
 
 
 
 
 

Salt stress tolerance in the psychrophilic diatom 
Fragilariopsis cylindrus 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften 
- Dr. rer. nat. – 

 
 
 

vorgelegt von 
 

Andreas Krell 

 

Bremen April 2006 

 

 
 
 

 

 

 

 
 

Alfred-Wegner-Institut 
für Polar und Meeresforschung 

Universität Bremen 
Fachbereich 2 
Biologie/Chemie 



 II 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Gutachter Professor Gunter Otto Kirst 
2. Gutachter Professor Christian Wiencke 

 
 
Tag des öffentlichen Kolloquiums 
 
12. Juni 2006     15:30 Uhr 
 



 III 

 
 
 
 
 
 

Eidesstattliche Erklärung 

 

gem. § 6 (5) Nr. 1-3 PromoO 

 

Hiermit erkläre ich, daß ich 

 

1. die Arbeit ohne unerlaubte fremde Hilfe angefertigt habe, 

2. keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe und 

3. die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich 

gemacht habe. 

 

 

Bremen, den 25.04.2006 

 

 

 

 

Andreas Krell 

 



 IV 

Table of contents 

 

PART I 1 

 
ABSTRACT 3 

INTRODUCTION 5 

THE SEA ICE HABITAT 5 

FRAGILARIOPSIS CYLINDRUS 8 

SALT STRESS AND ORGANIC OSMOLYTES 9 

SALT STRESS PERCEPTION AND SIGNALLING PATHWAYS 11 

PROLINE 13 

PROLINE SYNTHESIS 14 

ANTIFREEZE PROTEINS 16 

AIMS  19 

RESULTS AND DISCUSSION 20 

THE FIRST CDNA LIBRARY OF A PSYCHROPHILIC DIATOM 20 

MANY GENES RELATED TO SALT STRESS ACCLIMATISATION DISCOVERED 22 

A NEW CLASS OF ICE-BINDING PROTEINS WAS DISCOVERED 25 

MANY POLAR DIATOM SPECIES POSSESS ICE-BINDING    PROTEINS 27 

UNDER SALT STRESS PROLINE IS SYNTHESIZED WITH ORNITHINE AS A SUBSTRATE RATHER 

THAN GLUTAMATE 29 

THE PROPORTION OF POLY UNSATURATED FATTY ACIDS DECREASES UPON SALT STRESS32 

OUTLOOK 36 

REFERENCES 37 

 

PART II 43 

 

LIST OF PUBLICATIONS: 44 

PUBLICATION I 45 

PUBLICATION II 55 

PUBLICATION III 83 

PUBLICATION IV 91 

 

DANKSAGUNG 119 

  

 

 

 



 

 

                                                                                                                                                         1 

 

 

 

 

Part I 



 

 

2                                                                                              



 

 

Abstract                                                                                                                                            3 

Abstract 

This thesis was conducted to find mechanisms responsible for the adaptation success of 

Fragilariopsis cylindrus to the extreme polar environment, especially sea ice, manifested in the 

genetic repertoire. The generated molecular information was afterwards utilized in expression 

studies focused on the regulation of the proline metabolism during acclimatisation to elevated 

external salt concentrations. 

An expressed sequence tag (EST) approach was used to establish two complementaryDNA 

(cDNA) datasets, based on cultures subjected to temperature and salt stress conditions, the major 

abiotic constraints in sea ice. The genetic information (ca. 2600 tentative unique sequences) 

gathered with these two cDNA libraries covered about 20 % of all genes present in F. cylindrus, 

taken the genome of the centric diatom Thalassiosira pseudonana as a reference. A comparison 

of the salt stress cDNA library to the genomes of the mesophilic species T. pseudonana and 

Phaeodactylum tricornutum revealed about one third of the sequences to be unique to F. 

cylindrus, indicating substantial genomic variation between the mesophilic and psychrophilic 

lifestyle. This indicates the potential of yet unknown adaptation mechanisms. A putative function 

could be assigned to 44 % of the sequences and a large number of genes involved in transport 

processes, oxidative stress defence, osmolyte synthesis and protein turnover as well as 

chaperones could be identified, stressing the importance of these mechanisms in salt stress 

acclimatisation. 

Furthermore, four different full length sequences encoding a new class of ice-binding proteins 

yet unknown in animals and plants were found and further studies proved its occurrence in a 

number of polar diatom species, but not in mesophilic ones. These proteins are most probably 

exuded into the extracellular space and hence might be of fundamental importance in enabling 

survival in the brine channel system. 

The finding of all relevant proteins involved in the ana- and catabolic pathways of proline 

metabolism enabled a detailed expression study of these genes in a physiological salt shock 

(elevation from 34 to 70 PSU) experiment. Expression levels of ∆1-pyrroline-5-carboxylate 

synthase (P5CS), the rate limiting enzyme in synthesis from glutamate, strongly decreased, 
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whereas copy numbers of ornithine δ-aminotransferase (δ-OAT) increased, indicating a shift 

from the glutamate to the ornithine route under elevated external salinities. This contrasts with 

findings in higher plants, where the opposite regulation of P5CS and δ-OAT was observed. A 

shortage in reduction equivalents caused by a severe inhibition of linear electron transport 

revealed by the measurement of the photosynthetic quantum yield might force F. cylindrus to use 

energy saving pathways of proline synthesis. 

Interestingly, a further temperature decrease in addition to the elevated salt concentration 

exhibited no more negative effects in a number of physiological parameters, thus leading to the 

conclusion that salt is the dominating abiotic stressor in sea ice.  
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Introduction 

This thesis deals with the physiological acclimatisation processes and their molecular basis in the 

sea ice diatom Fragilariopsis cylindrus, as they occur during the formation and development of 

sea ice. To elucidate these mechanisms investigations were carried out on separately applied cold 

and salt stress, or a combination of both. Emphasis was placed on the regulation of proline 

metabolism, since this is the main organic osmolyte in F. cylindrus which is synthesized under 

hyperosmotic conditions.  

 

The sea ice habitat 

Polar perennial sea ice at its maximum extent constitutes one of the largest ecosystems in the 

world covering an area of up to 20x106 km2 in the Antarctic and 16x106 km2 in the Arctic 

(Thomas & Dieckmann, 2002a). Total annual primary production of Antarctic sea ice 

assemblages has been estimated to be in the range between 63 and 70 Tg C yr-1, which is about 

5% of estimated total primary production in the Antarctic sea ice zone (Lizotte, 2001). 

Especially in the Antarctic, where the majority of sea ice lasts only one season it constitutes a 

highly dynamic system. It provides a unique range of ephemeral habitats for planktonic 

organisms which during their life time in open water are buffered against dramatic changes in 

their physicochemical environment, with the exception of solar irradiance and at times changes 

in the availability of inorganic nutrients. When incorporated into sea ice, these organisms are 

subjected to very different chemical and physical constraints which vary greatly during the 

annual cycle of ice formation, consolidation and melt (Eicken, 2003).  

Salt does not enter the ice crystal structure, and so during the process of ice formation, salt and 

other dissolved constituents of seawater are expelled and collect as a highly concentrated brine 

solution within a labyrinth of brine channels and pores in the ice matrix, ranging in size from a 

few µm to several mm (Eicken, 1992, Weissenberger et al., 1992, Eicken, 2003). This brine 

channel system provides a habitat that is controlled by the confines of the channel / pore 

diameters and the salinity of the brine. The internal surface area of brine channels ranges from 
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0.6 to 4.0 m2 kg-1 of ice at -2.5°C, constituting a large surface area for organisms like algae and 

bacteria to colonise (Krembs et al., 2000).  
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Abiotic parameters in the ice exhibit strong gradients between the top of the ice and the ice-water 

interface (Figure 1). Brine channel size and brine concentration within the channels is directly 

proportional to the temperature of the ice (Eicken et al., 2000). Temperatures are lowest at the 

top of the ice, ranging from -4 to -20°C and are strongly influenced by the ambient air 

temperature. At the ice water interface it is almost constant at -1.89°C, depending on sea water 

salinity. Brine salinities range from 35 to 212g/l (Cox & Weeks, 1983) and in sea ice is subjected 

to gravity drainage resulting in a gradual desalination of sea ice as it ages. Light availability in 

sea ice depends on backscatter, ice thickness and snow cover, and may be strongly reduced. The 

amount of incident light at the bottom of the ice is only about 1% of surface scalar irradiance 

(Eicken, 1992). The continuous supply of inorganic nutrients is limited to the ice water interface 

Figure 1: 
Schematic drawing of a sea ice column, with the different communities that can be encountered. The two close 
ups depict the brine channel system and a single brine pocket with diatoms dwelling in it (courtesy C. 
Krembs). To the right gradients of abiotic factors are shown, in cases of flooding events nutrient supply might 
be also from the top of the ice sheet. 
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(Thomas & Dieckmann, 2002b) and is severely restricted within the ice. High photosynthetic 

activity leads to a much altered chemistry within the ice matrix. It reduces the availability of 

major inorganic nutrients, dissolved inorganic carbon and as a consequence a shift of pH to high 

values and a strong oxygen supersaturation (Gleitz et al., 1995, Günther et al., 1999). Despite 

these harsh conditions sea ice provides a habitat for a diverse, well adapted community 

comprising mainly heterotrophic bacteria, autotrophic flagellates, ciliates and unicellular algae, 

especially pennate diatoms (Kirst & Wiencke, 1995, Thomas & Dieckmann, 2002a).  

Biomass concentration in sea ice is mostly much higher than in the underlying sea water and 

often even exceeds that in open polar waters. In Antarctic sea ice standing stocks of <400 µg 

chla l-1 have been observed, while concentrations in surface waters of the southern ocean 

typically range from 0 to 5 µg chla l-1 (Lizotte, 2001). Ice algae generally possess photosynthetic 

characteristics well adapted to low light conditions, with a high photosynthetic efficiency, fast 

saturation and photoinhibition at low irradiances (Cota, 1985, MacIntyre et al., 2002). They are 

capable of maintaining a positive net photosynthetic rate down to photon flux densities as low as 

0.2 – 2.9 µmol photons m-2 s-1 (Mock, 2002). Tilzer & Dubinsky (1987) found that light was the 

growth limiting factor rather than low temperatures. Although high light intensities cause 

damage by photoinhibition, a threshold light availability is necessary to withstand abiotic stress, 

especially osmotic stress, because of the energy dependency of repair mechanisms, e.g. the 

production of osmolytes. 

The dominant ice organisms need to be equally well adapted to a dynamic salinity regime coping 

with both hypersaline stress during sea ice formation and hyposaline stress during melt of the ice 

cover (Bates & Cota, 1986, Kirst, 1990, Kirst & Wiencke, 1995, Thomas & Dieckmann, 2002b).  
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b) a) 

Fragilariopsis cylindrus 

One of the most abundant diatoms, especially in the southern polar oceans, is Fragilariopsis 

cylindrus (Grunow) Krieger (Bacillariophyceae), thriving equally well in the open water column 

as well as being dominant in sea ice assemblages (Kang & Fryxell, 1992)(Figure 2). Thus this 

species contributes significantly to the formation of blooms. The distribution of F. cylindrus in 

the Antarctic ranges from high latitudinal fast ice communities (Thomas et al., 2001) to the polar 

front and its occurrence is also been reported from the Arctic regions (Medlin & Priddle, 1990, 

von Quillfeldt, 1997). The optimum growth temperature of F. cylindrus is +5°C (Fiala & Oriol, 

1990) and a lower survival limit has not been reported so far, but is expected to be limited by 

high salinities. Growth experiments in which salinity was consecutively increased to 150 PSU 

showed that growth halted at 110 PSU - equalling a temperature of -6.7°C – and could be 

regained at lower salinities (Bartsch, 1989). Altogether, this makes F. cylindrus an ideal 

representative model organism for physiological studies related to polar conditions. 

The cultures used in this thesis derive from samples isolated during the Polarstern expedition 

ANT XVI/3 to the Weddell Sea in 1999 by Thomas Mock. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 2: a) SEM picture of a single cleaned F. cylindrus frustrule in valve view b) small chain of F. cylindrus cells 
having two chloroplasts. The small droplets visible might be lipid inclusions 
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Salt stress and organic osmolytes 

The ability to adapt to changing osmotic conditions is a prerequisite for all cellular life. Upon 

osmotic stress, higher plants and algae exhibit a wide range of adaptations at the molecular, 

cellular and organism level (Hare & Cress, 1997, Bohnert et al., 2001). In this thesis the term 

osmotic acclimation describes the immediate reaction to osmotic and ionic stress involving the 

re-establishment of cellular homeostasis through transport processes and the production of 

osmolytes. In contrast to this, osmotic adaptation implies the evolutionary adaptation manifested 

on the genetic level. 

The alteration of external salinities, either as an increase or decrease mainly influences the 

internal homeostasis of the cells in three different ways (Kirst, 1990, Erdmann & Hagemann, 

2001): 

 (1) Osmotic stress caused by a flux of water across the semi permeable cell membrane, which 

leads to a change of the cellular water potential. This osmotically forced water flux directly 

affects the cell within seconds to a few minutes. Hyperosmotic conditions lead to a shrinkage of 

the plasmalema, (Bisson & Kirst, 1995). In contrast to this, hypoosmotic conditions cause a 

water influx resulting in an increased turgor pressure, which is better tolerated by algae 

possessing a rigid cell wall. 

(2) Ionic stress caused by the passive loss and uptake of inorganic ions (mainly Na+, Ca2+, K+ 

and Cl-). Salinity stress, in addition to osmotic stress, has this ionic component, i.e. the 

electrochemical charge ions possess, causes the disturbance of the hydration sphere around 

proteins and other macromolecules, affecting their confirmation or charge interaction, thus 

rendering their proper function impossible (Xiong & Zhu, 2002). Hence this effect is more 

deleterious to cells than osmotic stress alone and therefore ion homeostasis plays a critical role in 

the response to osmotic stress.  

(3) Changes in the cellular ionic composition due to the selective ion permeability of 

membranes.  

To counteract the negative effects on cell homeostasis brought about by osmotic and ionic stress, 

plants and algae pursue a combination of two different mechanisms:  
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(1) salt extrusion from the cell across the plasma membrane involving ion transporters. This 

response includes various ATPases, water channel proteins and 

ion transporters which are regulated by salt stress. Na+ ions are extruded from the cells or 

compartmentalized in their vacuole mainly by Na+/H+ antiporters (Apse et al., 1999, Shi et al., 

2003), which are driven by a pH gradient generated by P-type (plasma membrane localized) or 

V-type (tonoplast) H+-ATPases. A number of genes encoding these transporters could be 

identified in the salt stress induced cDNA library described in this thesis.  

(2) osmotic adjustment of the cytoplasm due to the accumulation of organic osmolytes to restore 

their cellular water potential. Simultaneously, the term “compatible solute” is used, stressing the 

characteristic feature of these compounds, i.e. their ability to be accumulated in high 

concentrations of more than 2 M without being toxic to the cell (Brown & Simpson, 1972). 

Although the uptake of inorganic ions would be the energetically most favourable way to 

alleviate osmotic stress; this mode of action is restricted to some halophilic archea of the order 

Halobacteriales and bacteria of the order Haloanaerobiales (Oren, 1999), which possess enzymes 

especially adapted to high ion concentrations (Madern et al., 2000).  

There are about 20 different compatible solutes known in algae (Erdmann & Hagemann, 2001).  

They mainly belong to three different classes: (1) highest osmotic tolerance is conferred by the 

accumulation of quaternary ammonium compounds - e.g. glycine betaine and homarine – and 

tertiary sulfonium compounds like 3-dimethylsulfonium propionate (DMSP) (Kirst, 1996). It has 

been shown recently that DMSP and its breakdown product DMS is also able to scavenge 

reactive oxygen species (ROS), thus serving as an antioxidant system (Sunda et al., 2002). (2) 

moderate osmotic tolerance is achieved by synthesis of amino acids, (3) least osmotic tolerance 

is exhibited by organisms utilizing polyols and disaccharides. The osmoprotective quality of 

these compounds corresponds for the majority, with their energetic demands for synthesis 

(Erdmann & Hagemann, 2001).  

