme: the separation of
temporal and spatial variations in flow and mass balance.

6. Summary

In this paper I investigated the feasibility to invert an age–
depth distribution for the velocity field in an advective flow
regime in firn by employing a kinematic inversion approach.
The inversion was performed by means of a singular-value
decomposition of a linear system of equations. The compar-
ison of different flow scenarios and solution strategies with
different constraints provides the findings than all kinematic
inversion strategies provide a generally stable solution, given
that the singular spectrum is adequately truncated; the choice
of the reduced rank can be based on objective criteria; for the
underlying system of equations, given advection scenarios,
and the prescribed spatially inhomogeneous accumulation,
the inverted horizontal velocity is much more sensitive to
the employed inversion strategy than the vertical velocity;

The amount of information retrieved about the veloc-
ity field naturally varies with the degree of determinacy of
the underlying linear system. For all strategies, the pre-
scription of surface velocities seems necessary to retrieve
small velocity variations superimposed on a mean flow field.
Without any quantitative information on horizontal veloc-
ity the minimum-norm property of the SVD makes realis-
tic solutions difficult. Instead of extending the linear system
with more constraining equations, enforcing additional con-
straints is equally possible by matrix-weighting.

A detailed investigation of the solution is possible by ex-
ploiting the mathematical advantages of the SVD. The solu-

tions were examined in terms of resolution, error estimates,
and trade-off of resolution and solution covariance. Esti-
mates of the uncertainty of the solution seem realistic and
provide an upper boundary.

The inversion approach is likely applicable to other flow
scenarios as well. Two applications to realistic scenarios are
obvious. First, interaction of a spatially constant accumula-
tion pattern with a high-velocity flow field could be analysed
to infer temporal variations in accumulation by removing the
advective components of accumulation estimates. Although
the approach presented here assumes a steady-state pattern,
larger variations in accumulation derived from isochrones at
different depth as those presented above (Fig. 10) could hint
to temporally varying accumulation. Second, under certain
conditions an accumulation pattern is migrating at a differ-
ent velocity than the ice. This is for instance the case for
megadunes [Frezzotti and others, 2002; Fahnestock and oth-
ers, 2000]. Using only the surface ice-velocity constraints
under such conditions would not result in a realistic pattern
of vertical velocity and accumulation. It would be rather rea-
sonable to additionally prescribe flow conditions (e.g. plug
flow) and determine the migration velocity of the accumula-
tion pattern relative to the ice surface by inversion.

Possible extensions of the kinematic inversion approach
presented here are introduction of more unknown parame-
ters, e.g. using a certain density parameterisation and solv-
ing for those parameters as well, and some form of time-
dependence. Further attempts towards dynamical equations
should be made by inverting parameters for a flow law of
firn.

Notation

M dimension of data space (number of obser-
vations)

N dimension of model space (number of un-
knowns)

A, Ai,k depositional age of particle (tracer)
ρ, ρk density

ḃ accumulation
t time

x, z horizontal, vertical spatial coordinate
r = (x, z) coordinate vector

u, ui,k horizontal velocity component
w, wi,k vertical velocity component

u,w horizontal, vertical velocity field
v velocity (model) vector ∈ RN

= (uT ,wT )T

d data vector ∈ RM

n residual/noise vector ∈ RM

M model matrix ∈ RM×N

R mathematical rank of M

R̂ effective/reduced rank of M

Λ singular-value matrix ∈ RM×N

ΛR submatrix of Λ ∈ RR×R

λi singular value
U data/observation space ∈ RM×M
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= {UR U0}
V model/solution space ∈ RN×N

= {VR V0}
UR data range ∈ RM×R

VR model range ∈ RN×R

U0 data nullspace ∈ RM×M−R

V0 model nullspace ∈ RN×N−R

TV model/solution resolution matrix
= VRV

T
R

TU data/observation resolution matrix
= URU

T
R

Rnn residual covariance
α coefficients of data nullspace

Rαα covariance of nullspace coefficients
Cvv model covariance
Pvv model uncertainty
Pnn residual uncertainty

IN , iN unit matrix ∈ RN×N , diagonal of IN

S,W,F column, row scaling, weighting matrix
M̃, d̃, ṽ linear system in scaled space

d̄, v̄ vectors corresponding to flow-field mean
d
′,v′, . . . vectors corresponding to flow-field varia-

tions
u

ref ,wref reference of horizontal, vertical velocity
field

u
svd,wsvd SVD solution of horizontal, vertical veloc-

ity field
∆v

′, ∆u
′, ∆w

′ residuals of velocity variation (reference–
solution)

||∆u
′||, ||∆w

′|| norm of velocity residuals
||n′||, ||v′|| norm of residual, solution vector
〈u〉, 〈w〉 mean of vectors u,w

I, K number of horizontal, vertical nodes
i, k horizontal, vertical index
ib index of horizontal borehole position

nu, nx
u, nz

u number of nodes for u: total, x-, z-direction
nw, nx

w, nz
w number of nodes for w: total, x-, z-direction

∆x, ∆z horizontal, vertical spatial increment
∆xu, ∆zu horizontal, vertical difference of u over

one spatial increment
{cα,...,ν

i,k } coefficients of linear system
xmin, xmax, zmax boundaries of x- and z-dimension

ḃ0, xσ , xµ parameters of accumulation distribution
ρ0, ρi, cρ parameters of density distribution

cu parameter of horizontal velocity distribu-
tion

∂i partial derivative with respect to i ∈ {x, z, t}
M

T transpose
Λ
−1 inverse

W
1/2 square root (Cholesky decomposition)
δij Kronecker symbol

Appendix:

Cases of determinacy and conditions for existence of
nullspaces

M = N just determined
V0 = U0 = {}

M = N > R deficient rank just determined
V0 6= {}, U0 6= {}

M > N = R full-rank overdetermined
V0 = {}, U0 6= {}

M > N > R deficient rank overdetermined
V0 6= {}, U0 6= {}

N > M = R full-rank underdetermined
V0 6= {}, U0 = {}

N > M > R deficient rank underdetermined
V0 6= {}, U0 6= {}
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and A. Palmer, 2006, A method to reconstruct past accumula-
tion rates in alpine firn regions: A study on Fiescherhorn, Swiss
Alps, J. Geophys. Res., 111, doi:10.1029/2005JF000283.

Siegert, M. J., R. C. A. Hindmarsh, and G. S. Hamilton, 2003, Evi-
dence for a large surface ablation zone in central East Antarctica
during the last Ice Age, Quaternary Research, 114–121.

Vieli, A., and A. J. Payne, 2003, Application of control methods for
modelling the flow of Pine Island glacier, West Antarctica, Ann.
Glac., 36, 197–204.

Waddington, E., T. Neumann, M. Koutnik, H. Marshall, and
D. Morse, 2004, Inference of accumulation-rate pattern from
deep radar layers, J. Glaciol., in revision.

Wunsch, C., 1985, Can a tracer field be inverted for veloc-
ity?, J. Phys. Oceanogr., 15, 1521–1531, doi 10.1175/1520-
0485(1985)015.

Wunsch, C., 1996, The ocean circulation inverse problem, Cam-
bridge University Press, Cambridge, New York.

Xiaolan, W. U., and C. Jezek, 2004, Antarctic ice-sheet balance
velocities from merged point and vector data, J. Glaciol., 50,
219–230.
Olaf Eisen, Versuchsanstalt für Wasserbau, Hydrologie

und Glaziologie (VAW), ETH Zürich, Gloriastr. 37-39, CH-
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