In addition to their function in alleviation of osmotic stress, some organic osmolytes have shown 

cryoprotective properties during freezing. These include the protection of membranes and 

proteins by sugars (Uemura & Steponkus, 2003), the promotion of recovery processes in freeze 
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damaged cells by glycine betaine (Chen & Murata, 2002) and the scavenging of reactive oxygen 

species by proline, as described below. 

In recent years the engineering - with emphasis on crop plants - of more osmotolerant varieties 

has been attempted by the overexpression of certain genes involved in the synthesis of organic 

osmolyte and transporter genes (Zhang et al., 2001, Chen & Murata, 2002, Wang et al., 2003). 

However, this has proved to be a difficult task, due to the fact that stress tolerance is a complex 

multigenic trait and a lot of cross-talk between different regulatory pathways exists. Developing 

salt-tolerant crop plants remains a challenging task (Yamaguchi & Blumwald, 2005). As a side 

effect of this work, the genes encoding a new class of antifreeze proteins found in F. cylindrus 

are of potential interest.  

Salt stress perception and signalling pathways 

Drought and cold stress also cause osmotic stress, which is why salt; drought (water deficit 

through freezing) and cold stress induce some common sets of plant genes. Different sensors for 

the direct perception of osmotic stress in algae are under discussion. The water deficit caused 

either by freezing or high salinity has ionic, osmotic and even mechanical impact on the cell, and 

it is likely that all these different signals have their own cognate receptor. The only true Na+ 

sensor has so far been identified in Escherichia coli and controls the expression of a Na+/H+ 

antiporter (Wood, 1999). 

In algae, to date no signal transduction chain is known in detail, whereas in higher plants and 

yeast different signalling pathways are known. In Arabidopsis the salt overly sensitive (SOS) 

pathway has been discovered, coping specifically with the ionic aspect of salt stress. Three genes 

are involved in this pathway (Zhu, 2001): SOS1 encodes a plasma membrane localized Na+/H+ 

antiporter, which is regulated by SOS2 and SOS3, two protein kinases. SOS3 senses cytosolic 

calcium changes that are elicited by salt stress. This is in general one of the early responses to 

salinity and osmotic stress; a rapid increase in cytosolic free Ca2+ concentration, triggering a host 

of downstream biochemical reactions. Furthermore, plant cells contain a variety of phospholipid-

based signalling pathways, including phospholipase C (PLC). PLC upon activation, hydrolyses 

phosphatidylinositol 3,5 bisphosphate into two second messengers, one of which in turn releases 
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Ca2+ from intracellular stores (Munnik & Meijer, 2001). These authors have also proposed 

osmotic stress to be a graded phenomenon that activates different receptors dependent on the 

stress level.  

The involvement of mitogen-activated protein kinase (MAPK) cascades as a common 

mechanism to translate external stimuli into cellular responses in osmotic stress signalling has 

been demonstrated to be highly conserved in higher plants as well as algae (Jimenez et al., 2004, 

Teige et al., 2004). 

While four different kinds of posttranscriptional regulation have been identified in the 

biosynthesis of compatible solutes – (1) enzyme activation by ions, (2) covalent modification 

through protein phosphorylation/dephosphorylation, (3) activity control by a regulatory protein, 

(4) protein processing through partial proteolysis – transcriptional regulation was thought to be 

of minor importance for osmolyte sensing enzymes (Erdmann & Hagemann, 2001). However, 

with the increasing number of investigations on a genetic level, this picture may change 

(Vinnemeier & Hagemann, 1999). The clear exception to this mode of regulation is the 

accumulation of proline, the synthesis and degradation of which has been shown to be under 

tight transcriptional control in higher plants (Strizhov et al., 1997, Hong et al., 2000, Kavi 

Kishor et al., 2005). This was one reason why the metabolic pathways of proline synthesis and 

degradation were chosen for molecular genetic investigations in this thesis. 
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Proline 

Although commonly referred to as an amino acid, proline is biochemically an imino acid. The 

structure of proline differs from the structure of other amino acids in that the aliphatic side chain 

is bonded to the nitrogen of the amino group as well as to the α carbon atom (Figure 3). This 

makes the amino group a secondary amine, and because of this, proline is also described as an 

imino acid. This ring structure is responsible for the hydrophilic characteristics of proline 

strongly influencing the secondary structure of proteins. 

              

                                            

 

Proline appears to be the most widely distributed osmolyt accumulated under osmotic stress not 

only in higher plants but also in eubacteria, protozoa, marine invertebrates and algae, such as F. 

cylindrus (Kirst, 1990, Delauney & Verma, 1993, Erdmann & Hagemann, 2001). In addition to 

its function as an organic osmolyte, there are a number of other functions which are associated 

with proline, e.g. an improved tolerance to freezing (e.g. (Helliot & MortainBertrand, 1999, 

Takagi et al., 2000) and maintenance of the cellular redox potential after stress events (Hare & 

Cress, 1997). It is also believed that proline synthesis, through the consumption of NADPH and 

ATP, may serve as an energy sink, thus continually restoring the terminal electron acceptor of 

the electron transport chain and preventing photoinhibition (Hare et al., 1999) in stressed cells. 

Furthermore, increased intracellular proline concentrations lead to an enhanced tolerance against 

heavy metal induced toxicity (Siripornadulsil et al., 2002). Recently the ability of proline to 

scavenge reactive oxygen species (ROS) has gained increasing attention (Schriek, 2000, Reddy 

Figure 3: Chemical 
structure of proline 
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et al., 2004, Rodriguez & Redman, 2005), since much of the damage caused by various abiotic 

stress conditions, including salt stress, is thought to be mediated by ROS. In this context it has 

also been shown that proline is able to alleviate the negative effects of various abiotic stresses 

such as UV light, heat, (Liu & Zhu, 1997) and hydrogen peroxide, thus preventing cellular stress 

and eventually apoptosis (Chen & Dickman, 2005).  

However, there is some controversy about the protective function of proline. For instance, it has 

been shown that in some cases the accumulation of high proline levels made organisms even 

more susceptible to salt stress (Liu & Zhu, 1997, Rout & Shaw, 1998). Nanjo et al. (2003) even 

attributed toxic effects to elevated proline concentrations. 

Proline has been identified as the main organic osmolyte in F. cylindrus, besides homarine, 

betaine and DMSP. Also the concentration of other free amino acids increased with increasing 

salinity (Plettner, 2002). Thus the identification and the regulation of the proline metabolism is 

of outstanding interest regarding its central function in the acclimation to elevated external 

salinities, as well as possessing cryoprotective characteristics. 

Proline synthesis 

The molecular and genetic basis for the biochemical pathways involved in proline synthesis and 

degradation have essentially been elucidated in higher plants in the 1990s and has been reviewed 

by Delauney & Verma (1993), Hare et al. (1999) and Verma (1999).  

In eukaryotes, proline can either be synthesized starting from glutamate via ∆1-pyrroline-5-

carboxylate (P5C) in two successive reductions catalysed by ∆1-pyrroline-5-carboxylate synthase 

(P5CS), a bifunctional enzyme encompassing prokaryotic gamma glutamyl kinase (GK, EC 

2.7.2.11) and glutamyl phosphate reductase (GPR, EC 1.2.1.41) activity, and ∆1-pyrroline-5-

carboxylate reductase (P5CR, EC 1.5.1.2), whereby P5CS is generally regarded as the rate 

limiting step in the glutamate route (Figure 4). P5CS has been shown to be feedback regulated 

via the proline concentration, thus favouring alternative synthesis routes. 

An alternative pathway exists in which ornithine is used as the substrate. In this case P5C is 

again synthesized as the intermediate through the transamination of ornithine mediated by the 
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ornithine δ-aminotransferase (δ-OAT, EC 2.6.1.13). The subcellular localization of P5CS is 

thought to be cytosolic in higher plants (Kavi Kishor et al., 2005), whereas findings in this thesis 

suggest a mitochondrial localization in diatoms. A thorough characterization of the relative 

contributions of the two P5C- synthesizing routes and the mechanisms whereby they are 

coordinated is still warranted in higher plants and diatoms. A shift between both pathways in 

 

response to salt stress seems to be likely as data in this thesis and from (Plettner, 2002) suggest. 

An important aspect in this context may be the nutrient status, especially the availability of 

nitrogen, since most of the organic osmolytes produced in algae are nitrogenous compounds. 

This is supported by the fact that in the salt stress cDNA library, three different genes involved 

Figure 4: Pathways of proline metabolism using either glutamate or ornithine as a substrate, including the enzymes 
involved in synthesis and degradation:  P5CS, δ-OAT, P5CR and ProDH.. Due to the ambiguous localization of 
various enzymes no cell compartmentation is depicted.  
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in the fixation of externally supplied nitrogen - a nitrate reductase (NADH consuming), the key 

enzyme in nitrate assimilation; a nitrite as well as an ammonium transporter - could be found. 

The recent finding of a full functional urea cycle in diatoms (Armbrust et al., 2004) enhances the 

role of the urea cycle in protein degradation thus increasing the supply of nitrogen via ornithine. 

This might be at least in parts determine, whether the glutamate or ornithine synthesis route is 

preferred under salt stress conditions. 

Quite unusual in the degradation of proline is the occurrence of the intermediate P5C. The first 

degradation step leading to P5C is catalyzed by proline dehydrogenase (ProDH, EC 1.5.99.8), 

followed by P5C dehydrogenase (P5CDH, EC 1.5.1.12) finally leading to glutamate. Both of 

these enzymes are mitochondrially located in higher plants, whereas the localisation of ProDH in 

Thalassiosira pseudonana is rather ambiguous.  

Antifreeze proteins 

Antifreeze proteins, originally discovered in polar fish have been the object of investigations 

since the 1960s (DeVries, 1969, Scholander & Maggert, 1971). They have also been found in 

mussels and insects as well as bacteria, fungi and higher plants (Duman & Olsen, 1993, Hoshino 

et al., 1999). A few years ago the release of macromolecules that bind to and affect the growth of 

ice was observed in sea ice diatoms (Raymond et al., 1994).  

Freezing describes the process of ice crystallization from supercooled water. This process is 

initiated by the stage of ice nucleation followed by the growth of ice (Du et al., 2003). 

Subsequently, recrystallization, i.e. the growth of large ice crystal grains at the expense of 

smaller grains, takes place and larger grains arise which may have deleterious effects on 

biological tissues. Thus the inhibition of ice nucleation, ice growth and ice recrystallization are 

equally important functions of ice binding proteins. 

Damaging effects of low temperatures and freezing conditions on plant material are 

characterized by mechanical injury (cell and tissue disruption), which is caused by ice formation, 

and dehydration injury caused by water loss associated with ice formation. In the case of sea ice 

diatoms, damage is also associated with dehydration caused by water efflux elicited by rising 
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external salinities. Under freezing conditions, intracellular bulk water and water oriented on the 

surface of macromolecules and on the polar heads of lipids in cellular membranes are effectively 

removed, causing severe dehydration and structural and functional damage to plasma membranes 

(Webb et al., 1996, Uemura et al., 2006).  

With the onset of freezing conditions, some plants produce colligative cryoprotectants such as 

sucrose and proline; in others, changes in membrane lipids and proteins that render membranes 

more stable against cold have been reported (Webb et al., 1996). Some plants are able to produce 

cold-regulated cryoprotective proteins referred to as antifreeze proteins (AFPs), ice 

recrystallization inhibitors, ice nucleators, or ice active substances (IAS). In the context of this 

thesis the term ice binding protein (IBP) will be mainly used.  

The structure of animal IBPs is well known. They are classified into six types according to the 

homology of amino acid sequences; antifreeze glycopeptides (AFGPs) and antifreeze types I to 

IV in fish and hyper-antifreeze proteins present in the body fluid of insects. The molecular mass 

of animal AFPs ranges from 3 to 33 kD. AFPs similar to those found within the animal kingdom 

have been identified in plants (Griffith et al., 1992, Griffith & Ewart, 1995). However, the 

molecular masses of AFPs isolated from plants are considerably larger (11 to 81 kD), than those 

isolated from animals (Hoshino et al., 1999). It has been shown by Griffith et al. (2005) that 

plant AFPs appear to behave similarly at freezing temperatures, i.e. by inhibiting ice crystal 

growth and ice recrystallization. The exact functional mechanism underlying the capacity to 

inhibit ice formation, growth and recrystallization is still a matter of ongoing research.  

Ice nucleation is inhibited by adsorption of IBPs to the surfaces of ice nuclei and dust particles 

leading to an increase in the ice nucleation barrier (Du et al., 2003). Similarly to surfactant 

molecules, IBPs accumulate and self-assemble on the surface of ice, due to the fact that each IBP 

molecule possesses a hydrophobic and hydrophilic portion. The adsorbed IBP repels other 

approaching water molecules, causing a direct impact on ice crystallization. 

Further growth of ice is inhibited by adsorption of IBPs to surfaces of growing ice crystals 

causing a curvature of the ice front (Figure 5). 
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Since the energetic costs of adding a water molecule to a convex surface is high, this results in a 

local decrease of the freezing point, while the melting point remains constant (Knight, 2000). 

This is known as the Kelvin effect.  

Recrystallization is thermodynamically favourable because it minimizes the ice interfacial 

surface area between ice crystals. However, the functioning of IBPs on a molecular level is not 

yet well understood. 

At least in animal AFGPs it has been shown that proline is an important compound of these 

proteins (Nguyen et al., 2002). It is also hypothesized that IBPs produced by plants not only 

possess properties to ameliorate the damaging effects of ice formation, but also aids in the 

tolerance to other abiotic stresses, e.g. drought.  

 

 

 

 

 

Figure 5: IBPs (red dots) 
causing a curvature of the 
ice front and thereby 
reducing the local freezing 
point (Knight, 2000)  
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Aims  

Resulting from the habitat constraints with which F. cylindrus is confronted, a major challenge is 

to gain physiological information on how F. cylindrus is able to cope with these adverse 

conditions. Emphasis will be placed on investigating differences between the acclimation to low 

temperatures and acclimations associated with elevated salinities. Since salinity and temperature 

are physically coupled in the sea ice habitat it is important to investigate each of these stressors 

separately in order to discriminate between the singular effects of low temperature and high 

salinity, as well as the combined consequences. 

The major aim of this thesis is to obtain an insight into the genetic repertoire of F. cylindrus as a 

starting point for further investigations on a molecular level. 

The organic osmolyte proline is synthesized by F. cylindrus so as to become acclimated to 

elevated salinities. The regulation of proline metabolism in diatoms has so far been studied on 

the enzymatic level. However, data concerning the regulation on the genetic level is still scarce 

but of prime interest, since it has been shown that the proline metabolism in higher plants is 

tightly regulated on the transcript level. Therefore, one focus in this thesis is the transcriptional 

regulation of proline metabolism. 
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Results and Discussion 

Expressed sequence tag (EST) analysis has proven to be an effective method in discovering 

novel genes and investigating gene expression in different organs and tissues, as well as different 

environmental conditions. This method was employed in this thesis to establish the genetic basis 

for further expression analysis and to find genes relevant for the acclimation to environmental 

stress events. 

The first cDNA library of a psychrophilic diatom 

The complementaryDNA (cDNA) library analysed in publication I provides first insights into the 

genome of the psychrophilic diatom F. cylindrus and was aimed at elucidating possible 

adaptations to freezing temperatures. Therefore, the construction of this library was carried out 

as a cold induced library, i.e. cultures for RNA isolation were subjected to a temperature shock 

from +5 to -1.8 °C for 5 days in order to enhance the expression of genes related to cold stress.  

Of the 2372 clones sequenced from the 5´ end, a set of 996 high quality tentative unique 

sequences was retrieved after cluster analysis and assembly of sequences. This set comprised 

196 tentative unique consensus sequences (TCs) and 800 singletons. The set was subjected to a 

sequence comparison based on 11 different non-redundant datasets using tBLASTX (Altschul et 

al., 1997) with a cut off expectancy (e-value) of e 10-4, in order to functionally characterize 

sequences and to find homologues in other organisms. 

A total of 340 sequences gave a significant hit to any database. The F. cylindrus sequences 

showed highest similarity to the Thalassiosira pseudonana database (271 significant matches) 

and 84 of these sequences were found in no other database, indicating their specificity to 

diatoms. The origin of these sequences showed the highest degree of similarity to eukaryotic 

algae/plants (30 %), animals (27 %), bacteria (16 %) and fungi (4 %), the remaining twenty-three 

percent were of unknown affiliation but had EST support. Thus, about one third of the sequences 

belonged to heterotrophic eukaryotic organisms which could possibly originate from the 

heterotrophic secondary host, although gene loss in the plant/red algal lineage could not be ruled 

out (Armbrust et al., 2004).  
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The most highly expressed sequences (Table 1) encoded two fucoxanthin, chlorophyll a,c-

binding proteins (fcps) (31 and 9 clones, respectively), the major protein components of the 

light-harvesting antenna complexes of photosystem I and II and a calmodulin like protein with 

no specific function assigned. Genes coding fcps were also highly abundant in other EST 

libraries stressing their general importance (Scala et al., 2002), being enhanced under stress 

conditions. Calmodulin is a major calcium sensor and possesses regulatory functions, interacting 

with a series of cellular proteins like protein kinases, GTPase-activating enzymes, sodium 

channel proteins and multidrug resistance proteins (Rhoads & Friedberg, 1997). 

 

Table 1: Most abundant TCs (tentative unique consensi) 

Internal name of TC Gene definition No. of ESTs 

F.cyla04h04.s1 Fucoxanthin, chlorophyll a,c-binding protein 31 

F.cyla16se09.s1 Calmodulin like protein 20 

F.cyla19g12.s1 Unknown function; signal peptide predicted 9 

F.cyla01c06.s1 Fucoxanthin, chlorophyll a,c-binding protein 9 

F.cyla19e03.s1 Unknown function 8 

F.cyla19h06.s1 Sm-like protein 7 

F.cyla10g01.s1 Unknown function; signal peptide predicted 7 

AVIEST.0.231 Unknown function 7 

F.cyla08d09.s1 Unknown function; signal peptide predicted 7 

F.cyla12e12.s1 Unknown function 6 

 

Six out of the 10 most abundant TCs belong to the group of genes with unknown function. This 

differs from results in other eukaryotic EST libraries, where the most highly expressed genes had 

defined functions. The sequences of unknown function, together with the sequences yielding no 

significant match to any database, formed 77.1% of all sequences. This was again more than 

reported so far. However, this might be in part due to the fact that in cDNA libraries established 

under stress conditions, the number of genes with unknown function generally increases 

(Bohnert et al., 2001). 

Interestingly, a high number of 10 different ABC transporters were found in this cDNA library. 

These transporters appear to be involved in a number of processes such as fungal resistance, 
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stomatal conductance or signal transduction (Martinoia et al., 2002). Common to all these 

transporters is at least one membrane-spanning domain coupled to an ATP-binding cassette. Six 

of the ABC transporters could not be functionally characterized due to their diverse substrate 

specificities. However, four clones were of particular interest, since they all encoded proteins 

without a membrane-spanning domain, but two ATP-cassettes. They belong to two protein 

classes involved in translational control in yeast (Decottignies & Goffeau, 1997), but their 

function in other organisms remains to be elucidated. The finding of these genes in this cDNA 

library might suggest a possible function of the group of ABC transporters in cold acclimation of 

F. cylindrus.  

In summary most of the genes functionally characterized and found in this library could be 

attributed to processes of translation, ribosomal structure, amino acid transport, metabolism and 

post-translational modification indicating an increased importance of protein metabolism under 

cold stress. The large number of highly expressed but functionally uncharacterized sequences 

even hold the potential of yet unknown proteins relevant in cold stress acclimation. 

 

While the aim of publication I was to provide a first insight into the genome of F. cylindrus, the 

aim of publication II was to broaden the basis of available sequence information, with the 

emphasis on a second major constraint in the sea ice habitat, namely salinity.  
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Many genes related to salt stress acclimatisation discovered 

A total of 2099 high quality sequences (phred 20, min. 100bp length, no ribosomal RNA) was 

produced from a salt stress induced – elevation of salinity from 34 PSU to 60 PSU, while 

keeping temperature and light constant – cDNA library of F. cylindrus. After the assembly of 

sequences a non-redundant set (NRS) of 1691 sequences was obtained, reflecting approximately 

15% of the expressed F. cylindrus genome. This NRS was further subjected to sequence 

comparison with 10 databases and genomes as described in publication I, in order to assign a 

putative functional annotation to sequences and to find overlaps to other genomes, especially to 

those of the pennate Phaeodactylum tricornutum and the centric T. pseudonana.  

Of the NRS, a potential function could be assigned to 44.2% of the sequences, which were 

considerably more identifiable sequences compared to the first library (27%). The intention of 

this cDNA library was to identify many genes involved in salt stress response. Among those 

were a number of genes related to the synthesis and degradation of proline (Figure 6), the major 

organic osmolyte in F. cylindrus accumulated after subjection to elevated external salinities 

(Plettner, 2002). One of these sequences, encoding ∆1-pyrroline-5-carboxylate reductase (P5CR) 

was highly abundant (4 copies), stressing the importance of this pathway. Together with the gene 

coding for ∆1-pyrroline-5-carboxylate synthase (P5CS) reported on in publication I, this 

established the basis for later expression analysis carried out in publication IV.   

Salt stress severely disturbs cellular ion homeostasis, which needs to be re-established during 

stress acclimatisation. Essential to this stress response are different ion transporters and 

antiporters. A number of antiporters for various ions (Na+, K+, Ca2+), as well as different 

subunits of a V-type H+-ATPase, responsible for the generation of a proton gradient across the 

tonoplast to drive sodium sequestration into the vacuole (Shi et al., 2003), were found. 
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Figure 6: Substrates and enzymes involved in proline metabolism and linked to the urea cycle. Shaded enzymes 
(ornithine δ-aminotransferase (δ-OAT, EC 2.6.1.13), ∆1-pyrroline-5-carboxylate reductase (P5CR, EC 1.5.1.2), 
proline dehydrogenase (ProDH, EC 1.5.99.8) and argininosuccinate synthase (EC 6.3.4.5) were found in this 
library, while ∆1-pyrroline-5-carboxylate synthase (P5CS, EC not assigned) was identified in the cold shock 
library. 

 

 

The liberation of reactive oxygen species (ROS) following stress events is a major cause of 

damage in plant cells. Therefore the detoxification of such ROS is of great importance, also in 

salt stress response as indicated by the finding of genes for glutathione synthase, peroxiredoxin, 

thioredoxin and a pyridoxine biosynthesis protein (essential for vitamine B6 synthesis), all 

involved in the scavenging of ROS (Ehrenshaft et al., 1999, Wood et al., 2003, Dupont et al., 

2004). 

Many sequences coding heat shock proteins (hsps) of different classes were identified in this 

cDNA library. A member of the hsp70/Dna K family even belonged to the most abundant 

sequences found; represented by 7 ESTs. Hsps are molecular chaperones, which are responsible 

for protein and membrane stabilization and assist in protein re-folding during stress 

acclimatisation (Wang et al., 2004). Hsp70 members have been shown to be fundamental in 
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conferring salt stress tolerance by overexpression in higher plants (Sugino et al., 1999), thus 

stressing its importance certainly also in this case. 

These examples illustrate the importance and success of a stress induced library in identifying 

genes related to stress response and acclimatisation. A larger set of sequences, in the range of 

10,000 sequences and from libraries established under different conditions would even allow to 

draw also quantitative conclusions in addition to the more qualitative ones stated her. 

A comparison of the F. cylindrus NRS with the genomes of the two mesophilic diatoms P. 

tricornutum and T. pseudonana showed that 38.3% of the sequences had no homologue in either 

of the genomes. This variation might be attributed in parts to phylogenetic diversity, but also to 

the different habitat these diatoms live in. Thus, this fraction of sequences specific to F. 

cylindrus might harbour genes necessary for adaptation to its extreme environment of the polar 

oceans and sea ice.  

Taken together, the cold and salt shock library, which showed only a marginal overlap of 95 

non-redundant sequences, we have identified approximately 20 % of all open reading frames in 

F. cylindrus. This forms a critical mass for further microarray studies, especially related to 

abiotic stress conditions and furthermore, the EST support gained with these two libraries might 

prove to be very helpful in a future annotation of the F. cylindrus genome. 

A new class of ice-binding proteins was discovered  

In the cDNA library described in publication II, 7 EST sequences were found forming 4 different 

consensus sequences after assembling. They exhibit highest homology to antifreeze proteins 

described from the snow mold Typhula ishikariensis (Hoshino et al., 2003). This is the first time 

that homologues from this gene were discovered in a photosynthetic eukaryote (Figure 7). 

According to the prediction in SignalP (Bendtsen et al., 2004), three of these sequences possess a 

signal peptide targeting the secretory pathway, thus they might be released into the extracellular 

space. Observations by Hoshino et al. (2003) showed that the AFPs released by T. ishikariensis 

were able to lower the freezing point of water by 0.2 degree, probably by binding to ice crystals 

and thus inhibiting their growth. The release of such substances by diatoms was already 
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Figure 7: Phylogenetic tree of F. cylindrus IBP isoforms and homologues (incl. Accession number) found in 
Genbank 

proposed by Raymond et al. (1994) and Raymond & Knight (2003), but no molecular evidence 

existed so far.  

 

 

The ability to produce and exude such proteins would be of fundamental importance for 

surviving at freezing temperatures in brine channels, with the constant threat of damage by 

growing ice crystals. Similar genes encoding the IBPs in F. cylindrus, could not be detected in 

the genomes of the mesophilic diatoms T. pseudonana and P. tricornutum, which implies that 

these genes might be necessary in adaptation to the polar environment and thus exclusively occur 

in psychrophilic organisms.  
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Since none of these sequences were found in the previously established cold shock library (Mock 

et al., 2006), the possible stimuli for the production of these proteins might rather be salt than 

temperature. Thus, they might also play a role in ameliorating negative effects of salt stress.  

Many polar diatom species possess ice-binding proteins  

The study of ice active substance released by sea ice diatoms has been the focus of research 

carried out by James Raymond (Raymond et al., 1994, Raymond & Knight, 2003). The approach 

that was employed so far was to purify culture media in which sea ice diatoms have been grown. 

This supernatant was then subjected to freezing tests and has been shown to possess ice-pitting 

activities. The aim of further studies was to obtain the purified protein exhibiting ice-binding 

properties and find out its primary structure. In publication III this was tried with tandem mass 

spectrometry of a ~25 kDa protein spot separated by 2-D electrophoresis of Navicula glaciei. 

However, the four-peptide sequences which could be identified were too short for detailed 

characterization. With the already known full length nucleotide sequence retrieved from clones 

in the salt stress library described in publication II, we were able to design primers to amplify the 

IBP gene in N. glaciei using 5´/3´ rapid amplification of complementary DNA ends (RACE) 

techniques. Resulting from this work, a full-length N. glaciei cDNA could be identified 

containing a 75 bp 5´untranslated region (UTR), a 726 bp open reading frame (ORF) encoding 

242 amino acids and a ~ 121 bp 3´UTR. 

The predicted molecular mass of 24.461 kDa agreed well with the results of the 2-D 

electrophoresis and with the value of 30 kDa estimated from a Nitzschia stellata IBP (Raymond 

et al., 1994). The F. cylindrus cDNA contained a slightly larger ORF of 831 bp, encoding 277 

amino acids and possessed a molecular mass of 27.961 kDa. The F. cylindrus and N. glaciei 

sequences showed a 48 % identity. Both sequences showed considerable similarity to the two 

fungi Lentinula enodes and T. ishikariensis and to a number of bacteria, but not to any other 

organism from the plant or animal kingdom as described in publication II. 

The present results obtained from axenic cultures of sea ice diatoms confirm the production of 

proteins with ice-binding activity. The possible function is still ambiguous, but it is likely that 
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they appear to act as cellular cryoprotectants rather than antifreeze proteins, since they have little 

effect on the freezing point. Results of Kang & Raymond (2004) indicated that IBPs protect the 

cell membrane.  

Different mechanisms of preventing freeze induced damage are described in the introduction. 

The inhibition of recrystallization has been implicated in plant freezing tolerance and proteins 

being potent re-crystallization inhibitors have been found in several cold-hardy plants (Griffith et 

al., 2005). Diatom IBPs have also been proposed to act as re-crystallization inhibitors (Raymond 

& Knight, 2003). Since IBPs produced by diatoms have been shown to be exuded they may 

protect the cells by preventing the re-crystallization of external ice, thus shaping their habitat. 

This is supported by the fact that preservation of brine pockets in sea ice appears to be essential 

for the survival of diatoms at low temperatures (Krembs et al., 2002).  

However, a detailed study verifying the proposed function of the IBPs is still warrant. Therefore, 

next steps are directed in the expression of these genes in Escherichia coli to yield the encoded 

protein. After purification of the protein, X-ray crystallographic analysis and Nuclear Magnetic 

Resonance (NMR)-spectroscopy studies will be carried out to determine the three-dimensional 

structure of the protein. Furthermore, after purification of the protein, antibodies matching the 

protein will be synthesized. This will enable us to carry out studies revealing the localisation of 

the protein. Centering around the question: does it occur both intra- and extracellularly? And if 

exuded, can the amount be determined in environmental sea ice samples? 

 

The analysis of the cold and salt shock libraries in publications I and II led to the discovery of all 

relevant genes coding enzymes involved in the proline metabolism in F. cylindrus. The only 

gene missing is that for ∆1-pyrroline-5-carboxylate dehydrogenase (P5CDH) coding the enzyme 

catalysing the second step in proline degradation to glutamate. 
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Under salt stress proline is synthesized with ornithine as a substrate rather 

than glutamate 

To obtain an insight into the regulation of proline metabolism under hyperosmotic conditions as 

they occur during incorporation of F. cylindrus into a growing ice sheet, a physiological culture 

experiment was carried out. The results of this experiment are described in publication IV. 

The experimental set up consisted of three biological replicates of the following treatments: a) 

control cultures kept at standard salinity (33.6 PSU) and a temperature of 0 °C; b) an increased 

salinity (70 PSU) at constant temperature (70/0) and c) increased salinity and decreased 

temperature (70/-4).  

The salt shock applied proved to be a severe but sub-lethal stress for F. cylindrus as manifested 

by a strong drop in photosynthetic quantum yield (ΦPSII dropped from 0.61 to 0.25) within the 

first 4 h after salt addition and growth arrest for 12 days. ΦPSI constantly recovered in both 

treatments, but did not attain values as before the shock application. In both salt shock treatments 

the intracellular concentration of proline increased. After one day it had already doubled and at 

the end of the experiment it had roughly increased 4.5-fold compared to pre-stress conditions and 

the control. The constantly increasing intracellular proline concentrations as well as the steady 

recovery of ΦPSII reflected the ongoing acclimatisation process starting within the first 24 h after 

the beginning of stress exposition. The accumulation of proline upon salt and hyperosmotic 

stress is a common stress response in higher plants as well as in algae (Kirst, 1990, Delauney & 

Verma, 1993, Plettner, 2002). However, the mode of regulation on the transcriptional level of 

proline synthesis seems to vary between higher plants and algae. 

To investigate the regulatory mechanisms underlying proline accumulation in salt stressed cells 

of F. cylindrus, the transcript levels of the key enzymes of proline metabolism, P5CS, δ-OAT, 

P5CR and ProDH were analysed, employing quantitative real-time PCR techniques (Q-PCR). 

This analysis revealed a strong (17.3-fold) down-regulation of P5CS (Figure 8), contrasting with 

several observations in higher plants, where a strong accumulation or at least an unchanged level 

of P5CS transcripts was determined after exposure to osmotic stress (Peng et al., 1996, Igarashi 

et al., 1997, Hare et al., 1999). Together with the finding of a conserved phenylalanine residue in 
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the amino acid sequence of P5CS, responsible for the feedback inhibition of this enzyme by 

proline (Hong et al., 2000), this supports the conclusion that P5CS is not responsible for proline 

accumulation under salt stress in diatoms.  

 

In contrast to the decline of P5CS, the δ-OAT expression level increased by a factor of 7.6 and 

8.9 (70/0; 70/-4), respectively. This obvious up-regulation of δ-OAT and an increase, although to 

a lesser extent, of P5CR expression and the simultaneous down-regulation of P5CS transcript 

levels strongly argues for proline synthesis via the ornithine pathway in salt shocked diatoms. 

This is again in contrast to higher plants where the glutamate route is clearly enhanced following 

Figure 8: Pathways of proline metabolism using either glutamate or ornithine as a substrate, including those 
enzymes investigated in the present study:  P5CS, δ-OAT, P5CR and ProDH. Thick arrows indicate the initial 
changes in transcript levels after salt shock treatment. 
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osmotic stress. The presence of a complete urea cycle in diatoms has recently been demonstrated 

on the molecular level (Armbrust et al., 2004), supporting the preference of the ornithine route, 

since the synthesis from arginine originating from protein degradation would only need half the 

energy necessary for the synthesis from glutamate. In contrast to a number of other polar diatom 

species, the concentration of free amino acids in F. cylindrus increases after a hyper-osmotic 

shock (Plettner, 2002). The fact that many genes related to proteolysis, especially ubiquitin 

mediated, were found in the salt stress induced cDNA library supports this hypothesis. The 

strong inhibition of photosynthesis and hence decline in reduction equivalents by salt shock, 

might force diatoms to employ energy saving routes of acclimatisation. 

In higher plants, proline accumulation during stress was linearly correlated with a strong decline 

in ProDH transcript levels (Peng et al., 1996, Miller et al., 2005), whereas the results of this 

study showed the opposite tendency. ProDH levels were positively correlated with the proline 

concentration and increased three-fold after 24 h, suggesting a turnover of proline and the 

absence of a stress dependent inhibition of proline degradation in diatoms. However, it still 

needs to be elucidated, if ProDH activity is regulated at the mRNA level in diatoms as was 

observed in higher plants, or if additional regulatory mechanisms at the posttranscriptional level 

exist.  

The sub-cellular localization of P5CS and ProDH, as well as the number of isoforms of both 

enzymes differed between diatoms and higher plants, potentially reflecting the different 

evolutionary history of organelles in both taxa. 

To summarize, in diatoms high external salinities lead to an increase in intracellular proline 

concentration, as was observed in many organisms and higher plants. However, the regulation of 

the proline synthesis pathway, as well as the catabolic route is obviously different. In F. 

cylindrus, proline is primarily synthesized via the ornithine route. The combination of increased 

external salinities and lowered temperature produced no marked differences in the stress 

response of F. cylindrus employing a variety of physiological parameters. This leads to the 

conclusion that salt is the dominant abiotic stressor.  
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However, since there are fundamental differences on the mRNA level, it will be essential to 

measure enzyme activities in order to obtain more definite results. Although this has been shown 

to be a difficult task, especially related to the measurement of P5CS (Plettner, 2002), this is 

planned in the near future. 

In addition to this, the use of RNAinterference (RNAi) techniques would allow the selective 

inhibition of the translation of genes involved in proline metabolism, thus clearly dissecting 

between the contributions of the glutamate or ornithine pathway.   

   

In addition to the parameters already described in publication IV (cell numbers, photosynthetic 

quantum yield, proline concentration and expression data), further samples for the determination 

of fatty acid composition were taken. The results of these analyses are depicted here; for further 

details concerning the experimental set-up refer to publication IV. 

The proportion of poly unsaturated fatty acids decreases upon salt stress 

Polyunsaturated fatty acids (PUFAs) are essential membrane components in higher eukaryotes 

and are the precursors of many lipid-derived signalling molecules. Changes in the fatty acid 

composition and lipid classes in response to nutrient status (Mock & Kroon, 2002a), light regime 

(Mock & Kroon, 2002b) and cold stress have been intensively studied (Nishida & Murata, 1996, 

Mikami & Murata, 2003, Uemura et al., 2006). In general, decreasing temperature is associated 

with a reduction in membrane fluidity, thus negatively affecting passive and active transport 

processes. In the case of the sea ice habitat temperature and salinity are inevitably coupled, 

therefore the investigation of the fatty acid composition under salinity stress might elucidate the 

dominant stressor. 
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The main fatty acids found in F. cylindrus were the unsaturated 16:1, 16:4 and 20:5 with 14:0 

and 16:0 being the dominant saturated fatty acids (Figure 9). This general composition pattern 

neither changed in the 70/0 nor 70/-4 treatment. During the course of the experiment, only a 

marginal increase of PUFAs could be observed in the control cultures. However, after 12 days of 

stress exposure the amount of saturated and monounsaturated fatty acids (MUFAs) increased at 

the expense of the PUFAs (Table 2) in both treatments. The decline of PUFAs concerned mainly 

the 16:4 and 20:5, whereas the amount of 16:1 increases similarly in the 70/0 and 70/-4 treatment 

(Figure 9b, c).  

The fact that no significant changes could be observed within the first 2 days may be either 

attributed to the generally low temperatures causing a slow down of metabolism (Q10 rule), or to 

an energy deficit resulting from impaired photosynthesis, hindering the modification of fatty 

acids. The psychrophilic diatom F. cylindrus already contains a very high degree of PUFAs 

Figure 9: Fatty acid profiles of F. cylindrus and its temporal changes in a) control, b) salt stress (70/0) 
and c) salt and cold stress (70/-4). Fatty acids with unknown position of double bonds are denoted with 
an ‘X’. Error bars denote standard deviation; n = 3, except 70/0 2 and 12 days n = 2 

 

c) 
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compared to the mesophilic species P. tricornutum. When F. cylindrus was subjected to a cold 

shock from +7 to -1.8 °C changes in FA profile were minimal compared to changes in P. 

tricornutum which was cold stressed from +15 to +5°C (Lange, 2004).  These results indicated 

that F. cylindrus in terms of FA composition is strongly pre-adapted to low temperatures, which 

might be one reason why changes in fatty acid composition were mainly due to the increase in 

salinity and only marginal after subjection to additional cold stress. However, the decrease of 

PUFAs and the increase of saturated FAs were still quite remarkable. This decrease in the FA 

saturation level upon salt stress has been observed in other organisms. 

 

Table 2: Composition of fatty acids in % according to their degree of saturation, 

monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFAs) 

  before salt stress after 2 days after 12 days 

  control  70/0 70/-4 control  70/0 70/-4 control  70/0 70/-4 

Saturated FA 17.10 17.36 17.26 16.65 20.12 20.20 14.26 18.78 18.63 

MUFA 16.66 16.88 17.38 16.55 16.25 16.66 15.63 26.31 24.00 

PUFA 66.24 65.76 65.36 66.80 63.63 63.14 70.11 54.91 57.36 
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Outlook 

To summarize, about 2500 different genes have been characterized in the first two publications 

of this thesis. One additional cDNA library under CO2 limiting conditions is currently 

established, with the planned sequencing of 5000 clones. Afterwards the genetic basis will be 

comprehensive enough (ca. 5000 genes) to carry out expression analysis using microarrays. The 

required technique is currently established at the Alfred-Wegner-Institute and will allow us to 

investigate the effects and response mechanisms following stress events on a much broader 

scale, deducing coherence and cross-talk between different sets of genes. 

Furthermore, this analysis might provide hints of potential functions of genes, since a major 

challenge will be to further functionally characterize the newly discovered genes. First of all this 

is planned for the newly identified ice-binding proteins as described above, since up to now the 

attributed function is based only on sequence homologies.  
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Abstract 

We have used an EST approach to find genes related to salt stress in the polar diatom 

Fragilariopsis cylindrus. From 2880 clones sequenced from the 5 primed end 1691 high quality 

tentative unique sequences were established and analysed. 38% of these sequences have no 

homologues in the genomes of two mesophilic diatoms, Thalassiosira pseudonana and 

Phaeodactylum tricornutum indicating substantial genomic variation between mesophilic and 

psychrophilic diatoms. Of the 1691 sequences 55.8 % could not unequivocally identified by 

comparison to the SwissProt and refseq data base. Among the 44.2 % tentative unique sequences 

with homologues in databases a high proportion could be assigned to stress related genes. Most 

of these encode for various different heat shock proteins (hsps) and proteins involved into 

transport processes, especially different ionic transporter and antiporter genes reflecting the 

requirement to re-establish the disturbed ion homeostasis caused by salt stress. But also genes 

related to oxidative stress and apoptosis were found. Furthermore, many genes involved in the 

proline synthesis pathway, one of the most important organic osmolytes in F. cylindrus were 

identified. A major outcome of this analysis was the unexpected finding of a new class of ice-

binding proteins (IBPs) identified in F. cylindrus, providing the first molecular evidence for the 

already proposed existence of such proteins related to the ability of diatoms in shaping their 

habitat. A comparison to a recently established cold-shock library from the same species (Mock 

et al., 2006) revealed several stress related genes common in both libraries, suggesting some 

general physiological response mechanisms to both cold and salt stress. Thus, this F. cylindrus 

cDNA library may serve as a rich genetic resource for the identification of novel genes unknown 

in Bacillariophycea associated with environmental stress and salt stress tolerance. 

 

 

 

 



 

 

58                                                                                                                                  Publication II 

Introduction 

Salt stress tolerance and salt stress adaptation of algae have been a point of focus during the past 

decades (Kirst, 1990, Erdmann & Hagemann, 2001). These studies, however mostly focussed on 

macroalgae of the intertidal and rock pools. Salt stress has also been studied extensively in the 

microalgae Clamydomonas sp., Synechocystis sp. (Kanesaki et al., 2002) and Dunaliella sp. 

(Liska et al., 2004) but they are not representative for the marine environment. Salt stress in 

algae as well as in other plants severely disturbs the cellular homeostasis brought about by 

differences between the internal and exogenous concentration of inorganic ions (predominantly 

Na+ and Cl-), causing water efflux, i.e a decrease in cell volume and ion influx. 

Thus salt stress has a severe impact on a variety of metabolic pathways ranging from 

photosynthesis (Allakhverdiev et al., 2002), membrane lipid biosynthesis (Sakamoto & Murata, 

2002, Singh et al., 2002) to protein folding/turnover (Madern et al., 2000, Thomsen et al., 2002). 

Some of the impacts are mediated by the liberation of reactive oxygen species (ROS), causing 

additional oxidative stress (Mittler, 2002).  

Fragilariopsis cylindrus (Grunow) Krieger (Bacillariophyceae) is a psychrophilic, bipolar 

distributed pennate diatom and a major primary producer in open polar waters, especially in the 

marginal ice-edge zone (Kang & Fryxell, 1992), as well as in sea ice. Its occurrence in this 

extreme habitat is well documented (Gleitz & Thomas, 1993, Günther & Dieckmann, 2001) F. 

cylindrus is obligatory adapted to the polar environment, i.e. it is not able to survive 

temperatures above +8°C (Fiala & Oriol, 1990). 

The most prominent feature of sea ice is its porous structure, since during the freezing process 

only water molecules form a solid matrix, whereas other ions are rejected into a system of 

interconnected channels and isolated pockets (Weissenberger et al., 1992), varying in size from 

<5µm to >1 cm depending on ice type (granular/columnar) and temperature. Salinity in the brine 

channel system thus increases due to salt rejection during ice crystal formation and can attain 

values of 70 to 144 at -4 to -10°C respectively (Cox & Weeks, 1983). Incoming irradiance is 

strongly attenuated so that values ranging between 0.3 and 100 µmol photons m-2 s-1 reflect 

typical habitat conditions (McMinn et al., 2000). F. cylindrus was chosen as a model organism to 
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study osmotic stress adaptation since this diatom is capable of tolerating salinities up to 150 PSU 

and still grows at a salinity of 100 PSU (Grant & Horner, 1976, Bartsch, 1989). It can be 

expected that this rather extreme habitat stipulates metabolic adaptation with respect to 

temperature, and with regard to the survival of F. cylindrus in sea ice, also to elevated osmotic 

and hence oxidative stress. Furthermore this study was intended to complement a previously 

established cold stress induced EST library of F.cylindrus (Mock et al., 2006) with regard to 

habitat conditions, to combine the impact of multiple stressors. 

To understand molecular processes underlying osmotic stress response it is essential to study the 

adaptation mechanisms inherent in F. cylindru. Whereas P. tricornutum and T. pseudonana, 

whose genome has recently been published (Armbrust et al., 2004), may serve as good model 

organisms for temperate regions, they are inadequate representatives of polar realms. It is 

ecpected that the genetic repertoire of F. cylindrus differs considerably from both. Hence, the 

EST sequence information of F. cylindrus as an eukaryotic extremophile may add valuable 

genetic data on stress tolerance and adaptation. 

Expressed sequence tag (EST) approaches, although entitled as the “poor man’s genome” (Rudd, 

2003) have been shown to be an effective mean of rapidly gaining information about an 

organism at fundamental levels and to gather data to investigate particular subsets of genes 

related to different tissues, growth, developmental and stress conditions. Furthermore a cDNA 

library established under determined stress conditions is thought to amplify genes responsible for 

compensating this stress. This method has already demonstrated its suitability in resolving 

different questions in the context of osmotic stress response in higher plants as well as in algae 

(Redkar et al., 1996, Zhang et al., 2001, Oztur et al., 2002, Wang et al., 2006). 

Information gathered from cDNA libraries has provided significant aid in later annotation of 

whole genomes (Haas et al., 2002, Shrager et al., 2003). Furthermore a stress induced cDNA 

library can be regarded as an excellent method to find relevant genes of stress response and 

establish a valuable basis for later expression analysis, equally in the form of hybridisation 

techniques (northern blotting and microarray analysis), real time quantitative PCR (Q-PCR) and 

to a lesser extent for siRNA and transformation experiments.  
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Here we present a cDNA library generated from F. cylindrus subjected to elevated salinity, 

which allows the identification of genes putatively critical for survival at high salinities.  

Material and Methods 

Culture conditions 

Fragilariopsis cylindrus was grown in 4.5 l batch cultures at 0 °C under an irradiance of 15 µmol 

photons m-2 s-1 (continuous illumination), using double f/2 medium (Guillard & Ryther, 1962) 

prepared from Antarctic seawater with a salinity of 34. Two different salt shock experiments 

were carried out during the early exponential growth phase (ca. 1.7 mio. cells l-1) to prevent 

subsequent nutrient exhaustion.  

To excite osmotic stress, a concentrated brine solution was prepared from the original medium 

and added sea salt (Instant Ocean). During the first experimental set-up, the brine solution was 

added to the batch culture with the help of a peristaltic pump, whereby salinity was increased to 

a final salinity of 60 within 3 h. 

During the second essay more artificial stress conditions were employed, i.e. all the concentrated 

brine solution was added instantaneously. Samples for RNA isolation from both experimtal set-

ups were taken every 6h following the start of the salt addition on the first day and subsequently 

once per day for a period of 4 days, thus ensuring the acquisition of transiently regulated genes. 

In vivo quantum yield of photosystem II (Fv/Fm) of the F. cylindrus cultures was monitored once 

per day with the aid of a Xenon Puls-Amplitude-Modulated (PAM) Fluorometer (Walz GmbH, 

Germany). Fv measurements were done on not dark adapted samples but at an illumination of 15 

µmol photons m-2 s-1, which means that the measured quantum yield reflects in situ conditions 

rather then the potential maximum yield.  

Isolation of mRNA 

Subsamples of 30 ml for RNA extraction of the culture were filtered onto 25 mm, 1.2 µm pore 

size polycarbonate membrane filters (Millipore), washed with 20 ml 0.2 µm filtered seawater, 

shock frozen in liquid nitrogen and stored at –80 °C. Total RNA was extracted using the 
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RNAquous kit (Ambion Inc, USA) and subsequent poly A+ mRNA  purification with the Poly(A) 

Purist MAG kit (Ambion Inc, USA). A total amount of 2 µg poly A+ mRNA containing equal 

fractions of poly A+ mRNA from both experimental set-ups was employed for first strand 

synthesis. 

cDNA synthesis and library construction 

cDNA library construction was carried out using the CloneMinerTM cDNA library construction 

kit of Invitrogen. In contrast to other library construction methods the use of restriction enzymes 

is omitted to yield longer cDNA fragments and eventually full length clones. During first and 

second strand synthesis, attB1/2 adaptors were ligated to the 3´and 5´ ends of double stranded 

cDNA. FS synthesis was performed using the following program: 70°C/ 5min, 37°C/ 5min, 

allowed to cool for two minutes, before buffer mix was added (leave cup in cycler). After three 

more minutes Superscript II RT was added, 37 °C/ 1:10 h, 70°C/ 5min. After second strand 

synthesis, a second cleaning step with 160 µl chloroform:isoamylalcohol was carried out. Size 

fractionation of flanked cDNA was carried out in two steps: first cDNA was purified with a 

SizeSep 400 Spun Column from Amersham. After checking cDNA quality on a subsample cDNA 

was loaded on a 1% Agarose mini gel having a ladder stained with Sybr-green running parallel 

to the cDNA, which was not stained at all. Three size fractions, 0.5-1.5 kbp, 1.5-4 kbp and more 

than 4 kbp were cut out using a dark reader and extracted with the Mini Elute Gel extraction kit 

from Qiagen, finally yielding 10 µl cDNA per fraction. 

The different cDNA size fractions were directionally cloned into the attP- containing vector 

pDONRTM 222 through site specific recombination. Afterwards the vector was transformed into 

competent E.coli (ElectroMaxTM DH10BTM) phage resistant cells through electroporation. Insert 

screening to determine percentage of recombinants was performed by BsrG I digestion and 

revealed a low value of 54% for the 4+ kbp fraction, therefore this fraction was omitted during 

later sequencing. 
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Sequencing and annotation 

Plasmid DNA extracted from over night cultures of cDNA clones from the library were 

sequenced starting at the 5 primed end using the M13 forward sequencing primer and BigDye 

terminator chemistry from Applied Biosystems. Sequencing reaction products were separated on 

ABI3700 96 capillary machines. Base calling, vector masking, rRNA masking using known 

ribosomal sequences deposited in Genbank and sequence quality assessment was performed 

using phred (Ewing & Green 1998, Ewing et al. 1998). Sequences with a Phred score less than 

20 were rejected from the data set.  

 EST clustering and assembly analysis. The Phrap algorithm with standard parameters was 

employed for clustering of sequences. Sequence clusters were inspected manually with the help 

of the Staden package (Staden et al. 1998).  

 Sequence comparison and functional classification. To yield a possible function of 

sequences in the NRS, matches to existing sequences of different non-redundant datasets were 

performed querying a six frame translation of the sequences using tBLASTX (Altschul et al., 

1997) against the swissprot and refseq databases on a local Sun system. Furthermore, individual 

databases of all available genome sequences from T. pseudonana, (genome.jgi-psf.org/thaps1/ 

thaps1.home.html), P. tricornutum (unpublished), Chlamydomonas sp. (www.chlamy.org 

/chlamydb.html),   Arabidopsis thaliana. (www.arabidopsis.org) and Oryza sativa, 

(www.tigr.org/tdb/e2k1/osa1/), as well as EST information from Physcomitrella patens 

(www.moss.leeds.ac.uk/), Cyanidioschyzon merolae (merolae.biol.s.u-tokyo.ac.jp/) and 

Porphyra yezoensis (www.kazusa.or.jp /en/plant/porphyra/EST/) were build and queried the 

same way. Functional domains were searched against the InterPro (www.ebi.ac.uk/interpro/) and 

GeneOntology (www.geneontology.org/) databases.  
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Results and Discussion 

Assembling and functional analysis 

After base calling, assessment of sequence quality, vector trimming and trimming for ribosomal 

sequences an initial EST collection of 2099 5’ high quality sequences larger than 100bp, having 

an average edited length of 612bp were obtained from the cDNA library. This initial collection 

of ESTs was further clustered and assembled to yield a non-redundant set (NRS) of tentative 

unique sequences (TUs). This set contained a total number of 209 tentative consensus sequences 

(TCs) assembled from 608 sequences. 1482 sequences remained being uniquely represented in 

the EST collection and referred to as singletons (Table 1). All high quality sequences were 

deposited at the dbEST section of NCBI (www.ncbi.nlm.nih.gov/dbEST/) under accession 

numbers. A further comprehensive online database of F. cylindrus EST sequences, so far 

containing sequences from this cDNA library and a previously described cold shock library 

(Mock et al., 2006) is accessible at genome.imb-jena.de/ALGAE/index.html. Assuming that the 

11,242 predicted genes from the genome of T. pseudonana (Armbrust et al., 2004) represent the 

total number of genes present, also in F. cylindrus; we have identified roughly a 15 % proportion 

of the expressed genome within this EST collection.  

Table 1: Overview of the F.cylindrus salt stress cDNA library   

 No. of 

sequences 

average length Total 

characters 

    bp bp 

Clones sequenced 2880   

High quality single reads 

(phred20, no rRNA, min 100bp) 
2099 612 1283603 

Singletons 1482 598 886599 

Tentative consensus 

sequences (TCs) 
209 856 178978 

Non-redundant set (NRS) 1691 630 1065577 

G/C content 0.41   
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Comparison of the F. cylindrus NRS to other databases 

A total of 1147 sequences (68%) retrieved a significant hit in at least one of the queried 

databases and a potential function via significant similarities to SwissProt and refseq could be 

assigned to 747 (44.2%) sequences of the NRS (Table 2). Of the non-redundant set, 544 TCs or 

singletons remained unique, i.e. produced no significant hit against any sequence database 

equalling 32 % of the NRS. Although these sequences may in part represent 3` untranslated 

regions (UTRs), this fraction is believed to be rather small, since sequencing was performed 

from the 5´end and it has been shown by (Mock et al., 2006) that the average length of the 

3´UTR identified was 138 bp and in this library it was only 116 bp (identified 24 times). 

Furthermore, functional protein domains could be assigned to 70 of the 544 unique sequences via 

InterPro. 

Table 2: Significant similarities (≤ 1e-04) of the F. cylindrus NRS (1691 sequences) to other datasets. To 

enhance the meaning some datasets have been combined. Bold values in the diagonal give the number of 

hits unique to this dataset 

  

Total number of 

hits in each 

database 

Swissprot

/ refseq 
C.reinhardtii 

C.merolae/ 

P.yezoensis 

EST 

T.pseudonana/ 

P.tricornutum 

P. 

patens 

A. 

thaliana/ 

O. sativa 

Swissprot/refseq 747 41 362 453 659 351 519 

Clamydomonas 

reinhardtii 
384  3 324 354 263 351 

C. merolae/ 

P.yezoensis EST 
481   5 451 300 406 

T. pseudonana/          

P. tricornutum 
1043    349 344 513 

P.  patens 359     1 336 

A. thaliana/ 

O. sativa 
548      3 

 

Compared to EST collections from streptophytes, where in general roughly 60% of genes could 

be assigned a potential function, the number of genes producing no hit in the Swissprot and 

refseq database was larger. However, an equal proportion of EST sequences could be identified 

in other cDNA libraries of chromophytic algae, e.g. Laminaria digitata 39 – 48%, (Crépineau et 

al., 2000); P. tricornutum < 40 %, (Scala et al., 2002, Montsant et al., 2005); Ulva linza 48% 
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(Stanley et al., 2005). The number of significant hits might have been even higher in a library 

established under unstressed conditions, since it has been shown that strong abiotic stress may 

lead to an increase in non meaningful ESTs, i.e. no hit in Genbank (Bohnert et al., 2001). 

Therefore, it is assumed that a significant proportion of the unique sequences might represent 

genes which are involved in adaptation of F. cylindrus to its extreme environment and in this 

case especially to potential adaptations to increased external salinities.  

Comparison of the F. cylindrus NRS with the T. pseudonana and P. 

tricornutum genome reveal one third to be unique to F. cylindrus  

Polar centric diatoms are believed to be the origin of pennate diatoms, which first emerged about 

70 mill years ago. Pennate and centric diatoms fundamentally differ in their cell symmetry, but 

also in their mode of sexual reproduction and mechanisms for cell motility, leading to a variation 

in their gene content. In addition to these phylogenetic traits, differences in the physiology might 

also play a role, since T. pseudonana and P. tricornutum both represent mesophilic diatoms, 

whereas the occurrence of F. cylindrus is restricted to polar regions, obligatory adapted to 

temperatures below +8°C. Such essential differences in their habitat and consequently 

adaptations to it, would be expected to be reflected in their genetic repertoire.  

A total of 1043 sequences in the F. cylindrus NRS shared similarities with either of the two 

genomes (Figure 1) and 744 sequences were common in all three datasets. The fact that 349 TUs 

(Table 2) were exclusively present in diatoms, is indicative for the close phylogenetic 

relationship. However, F. cylindrus shared slightly more sequences with T. pseudonana than 

with P. tricornutum, which is very astonishing given the fact that P. tricornutum is also a 

pennate diatom. However, a 158 versus 141 sequences overlap is not a large difference and given 

the size of the dataset this finding may change if more sequences become available. Furthermore, 

of those sequences common to all three diatoms, F. cylindrus shared a significant higher 

similarity with P. tricornutum according to a t-test based on mean bit score values (453.6 versus 

395.7; Mean difference: 57.9; n =744; t= 10.2; p < 0,001). 
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A total of 648 (38.3%) TUs are specific to F. cylindrus, i.e. there is no homologue in the two 

mesophilic species.   

 

 

One hundred and four non-redundant sequences (= 6.2%) produced no significant hit against 

either of the diatom genomes, but to other databases. Some of the TUs in this fraction even 

belonged to the group of most abundant TCs (Table 2).     

 

Most abundant ESTs can be functionally characterized 

Twenty-seven TCs consisted of 4 or more single reads, representing the most abundant TCs.  In 

contrast to the previously described most abundant TCs in (Mock et al., 2006) and in (Montsant 

et al., 2005) where 60% and 40%, respectively remained unidentified, a potential function could 

be assigned to almost all (89%) of the most abundant TCs in this library (Table 3). In this 

respect, this EST set is comparable to those of higher plants (Bräutigam et al., 2005, Wang et al., 

2006). 

However, the most abundant TC comprising 2.8% of all high quality sequences was a unique 

sequence showing no homology to any database. Two other unidentified TCs Fcyl0043a06 and 

Fcyl0043h05 seemed to be specific for diatoms, since they only showed a homology to both 

diatom genomes but not to any other database. Fcyl0043a06 yielded an InterPro hit spanning a 

185 amino acid long domain of a twin_arginine translocation pathway signal (IPR006311). 

Further four TCs encoded conserved hypothetical proteins with unknown function. The 

occurrence of three fcps and one cab protein among the 26 most abundant TCs is comparable to 

Figure 1: Overlap between 
the F. cylindrus NRS set 
and the genomes of T. 
pseudonana and P. 
tricornutum based on a 
significance level of 1e-04. 
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the P. tricornutum EST set (Montsant et al., 2005) and the cold shock library and represents the 

importance of the LHC protein family in stress acclimation. Severe photoinhibition, manifested 

as a strong decline in photosynthetic quantum yield has been shown to occur upon cold (Mock & 

Valentin, 2004) and even more upon salt stress (data not shown), thus a restructuring of the LHC 

in response to these stresses seems to be necessary. The frequent occurrence of ESTs encoding 

enolase, which is one of the enzymes involved in the energy yielding phase of glycolysis, might 

hint at the increasing importance of catabolic energy gain under conditions where photosynthetic 

energy production is limited.  

Table 3: Most abundant ( ≥ 4 single reads) tentative consensus sequences (TCs) and best hit 

to the swissprot database 

Internal 

name 

No. of 

ESTs 

TC 

length 
Function e-value 

Fcyl0044d08 59 1313   

Fcyl0051h06 42 817 Fucoxanthin-chlorophyll a-c binding protein 8e-67 

Fcyl0044a07 10 1532 S-adenosyl-L-homocysteine hydrolase  (EC 3.3.1.1) 1e-179 

Fcyl0047c10 7 2127 Heat shock 70 kDa protein. 6e-250 

Fcyl0036b05 7 1070 NADP-dependent L-serine/L-allo-threonine DH 3e-6 

Fcyl0047h05 6 702 Peptidyl-prolyl cis-trans isomerase (EC 5.2.1.8) 2e-61 

Fcyl0054g05 6 1265 Hypothetical protein sll1483 precursor. 2e-28 

Fcyl0027b06 6 585 Clathrin heavy chain. 2e-50 

Fcyl0051d11 5 1410 Hypothetical protein yqjG. 1e-48 

Fcyl0042g12 5 892 NAD(P)H:quinone oxidoreductase (EC 1.6.5.2) 6e-28 

Fcyl0041b08 4 934 Chlorophyll a-b binding protein 2e-33 

Fcyl0041g02 4 1065 Fructose-bisphosphate aldolase (EC 4.1.2.13) 1e-81 

Fcyl0044h09 4 972 60S ribosomal protein L5-1. 2e-77 

Fcyl0045b02 4 1124 Hypothetical 57.5 kDa protein 1e-9 

Fcyl0042d03 4 903 Chloroplastic quinone-oxidoreductase homolog 1e-23 

Fcyl0043a06 4 808   

Fcyl0045e07 4 1384 Eukaryotic initiation factor 4A (EC 3.6.1.-) 1e-143 

Fcyl0048b07 4 765 Putative protein disulfide-isomerase (EC 5.3.4.1) 3e-14 

Fcyl0039d09 4 1534 Probable serine hydrolase 1e-10 

Fcyl0051b05 4 807 Fucoxanthin-chlorophyll a-c binding protein 1e-32 

Fcyl0047d12 4 926 Fucoxanthin-chlorophyll a-c binding protein 7e-5 

Fcyl0030h03 4 734 Hypothetical protein 4e-18 

Fcyl0049b05 4 1176 Pyrroline-5-carboxylate reductase (EC 1.5.1.2) 1e-34 

Fcyl0043h05 4 1303   

Fcyl0039b06 4 1359 Enolase (EC 4.2.1.11) 2e-135 

Fcyl0038g05 4 979 DNA translocase ftsK 1. 6e-6 

Fcyl0050f10 4 346 Protein ccdA (Protein letA) (Protein H) (LynA) 1e-29 
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TC Fcyl0043h05 encodes a full length heat-shock protein (hsp) 70, which together with a high 

number of others ESTs encodes a whole suit of different heat shock proteins that have been 

identified in this library. 

The production of organic osmolytes in response to salt stress seems to be of major importance; 

since a TC coding pyrroline-5-carboxylate reductase (P5CR) could be identified within the most 

abundant TCs. P5CR catalyzes the final step in the synthesis of proline, which has been shown to 

be the major organic osmolyte in F. cylindrus (Plettner, 2002). 

The class of peptidyl-prolyl cis-trans isomerases (PPIases) is also represented within the most 

abundant TCs, they catalyze the isomerisation of peptide bonds of proline residues, a rate 

limiting step in the folding of newly synthesized proteins. They are also considered as molecular 

chaperons, activated by different stressors, including cold and drought stress. A total of six 

different representatives of this class could be identified. This class of proteins encompasses 

cyclophilins (CYP20, CYP40, CYP-A) and two FK506 binding proteins (FKBPs). In higher 

plants most of the immunophilins are targeted to the thylakoid lumen. Isoformes of CYP40 and 

CYP20 in the thylakoid lumen serve as protein folding catalysts, but also regulate the acitivity of 

the PSII specific protein phosphatase (Edvardsson et al., 2003). In addition to this, evidence 

exists that cyclophilins protect cells against oxidative stress (Doyle et al., 1999), potentially 

regulated by thioredoxin (Motohashi et al., 2003). One singleton exclusively found in the diatom 

genomes contained a 176 aa long cyclophilin typ PPIase domain, suggesting that it might be a 

new representative of this class. 

Many potentially salt stress related genes could be identified 

The usefulness of information which can be gained through cDNA libraries established under 

determined stress conditions was supported by the fact, that a large number of tentative unique 

sequences could be assigned to genes potentially involved in salt stress response (Table 4). This 

comprises several genes required for the synthesis and degradation of proline, the major organic 

osmolyte in F. cylindrus, namely ∆1-pyrroline-5-carboxylate reductase, which catalyzes the final 

step of proline synthesis and prolin dehydrogenase the first enzyme in the catabolic pathway 

(Verma, 1999). A singleton encoding ornithine aminotransferase was found, representing an 
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alternative route of proline synthesis, compared to the glutamate pathway (Figure 2). In a parallel 

study (Krell et al., 2006) it could be shown that this gene is strongly up-regulated following salt 

stress, verifying the importance of this pathway and at the same time establishing a potential link 

to the urea cycle. The unexpected finding of a full urea cycle in diatoms (Armbrust et al., 2004) 

and one of its components in this library (argininosuccinate synthase) allows one to speculate on 

its importance in stress induced protein turnover, as well as organic osmolyte synthesis. The rate 

limiting step in proline synthesis from glutamate – ∆-1-pyrroline-5-carboxylate synthase - could 

not be found, but this was not surprising considering the fact that it was strong down-regulated 

upon salt stress (Krell et al., 2006). 

 

Figure 2: Substrates and enzymes involved in proline metabolism and linked to the urea cycle. Shaded enzymes 
(ornithine δ-aminotransferase (δ-OAT, EC 2.6.1.13), ∆1-pyrroline-5-carboxylate reductase (P5CR, EC 1.5.1.2),  proline 
dehydrogenase (ProDH, EC 1.5.99.8) and argininosuccinate synthase (EC 6.3.4.5) were found in this library, while ∆1-
pyrroline-5-carboxylate synthase (P5CS, EC not assigned) was identified in the cold shock library. 

 



 

 

70                                                                                                                                  Publication II 

One singleton (Fcyl0033f11) encoded a spermidine synthase. Spermidine as well as spermine are 

important osmolytes in higher plants, where they function in preventing chlorophyll loss under 

osmotic stress (Capell et al., 2004). 

Another important osmolyte in F. cylindrus is Glycine-betaine (Gly-betaine). The synthesis of its 

precursor phosphocholine involves three successive S-adenosyl-Methionine (SAM)-dependent 

N-methylations of phosphoethanolamine. A singleton encoding SAM-synthase could be found. 

With each transmethylation, a molecule of S-adenosylhomo-Cys (SAH) is produced, a potent 

inhibitor of S-adenosyl-Met-dependent methyltransferases. Therefore S-adenosylhomo-Cys 

(SAH) needs to be catabolized to prevent feedback inhibition of SAM-dependent 

methyltransferases. The gene encoding SAH-hydrolase, responsible for the degradation of SAH 

to adenosine plus homo-Cys belonged to the most abundant TCs in this library, stressing the 

cruxial role of this protein in maintaining methylation activity during salt stress (Weretilnyk et 

al., 2001). 

The destruction of cellular ion homeostasis is one of the prompt and most severe damages caused 

by salt stress. The need for the cells to re-establish this disturbed ion homeostasis is reflected by 

the high number of different ionic transporter and antiporter genes found in this library. Several 

copies coding different types and subunits of V-type H+ ATPase, some even present by more 

than one clone, as well as antiporters for various ions (Na+, K+, Ca2+) (Table 4) stress the 

significance of this genes (Allakhverdiev et al., 2000). For salinity tolerance the V-type H+-

ATPase is of prime importance in establishing an electrochemical H+ gradient across the 

tonoplast to drive sodium sequestration into the vacuole (Shi et al., 2003). 

Reactive oxygen species (ROS) generated by salt stress might be an important source of damage 

in plant cells. In this cDNA library a number of genes involved in the detoxification and 

scavenging of ROS, e.g. glutathione synthetase, peroxiredoxin, thioredoxin (Wood et al., 2003) 

could be found. Two singletons unique to F. cylindrus contained an InterPro catalase domain 

(65aa, Fcyl0029c11) and peroxidase domain (79aa, Fcyl0035a10), respectively. Glutathione 

content has been shown to be increased in higher plants subjected to salt stress (Ruiz & 
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Blumwald, 2002) and in algae under high light intensities, since it acts as an intermediate in ROS 

removal during light saturation of photosynthesis (Dupont et al., 2004). 

Two genes involved in the synthesis of vitamins could also be identified, a tocopherol O-

methyltransferase and a pyridoxin biosynthesis protein, essential for vitamine B6 synthesis. This 

protein is able to quench singlet oxygen at a rate comparative to vitamin C and E, 

Table 4 : Selected genes potentially related to osmotic stress tolerance found in this cDNA library 

Internal name Function 
No. of 

ESTs 
e-value 

Organic osmolytes 

Fcyl0049b05 Pyrroline-5-carboxylate reductase 4 1e-34 

Fcyl0039a09 Prolin dehydrogenase 1 3e-37 

Fcyl0044g07 Ornithine aminotransferase, mit. precursor (EC 2.6.1.13) 1 3e-70 

Fcyl0045a03 Argininosuccinate synthase (EC 6.3.4.5) 1 2e-70 

Fcyl0033f11 Spermidine synthase 1 (EC 2.5.1.16) 1 2e-06 

Fcyl0053g06 S-adenosylmethionine synthetase (EC 2.5.1.6) 1 4e-63 

Transporter/ion homeostasis 

Fcyl0032b02 Na+/H+ antiporter 1 4e-15 

Fcyl0052d12 Glutathione-regulated  K
+
/H

+
 antiporter 1 1e-34 

Fcyl0048a11 Na
+
/K

+
/Ca

2+
- exchange protein 1 1 1e-41 

Fcyl0049f08 Sodium-dependent phosphate transporter 1 1 2e-31 

Fcyl0049f03 Calcium-transporting ATPase 1 (EC 3.6.3.8) 1 8e-14 

Fcyl0047b10 V-ATPase A subunit (EC 3.6.3.14) 1 7e-104 

Fcyl0053g12 V- ATPase 16 kDa proteolipid subunit (EC 3.6.3.14) 1 6e-51 

Fcyl0044g02 V-ATPase 21 kDa proteolipid subunit (EC 3.6.3.14) 1 2e-34 

Fcyl0029c03 Putative cation-transporting ATPase (EC 3.6.3.-) 1 3e-34 

Fcyl0046e06 Probable cation-transporting ATPase F(EC 3.6.3.-) 2 6e-32 

Fcyl0048g08 Probable calcium-transporting ATPase (EC 3.6.3.8) 1 7e-32 

Fcyl0049a11 PP-energized vacuolar membrane proton pump (EC 3.6.1.1) 1 4e-28 

Fcyl0041f03 PP-energized vacuolar membrane proton pump (EC 3.6.1.1) 2 3e-95 

Chaperones 

Fcyl0041b10 Heat shock protein STI (Stress-inducible protein) 1 4e-27 

Fcyl0030f10 GroEL (60 kDa chaperonin 1) 1 8e-39 

Fcyl0034b11 GroES ( 10 kDa chaperonin) 2 2e-13 

Fcyl0047c10 Heat shock 70 kDa protein. 7 6e-250 
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Table 4 continued    

Fcyl0038e01 Heat shock 70 kDa protein 1 7e-50 

Fcy0052e08 DnaJ protein homolog 2 2 1e-66 

Fcyl0031g04 Heat shock protein 83 1 3e-24 

Fcyl0048f04 Heat shock protein 83 1 1e-78 

Fcyl0041f05 Probable chaperone HSP31 1 2e-15 

Oxidative stress defense 

Fcyl0045c07 Glutathione synthetase (EC 6.3.2.3) 1 2e-21 

Fcyl0047f09 Peroxiredoxin (EC 1.11.1.15) 1 4e-16 

Fcyl0045b09 putative thioredoxin peroxidase 1 1e-10 

Fcyl0046d05 Tocopherol O-methyltransferase, chloroplast precursor 1 3e-8 

Fcyl0042b10 Pyridoxin biosynthesis protein PDX1 1 4e-96 

Signalling/stress perception 

Fcyl0037h12 Cell wall integrity and stress response component 3 prec. 3 4e-15 

Fcyl0023a08 ATPase-like:Histidine kinase A 1 2e-08 

Fcyl0036b01 sensory box sensor histidine kinase/response regulator 1 6e-10 

Fcyl0052e03 two-component system sensor histidine kinase 1 3e-11 

Fcyl0046a06 14-3-3-like protein 2 1e-87 

Fcyl0043e09 putative two-component sensor 1 3e-18 

Fcyl0052a07 Phosphatidylinositol 4-kinase 1 5e-19 

Fcyl0023a09 Protein SIS2 (Halotolerance protein HAL3) 1 9e-9 

Protein degradation 

Fcyl0032g01 Ubiquitin-conjugating enzyme E2  (EC 6.3.2.19) 1 1e-18 

Fcyl0054f05 Ubiquitin 1 3e-32 

Fcyl0049d01 Ubiquitin carboxyl-terminal hydrolase 19 (EC 3.1.2.15) 1 1e-16 

Fcyl0043e02 Ubiquitin carboxyl-terminal hydrolase 3 (EC 3.1.2.15) 1 7e-21 

Fcyl0029f11 Ubiquitin-activating enzyme E1 1 3e-17 

 

suggesting a previously unknown role for pyridoxine in active oxygen resistance (Ehrenshaft et 

al., 1999). Taken together this might imply that ROS scavenging pathways may play an 

exceptional role in the salt tolerance of F. cylindrus as is the case in higher plants, where 

oxidative stress related genes were highly abundant in EST libraries established under salt stress 

(Wang et al., 2006). However, it should also be mentioned that ROS might act as secondary 
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messengers in the activation of stress-response signal transduction pathways and defence 

mechanisms (Mittler, 2002). 

TUs involved in signalling pathways potentially related to salt stress, such as the 14-3-3 protein 

and histidin kinases could also be detected. Histidin kinases act as sensors in the perception of 

various stressors like changes of the redox status and salt stress (Marin et al., 2003). The 14-3-3 

proteins bind to a range of transcription factors and other signalling proteins, regulating stress 

response, including the osmotic regulation of H+-ATPases in plasma membranes (Roberts, 

2003).  

Molecular chaperons play a crucial role in protecting plants against a variety of abiotic stressors 

and in re-establishing cellular homeostasis. They are responsible for protein folding, assembly, 

translocation and degradation. Under stress they stabilize proteins and membranes and assist in 

protein refolding (Fulda et al., 1999) (Wang et al., 2004). A number of sequences coding hsps 

belonging to different classes were found in this library.  Hsp 70/DnaK, and its co-chaperon 

(DnaJ/hsp40) were present by many different variations, as well as in high abundance in terms of 

copy numbers. The overexpression of hsp70 members in higher plants and yeast lead to an 

enhanced tolerance to salt stress (Sugino et al., 1999, Sugimoto et al., 2003), thus stressing its 

importance potentially also in this case. They are also believed to play a regulatory role in stress 

associated gene expression. (Thomsen et al., 2002, Diamant et al., 2003) reported that protein-

disaggregation by a chaperone network composed of ClpB and DnaK + DnaJ + GrpE was 

essential for the recovery after salt stress. Interestingly, ClpB a member of the hsp100 class was 

strongly and specifically activated by the osmolyte Gly-betaine, thus linking osmolyte and 

chaperone metabolism. 

Under stress conditions, a number of proteins are damaged, or need to be degraded in order to 

readjust to the new situation. The major proteolytic system in eukaryotes is the ubiquitin 

mediated degradation in the proteasome. The analysis of this cDNA library revealed a number of 

TUs encoding proteins involved in this degradation process, e.g. Fcyl0032g01, Fcyl0043e02 and 

Fcyl0029f11. This is consistent with previous findings where the expression of ubiquitin related 

proteins and various proteases was found to be enhanced under drought and salt stress and with 
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the requirement of protein degradation under stress conditions. Furthermore, at least three 

different genes (Fcyl0043h12, Fcyl0045d02, Fcyl0053d05) encoding FtsH proteases could be 

identified in F. cylindrus. A number of FtsH proteases is targeted to chloroplasts, where they are 

thought to be involved in the degradation of several photosystem-II (PS II) proteins, especially 

the reaction-center D1 protein (Adam & Clarke, 2002). Measurements of photosynthetic 

quantum yield revealed a detrimental effect of elevated salt concentrations on the photosynthetic 

machinery in F. cylindrus (Krell et al., 2006), thus showing the need for such repair 

mechanisms.  

 

A new class of antifreeze proteins could be identified  

Antifreeze proteins, originally discovered in polar fish (DeVries, 1969) have been isolated from 

a number of higher plants (Griffith et al., 2005), fungi (Hoshino et al., 2003), bacteria (Duman & 

Olsen, 1993) and insects (Duman, 2001). While proteins isolated from animals typically have 

substantial thermal hysteresis activity (TH), i.e. are able to depress the freezing point to actually 

avoid the formation of ice crystals, those proteins from plants and bacteria are able to inhibit ice 

re-crystallization, i.e the growth of large ice crystals at the expense of smaller ones with smaller 

ones having less damaging effects on biological tissues.  

Table 5: Sequence characteristics of ice-binding proteins found in F. cylindrus 

and best match to T. ishikariensis  antifreeze proteins 

Internal name No. of 
ESTs 

total length 5`UTR ORF 3´UTR score 

Fcyl0032c09 3 963 64 834 49 177 

Fcyl0046a10 2 948 65 822 47 182 

Fcyl0046c08 1 886 48 798 25 155 

Fcyl0052c02 1 1280 66 1077 119 161 

 In this library surprisingly four TUs could be identified, which showed a high similarity to 

sequences encoding antifreeze homologues originally isolated from the snow mold fungi 

Typhula ishikariensis (Hoshino et al., 2003), all of them being full length sequences. These 

sequences were subjected to a further detailed phylogenetic analysis (Figure 3). No significant 
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similarity to any other antifreeze protein, neither from the animal nor plant kingdom could be 

found, suggesting that these sequences might represent a new class of antifreeze proteins 

formerly unknown in plants.  

 

The length of the open reading frame (ORF) between three of the isoforms varied only by 12 

(266 – 278) amino acids, while one isoform (Fcyl0052c02) was considerably longer (359 

aa)(Table 6). In contrast to the former, this sequence contained no signal peptide according to the 

neural network prediction in SignalP (Bendtsen et al., 2004), while the others belonged with high 

probability (0.795 – 0.930), to the secretory pathway and may thus be released into the 

extracellular space. The AFPs found in Typhula ishikariensis were also secreted into the 

extracellular space of the fungi and observations of Hoshino et al. (2003) indicated that these 

AFPs can probably bind to surfaces of ice crystals to inhibit their growth. This physiological 

ability would be of fundamental importance in the sea ice diatom F. cylindrus, in order to grow 

in brine channels between sea ice crystals without damage by freezing. Furthermore, the release 

Figure 3: Phylogenetic tree of F. cylindrus full length IBP isoforms and homologues (incl. Accession number) 
found in the Genbank database  
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of such substances by diatoms that bind to and affect the growth of ice was already proposed by 

Raymond et al. (1994) and Raymond & Knight (2003). This would be the first molecular 

evidence for the existence of such proteins. Neither of these sequences could be found in the 

genomes of T. pseudonana and P. tricornutum, respectively, supporting evidence that these 

proteins are essential for the adaptation to polar environments. The fact that neither of these 

sequences could be found in the previously established cold shock library (Mock et al., 2006), 

allows one to speculate on the possible stimuli triggering the release of these proteins. It has been 

shown that salt stress was able to enhance the expression of an antifreeze protein in E.coli 

(Meijer et al., 1996). Thus one might also speculate on the potential role of these proteins in 

ameliorating negative effects of salt stress, in addition to exhibiting antifreeze activity. Further 

expression studies aiming at the involvement into freezing and salt stress response will be carried 

out. 

Many stress related genes common in the salt and cold induced cDNA 

library 

In order to detect similarities potentially related to a common stress response upon cold and salt 

stress, the previously described cold shock library was merged with the salt stress library. This 

produced only a marginal overlap of 95 TUs, which might be due to the limited number of 

sequences in both libraries, but also owing to different physiological responses following cold 

and salt stress.  

However, of the 95 matching TUs more than 10 could be significantly attributed to stress related 

proteins like, e.g. chaperones (hsp 70, hsp 31), enhanced disease susceptibility 5 (Fcyl0042d07), 

cell wall integrity and stress response component 3 precursor (Fcyl0037h12), light repressed 

protein A homolog (Fcyl0036a05), peroxiredoxin HYR1 (Fcyl0047f09) and SAM synthetase ( 

Fcyl0053g06). Some of these proteins even belonged to the most abundant TUs in this library, 

e.g the peptidyl-prolyl cis-trans isomerase (Fcyl0047h05), some fcps and one hsp70. Among the 

other matching sequences identified, many belonged to general metabolism. Transporters and 

proteins related to the protein metabolism were only represented in a limited number. One TU 
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coding a UDP-sulfoquinovose synthase (Fcyl0046h07) and one coding a delta-5/delta-6 fatty 

acid desaturase (Fcyl0051c03) were found in both libraries, suggesting an important role of 

changes in lipid composition, as a common trait in stress response.  

A high-affinity fructose transporter (Fcyl0039g06) was also found in both libraries and together 

with the identification of a monosaccharide transporter (Fcyl0036h07) both integral to 

membranes this might hint at the formation of exopolysaccharides. The exudation of 

exopolysaccharide proteins have been suggested to be a common trait of eukaryotic and 

prokaryotic organism dwelling in sea ice (Krembs et al., 2002, Mancuso Nichols et al., 2004), 

thus being able to shape their habitat.  

Twenty-one sequences of the merged libraries were specific to diatoms and 22 were exclusively 

present in F. cylindrus. These “unknown” genes are very likely the source of candidate cold- and 

salt-tolerant genes associated with the necessary adaptation of F. cylindrus to its extreme habitat. 

Further functional analysis will help elucidate their specific role in stress tolerance.  

Conclusion 

A non-redundant set of 1691 genes was produced from a salt stress induced F. cylindrus cDNA 

library. Further analysis of ESTs with putative functional annotation identified a large number of 

genes involved in abiotic stress response in general and especially to salt stress acclimation. The 

comparison to two genomes of mesophilic Bacillariophyceae revealed a large proportion of 

genes unique to the psychrophilic F. cylindrus, thus reflecting the adaptation to its extreme 

habitat in its genetic repertoire. The finding of numerous sequences related to the synthesis of 

osmolytes and transporters to re-establish ion homeostasis proved this EST approach to be a 

valuable tool for mining salt stress related genes. The finding of a new class of ice-binding 

proteins formerly unknown in animals and plants and obviously also not present in mesophilic 

species of diatoms is a major result of this study and sheds new molecular light on the 

manipulation of the environment by sea ice diatoms. These results provide the basis to facilitate 

large scale expression studies in F. cylindrus and may even provide new target genes for the 

engineering of improved drought and salt resistance in crop plants.  



 

 

78                                                                                                                                  Publication II 

References 

Adam Z. & Clarke A.K. (2002) Cutting edge of chloroplast proteolysis. Trends in Plant Science, 7, 451-456. 

Allakhverdiev S.I., Nishiyama Y., Miyairi S., Yamamoto H., Inagaki N., Kanesaki Y. & Murata N. (2002) Salt 

stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation 

of psbA genes in Synechocystis. Plant Physiology, 130, 1443-1453. 

Allakhverdiev S.I., Sakamoto A., Nishiyama Y., Inaba M. & Murata N. (2000) Ionic and osmotic effects of NaCl-

induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology, 123, 1047-1056. 

Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W. & Lipman D.J. (1997) Gapped BLAST 

and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389-

3402. 

Armbrust E.V., Berges J.A., Bowler C., Green B.R., Martinez D., Putnam N.H., Zhou S. et al. (2004) The genome 

of the diatom Thalassiosira Pseudonana: ecology, evolution, and metabolism. Science, 306, 79-86. 

Bartsch A. (1989) Sea ice algae of the Weddell Sea (Antarctica): Species composition, biomass and ecophysiology 

of selected species. Reports on Polar Research, 63, 110 pp. 

Bendtsen J.D., Nielsen H., von Heijne G. & Brunak S. (2004) Improved prediction of signal peptides: SignalP 3.0. 

Journal of Molecular Biology, 340, 783-795. 

Bohnert H.J., Ayoubi P., Borchert C., Bressan R.A., Burnap R.L., Cushman J.C., Cushman M.A. et al. (2001) A 

genomics approach towards salt stress tolerance. Plant Physiology and Biochemistry, 39, 295-311. 

Bräutigam M., Lindlöf A., Zakhrabekova S., Gharti-Chhetri G., Olsson B. & Olsson O. (2005) Generation and 

analysis of 9792 EST sequences from cold acclimated oat, Avena sativa. BMC Plant Biology, 5. 

Capell T., Bassie L. & Christou P. (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice 

confers tolerance to drought stress. Proceedings of the National Academy of Sciences of the United States 

of America, 101, 9909-9914. 

Cox G.F.N. & Weeks W.F. (1983) Equations for determining the gas and brine volumes in sea-ice samples. Journal 

of Glaciology, 29, 306-316. 

Crépineau F., Roscoe T., Kaas R., Kloareg B. & Boyen C. (2000) Characterisation of complementary DNAs from 

the expressed sequence tag analysis of life cycle stages of Laminaria digitata (Phaeophyceae). Plant 

Molecular Biology, 43, 503-513. 

DeVries A.L. (1969) Freezing resistance in some Antarctic fishes. Science, 163, 1073-1075. 

Diamant S., Rosenthal D., Azem A., Eliahu N., Ben-Zvi A. & P. G. (2003) Dicarboxylic amino acids and glycine-

betaine regulate chaperone-mediated protein-disaggregation under stress. Molecular Microbiology, 49, 

401-410. 

Doyle V., Virji S. & Crompton M. (1999) Evidence that cyclophilin-A protects cells against oxidative stress. 

Biochemical Journal, 341, 127-132. 

Duman J.G. (2001) Antifreeze and ice nucleator proteins in terestrial arthropods. Annual Review of Physiology, 63, 

327-357. 

Duman J.G. & Olsen M. (1993) Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse 

plants. Cryobiology, 30, 322-328. 

Dupont C.L., Goepfert T., Lo P., Wei L. & Ahner B.A. (2004) Diurnal cycling of glutathione in marine 

phytoplankton: Field and culture studies. Limnology and Oceanography, 49, 991-996. 



 

 

Publication II                                                                                                                                 79 

Edvardsson A., Eshaghi S., Vener A. & Andersson B. (2003) The major peptidyl-prolyl isomerase activity in 

thylakoid lumen of plant chloroplasts belongs to a novel cyclophilin TLP20. FEBS Letters, 542, 137-141. 

Ehrenshaft M., Bilski P., Li M.Y., Chignell C.F. & Daub M.E. (1999) A highly conserved sequence is a novel gene 

involved in de novo vitamin B6 biosynthesis. Proceedings of the National Academy of Sciences of the 

United States of America, 96, 9374-9378. 

Erdmann N. & Hagemann M. (2001) Salt acclimation of algae and cyanobacteria: a comparison. In: Algal 

Adaptation to Environmental Stresses (eds L.C. Rai & J.P. Gaur). Springer. 

Fiala M. & Oriol L. (1990) Light-temperature interactions on the growth of Antarctic diatoms. Polar Biology, 10, 

629-636. 

Fulda S., Mikkat S., Schroder W. & Hagemann M. (1999) Isolation of salt-induced periplasmic proteins from 

Synechocystis sp. strain PCC 6803. Archives of Microbiology, 171, 214-217. 

Gleitz M. & Thomas D.N. (1993) Variation in phytoplankton standing stock, chemical composition and physiology 

during sea-ice formation in the southeastern Weddell Sea, Antarctica. Journal of Experimental Marine 

Biology and Ecology, 173, 211-230. 

Grant W.S. & Horner R.A. (1976) Growth responses to salinity variation in four Arctic ice diatoms. Journal of 

Phycology, 12, 180-185. 

Griffith M., Lumb C., Wiseman S.B., Wisniewski M., Johnson R.W. & Marangoni A.G. (2005) Antifreeze proteins 

modify the freezing process in planta. Plant Physiology, 138, 330-340. 

Guillard R.R.L. & Ryther J.H. (1962) Studies on marine planktonic diatoms. I. Cyclotella nana. Hustedt and 

Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8, 229-239. 

Günther S. & Dieckmann G.S. (2001) Vertical zonation and community transition of sea-ice diatoms in fast ice and 

platelet layer, Weddell Sea, Antarctica. Annals of Glaciology, 33, 287-296. 

Haas B., Volfovsky N., Town C., Troukhan M., Alexandrov N., Feldmann K., Flavell R. et al. (2002) Full-length 

messenger RNA sequences greatly improve genome annotation. Genome Biology, 3. 

Hoshino T., Kiriaki M., Ohgiya S., Fujiwara M., Kondo H., Nishimiya Y., Yumoto I. et al. (2003) Antifreeze 

proteins from snow mold fungi. Canadian Journal of Botany, 81, 1175-1181. 

Kanesaki Y., Suzuki I., Allakhverdiev S.I., Mikami K. & Murata N. (2002) Salt stress and hyperosmotic stress 

regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochemical and 

Biophysical Research Communications, 290, 339-348. 

Kang S.-H. & Fryxell G.A. (1992) Fragilariopsis cylindrus (Grunow) Krieger: The most abundant diatom in water 

column assemblages of Antarctic marginal ice-edge zones. Polar Biology, 12, 609-627. 

Kirst G.O. (1990) Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant 

Molecular Biology, 41, 21-53. 

Krell A., Funck D., Plettner I., John U. & Dieckmann G.S. (2006) Regulation of proline metabolism under salt stress 

in the sea ice diatom Fragilariopsis cylindrus. Plant, Cell and Environment, submitted. 

Krembs C., Eicken H., Junge K. & Deming J.W. (2002) High concentrations of exopolymeric substances in Arctic 

winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep-Sea 

Research Part 1: Oceanographic Research Papers, 49, 2163-2181. 



 

 

80                                                                                                                                  Publication II 

Liska A.J., Shevchenko A., Pick U. & Katz A. (2004) Enhanced photosynthesis and redox energy production 

contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiology, 

136, 2806-2817. 

Madern D., Ebel C. & G Z. (2000) Halophilic adaptation of enzymes. Extremophiles, 4, 91-98. 

Mancuso Nichols C.A., Garon S., Bowman J.P., Raguenes G. & Guezennec J. (2004) Production of 

exopolysaccharides by Antarctic marine bacterial isolates. Journal of Applied Microbiology, 96, 1057-

1066. 

Marin K., Suzuki I., Yamaguchi K., Ribbeck K., Yamamoto H., Kanesaki Y., Hagemann M. et al. (2003) 

Identification of histidie kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 

6803. Proceedings of the National Academy of Sciences of the United States of America, 100, 9061-9066. 

McMinn A., Ashworth C. & Ryan K. (2000) In situ net primary production of an Antarctic fast ice bottom algal 

community. Aquatic Microbial Ecology, 21, 177-185. 

Meijer P.J., Holmberg N., Grundstrom G. & Bulow L. (1996) Directed evolution of a type I antifreeze protein 

expressed in Escherichia coli with sodium chloride as selective pressure and its effect on antifreeze 

tolerance. Protein Engineering, 9, 1051-1054. 

Mittler R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405-410. 

Mock T., Krell A., Glöckner G., Kolukisaoglu Ü. & Valentin K. (2006) Analysis of expressed sequence tags (ESTs) 

from the polar diatom Fragilariopsis cylindrus. Journal of Phycology, 42, 78-85. 

Mock T. & Valentin K. (2004) Photosynthesis and cold acclimation - Molecular evidence from a polar diatom. 

Journal of Phycology, 40, 732-741. 

Montsant A., Jabbari K., Maheswari U. & Bowler C. (2005) Comparative genomics of the pennate diatom 

Phaeodactylum tricornutum. Plant Physiology, 137, 500-513. 

Motohashi K., Koyama F., Nakanishi Y., Ueoka-Nakanishi H. & Hisabori T. (2003) Chloroplast cyclophilin is a 

target protein of thioredoxin. Journal of Biological Chemistry, 278, 31848-31852. 

Oztur Z., Talame V., Deyholos M., Michalowski C., Galbraith D., Gozukirmizi N., Tuberosa R. et al. (2002) 

Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant 

Molecular Biology, 48, 551-573. 

Plettner I. (2002) Stressphysiologie bei antarktischen Diatomeen - Ökophysiologische Untersuchungen zur 

Bedeutung von Prolin bei der Anpassung an hohe Salinitäten und tiefe Temperaturen, Universität Bremen. 

Raymond J.A. & Knight C.A. (2003) Ice binding, recrystallization inhibition, and cryoprotective properties of ice-

active substances associated with Antarctic sea ice diatoms. Cryobiology, 46, 174-181. 

Raymond J.A., Sullivan C.W. & DeVries A.L. (1994) Release of an ice-active substance by sea ice diatoms. Polar 

Biology, 14, 71-75. 

Redkar R., Lemke P. & Singh N. (1996) Isolation of differentially expressed cDNA clones from salt-adapted 

Aspergillus nidulans. Current Genetics, 29, 130-135. 

Roberts M.R. (2003) 14-3-3 Proteins find new partners in plant cell signalling. Trends in Plant Science, 8, 218-223. 

Rudd S. (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends in Plant 

Science, 8, 321-329. 

Ruiz J.M. & Blumwald E. (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta, 214, 965-969. 



 

 

Publication II                                                                                                                                 81 

Sakamoto T. & Murata N. (2002) Regulation of the desaturation of fatty acids and its role in tolerance to cold and 

salt stress. Current Opinion in Microbiology, 5, 206-210. 

Scala S., Carels N., Falciatore A., Chiusano M.L. & Bowler C. (2002) Genome properties of the diatom 

Phaeodactylum tricornutum. Plant Physiology, 129, 993-1002. 

Shi H., Lee B., Wu S. & Zhu J. (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt 

tolerance in Arabidopsis thaliana. Nature Biotechnology, 21, 81-85. 

Shrager J., Hauser C., Chang C., Harris E., Davies J., McDermott J., Tamse R. et al. (2003) Chlamydomonas 

reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiology, 

131, 401-408. 

Singh S.C., Sinha R.P. & Häder D.-P. (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta 

Protozoologica, 41, 297-308. 

Stanley M.S., Perry R.M. & Callow J.A. (2005) Analysis of expressed sequence tags from the green alga Ulva linza 

(Chlorophyta). Journal of Phycology, 41, 1219-1226. 

Sugimoto S., Nakayama J., Fukuda D., Sonezaki S., Watanabe M., Tosukhowong A. & Sonomoto K. (2003) Effect 

of heterologous expression of molecular chaperone DnaK from Tetragenococcus halophilus on salinity 

adaptation of Escherichia coli. Journal of Bioscience and Bioengineering, 96, 129-133. 

Sugino M., Hibino T., Tanaka Y., Nii N., Takabe T. & Takabe T. (1999) Overexpression of DnaK from a 

halotolerant cyanobacterium Aphanothece halophytica acquires resistance to salt stress in transgenic 

tobacco plants. Plant Science, 146, 81-88. 

Thomsen L., Olsen J., Foster J. & Ingmer H. (2002) ClpP is involved in the stress response and degradation of 

misfolded proteins in Salmonella enterica serovar Typhimurium. Microbiology, 148, 2727-2733. 

Verma D.P.S. (1999) Osmotic stress tolerance in plant: Role of proline and sulfur metabolisms. In: Molecular 

responses to cold, drought, heat and salt stress (eds K. Shinozaki & K. Yamaguchi-Shinozaki), pp. 153-

168. R.G. Landes Company. 

Wang W., Vinocur B., Shoseyov O. & Altman A. (2004) Role of plant heat-shock proteins and molecular 

chaperones in the abiotic stress response. Trends in Plant Science, 9, 244-252. 

Wang Y.-C., Yang C.-P., Liu G.-F., Jiang J. & Wu J.-H. (2006) Generation and analysis of expressed sequence tags 

from a cDNA library of Tamarix androssowii. Plant Science, 170, 28-36. 

Weissenberger J., Dieckmann G., Gradinger R. & Spindler M. (1992) Sea ice: a cast technique to examine and 

analyze brine pockets and channel structure. Limnology and Oceanography, 37, 179-183. 

Weretilnyk E.A., Alexander K.J., Drebenstedt M., Snider J.D., Summers P.S. & Moffatt B.A. (2001) Maintaining 

methylation activities during salt stress. The involvement of adenosine kinase. Plant Physiology, 125, 856-

865. 

Wood Z.A., Schroder E., Robin Harris J. & Poole L.B. (2003) Structure, mechanism and regulation of 

peroxiredoxins. Trends in Biochemical Sciences, 28, 32-40. 

Zhang L., Ma X., Zhang Q., Ma C., Wang P., Sun Y., Zhao Y. et al. (2001) Expressed sequence tags from a NaCl-

treated Suaeda salsa cDNA library. Gene, 267, 193-200. 

 

 

 



 

 

82                                                                                                                                  Publication II 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

 

Publication III                                                                                                                                83 

 
 
 
 
 
 
 

Publication III 

Ice-binding proteins from sea ice diatoms (Bacillariophyceae) 

Michael Janech, Andreas Krell, Thomas Mock, Jae-Shin Kang and James Raymond 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

84                                                                                                                                Publication III 

 



 

 

Publication III                                                                                                                                85 

 



 

 

86                                                                                                                                Publication III 

 



 

 

Publication III                                                                                                                                87 

 



 

 

88                                                                                                                                Publication III 

 



 

 

Publication III                                                                                                                                89 

 



 

 

90                                                                                                                                Publication III 

 



 

 

Publication IV                                                                                                                                91 

 

 

 

Publication IV 

Regulation of proline metabolism under salt stress in the sea ice diatom 

Fragilariopsis cylindrus 

Andreas Krell, Dietmar Funck, Ina Plettner, Uwe John  

and Gerhard Dieckmann 



 

 

92                                                                                                                                Publication IV 

 

Regulation of proline metabolism under salt stress in the sea ice diatom 

Fragilariopsis cylindrus 

 

Authors: 

ANDR EAS KRELL1, DIETMAR FUNCK3, INA PLETTNER2, UWE JOHN1, GERHARD 

DIECKMANN1* 

 

 

Running title:  

salt stress acclimation in sea ice diatoms 
 

 

1 Alfred-Wegner-Institute for Polar and Marine Research 

  Am Handelshafen 12 

  27570 Bremerhaven, Germany 

 
2 Marine Botany 

  University of Bremen 

  28334 Bremen, Germany 

  present address: Research Centre Borstel 

  Leibniz-Center for Medicine and Biosciences 

  Parkallee 22 

  23845 Borstel, Germany 

 
3 Department of Plant Physiology and Biochemistry 

  University of Konstanz 

  78457 Konstanz, Germany 

  

 
* to whom correspondence should be addressed 

  Email: gdieckmann@awi-bremerhaven.de  



 

 

Publication IV                                                                                                                                93 

Abstract 
Fragilariopsis cylindrus, a bipolar psychrophilic and highly abundant diatom, experiences strong 

shifts of external salinity in its environment during the formation of sea ice. The effects of 

osmotic stress due to an increased salt concentration from 34 to 70 PSU alone and in 

combination with a temperature decrease from 0°C to -4°C, on the ana- and catabolic pathways 

of proline metabolism were investigated during a 20 day period. Expression levels of ∆1-

pyrroline-5-carboxylate synthase (P5CS) strongly decreased by a factor of 17.3, whereas copy 

numbers of ornithine δ-aminotransferase (δ-OAT) increased 7.6 fold. Transcript levels of ∆1-

pyrroline-5-carboxylate reductase (P5CR) and proline dehydrogenase (ProDH) were also slightly 

up-regulated by 2.5 and 2.9, respectively. This contrasts with findings in higher plants where an 

opposite regulation of P5CS and δ-OAT was observed and leads to the conclusion that under 

elevated external salinities the ornithine route is preferred to the glutamate pathway in F. 

cylindrus. Potentially due to a shortage in reduction equivalents, since photosynthetic quantum 

yield at photosystem II instantly dropped from 0.61 to 0.24, confirming a detrimental effect of 

elevated salt concentrations on the photosynthetic machinery. Salt stress proved to be the 

dominating stressor, an additional temperature decrease rather having ameliorating effects. 
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Introduction 

Sea ice is one of the most structuring features of polar ecosystems, with strong gradients of 

temperature, light, space and salinity through an ice floe (Eicken, 1992). Compared to freshwater 

ice, sea ice is not solid since dissolved constituents of sea water do not enter the ice crystal 

structure but are expelled as a highly concentrated brine solution into a network of channels and 

pores within the ice matrix (Weissenberger et al., 1992). Physicochemical processes within the 

brine channel system are primarily governed by the relationship between temperature and brine 

formation influencing chemical parameters (dissolved inorganic nutrients, dissolved gases, pH), 

space and light (Eicken, 2003, Papadimitriou et al., 2004). Environmental conditions in the ice 

are characterised by temperatures between –1.8 and –20°C and corresponding salinities ranging 

from 35 to 212 PSU (practical saliniy units) (Cox & Weeks, 1983). However, despite these harsh 

conditions sea ice is densely populated by micro-organisms, the most conspicuous of them being 

pennate diatoms (Günther & Dieckmann, 2001, and references therein). Fragilariopsis cylindrus 

is one of the dominating diatom species in polar realms thriving equally well in the water column 

and sea ice (Kang & Fryxell, 1992).  

Acclimation to changing osmotic conditions is a prerequisite for all cellular life. An altered 

external increase or decrease in the concentration of inorganic ions (primarily Na+ and Cl-) 

results in a flow of water across the semi permeable cell membrane and an influx or efflux of 

ions leading to a disturbance of cellular homeostasis.  

To counteract the negative effects of osmotic stress on metabolism, namely to restore the internal 

osmotic potential, plants accumulate organic osmolytes, synonymous with the term compatible 

solutes (Brown & Simpson, 1972). Compatible solutes are highly soluble, low molecular weight 

organic molecules without net charge at physiological pH. Therefore they can be accumulated in 

high concentrations without interfering with the cellular metabolism (Kirst & Wiencke, 1995, 

DasSarma & Arora, 2001, Chen & Murata, 2002). Among the compatible solutes proline appears 

to be the most widely distributed osmolyt accumulated under osmotic stress not only in higher 

plants but also in eubacteria, protozoa, marine invertebrates and algae, such as F. cylindrus 

(Kirst, 1990, Delauney & Verma, 1993, Erdmann & Hagemann, 2001). Recently, the ability of 
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osmolytes, especially proline to scavenge reactive oxygen species has been indicated (Hong et 

al., 2000, Reddy, Chaitanya & Vivekanandan,  2004, Rodriguez & Redman, 2005)  

In eukaryotes proline is synthesised from glutamate via ∆1-pyrroline-5-carboxylate (P5C) in two 

successive reductions catalysed by ∆1-pyrroline-5-carboxylate synthase (P5CS), a bifunctional 

enzyme encompassing prokaryotic gamma glutamyl kinase (GK, EC 2.7.2.11) and glutamyl 

phosphate reductase (GPR, EC 1.2.1.41) activity, and ∆1-pyrroline-5-carboxylate reductase 

(P5CR). The synthesis of proline via ornithine as a precursor is mediated by ornithine δ-

aminotransferase (δ-OAT, EC 2.6.1.13). Although an alternative pathway of transamination 

leading to ∆1-pyrroline-2-carboxylate exists, functional complementation of a defective E. coli 

mutant strongly indicated the use of the δ-OAT route (Delauney & Verma, 1993). Proline 

degradation is catalysed by the subsequent activity of two mitochondrial located enzymes proline 

dehydrogenase (ProDH, EC 1.5.99.8) and P5C dehydrogenase (P5CDH, EC 1.5.1.12). 

Proline is the major organic osmolyte in F. cylindrus besides betaine and 

dimethylsulfoniopropionate (DMSP) (Plettner, 2002). The regulation of proline synthesis with 

respect to time and intracellular concentration is of primary interest regarding an increase in 

external salinity during the incorporation of F. cylindrus cells into growing sea ice. Four cDNAs 

could be identified from a cold stress (Mock et al., 2005) and salt stress (Krell et al. unpublished) 

induced Expressed Sequence Tag (EST) library encoding the most relevant enzymes during 

proline synthesis and degradation: δ-OAT, P5CS, P5CR and ProDH.  

This investigation and experimental set up was designed to examine the relationship between 

intracellular proline concentrations and expression levels of the genes (P5CS, P5CR, δ-OAT, 

ProDH) expressed under salt stress conditions; comparable to natural conditions when F. 

cylindrus is enclosed into developing sea ice. The mRNA copy numbers of these genes were 

determined with Q-PCR techniques along with intracellular proline concentrations. The aim was 

to determine if proline is synthesised primarily via the glutamate or ornithine pathway, or which 

environmental factor leads to the preference of either one. Measurements of photosynthetic 

activity are included to monitor the energy availability. This study also differentiates between the 
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impact of salinity as a single stress factor as well as a combination of salinity and decreased 

temperature on the regulation of proline metabolism.  

 

Materials and Methods 

Experimental design and culture conditions 

Fragilariopsis cylindrus was isolated from Antarctic sea ice during a “Polarstern” expedition 

(ANT XVI/3) in the eastern Weddell Sea in 1999. Single cells were picked to obtain several 

clones of F. cylindrus. Stock cultures of F. cylindrus were grown in Antarctic seawater enriched 

with f/2 nutrients after (Guillard & Ryther, 1962) at a salinity of 33.6 PSU in 5l batch cultures. 

F. cylindrus was kept in a culture room at 0°C (± 0.2°C) under continuous illumination with 

white fluorescent light (Osram Biolux, Germany) at a photon flux density of 25 µmol photons m-

2 s-1. Bubbling with sterile filtered air and gentle stirring with magnetic stirrers ensured sufficient 

CO2 supply and mixing. Cultures of F. cylindrus were handled under strict sterile conditions; 

potential bacterial contamination was strongly reduced since pre-cultures were treated with a 

combination of penicillin (100 µg ml-1) and streptomycin (25 µg ml-1).  

Three independently grown stock-cultures were used for the following experimental set-up:  a) 

cultures kept at standard salinity and temperature conditions as a control; and b) two different 

treatments with cultures exposed to either an increased salinity of 70 PSU at 0°C (70/0) or 

exposed to increased salinity (70 PSU) combined with a decreased cultivation temperature of –

4°C (70/-4). A temperature of -4°C corresponds to the brine salinity of 70 PSU (Assur, 1958). 

Each control / treatment consists of three replicate batch cultures, each of which was inoculated 

from one of the 3 independently grown stock cultures.  
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Shock treatment 

The shock treatment started during the early exponential phase by direct addition of sea salt 

(Sigma) (approx. 44 g l-1) to the cultures up to a final salinity of 70 PSU. The added sea salt was 

completely dissolved within 15 min. The simultaneously cold treated cultures were transferred to 

a Light-Thermostat (Rumed Model 1301, Rubarth GmbH Hannover, Germany) at –4°C.  

Sub-samples for the various parameters were taken one hour before and 4h, 24h, 48h, 288h (12d) 

and finally 480h (20d) after salt addition.  

Determination of cell concentration and growth rate 

Cell numbers were determined in triplicate runs using a Multisizer 3 (Beckman Coulter, 

Germany) particle counter equipped with a 100 µm aperture capillary; using a size range from 

2.6 to 9.8 µm. Specific growth rate (µ) was calculated according to the formula: 

µ = [ln (C1) – ln (C0)]/ [(t1 – t0)/24] 

where C1 denotes cell concentration at time t1 and C0 is the cell number at time t0. 

Proline analysis 

Proline concentration was determined spectrophotometrically with ninhydrine according to the 

method described by (Bates, Waldren & Teare, 1973) modified by (Nothnagel, 1995). 

PAM measurements 

Variable chlorophyll a fluorescence, measured with Pulse Amplitude Modulated (PAM) 

fluorometry, was applied as a proxy to monitor physiological integrity of the photosynthetic 

apparatus. In vivo quantum yield (ΦPSII) was determined in each culture using a Xenon-PAM-

Fluorometer (WALZ GmbH Germany) equipped with a temperature control unit and a magnetic 

stirrer. In vivo quantum yield was calculated from fluorescence readings of illuminated samples 

as:  

ΦPSII = Fm’ – F t/ Fm’ 

where Fm’ and F t denote the maximum and minimum fluorescence in an illuminated sample 

(Maxwell & Johnson, 2000). 
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RNA extraction and purification 

Total RNA extraction was carried out with a RNeasy Plant Mini Kit (Qiagen Hilden Germany) 

according to the manufacturers instructions. Cell lysis was improved by shaking for 100s on a 

Mini-Beatbeater (Biospec Products USA). After applying samples to the QIAshredder column 

they were centrifuged for 10 min at ~17,900 x g to pellet cell debris and polysaccharides. After 

elution of RNA a DNase treatment (Qiagen Hilden Germany) (27 Kunitz units 100µl-1) was 

performed in liquid for 1h at 30°C, followed by a second clean-up step including an on column 

DNase treatment. RNA was separated on an Agilent 2100 Bioanalyzer (Agilent Germany) to 

check for integrity of RNA. Concentrations were determined using NanoDrop (PeqLab 

Germany).  

Reverse transcription, primer design and Q-PCR conditions 

Complementary DNA was generated with the Omniscript RT kit (Qiagen Hilden Germany) 

utilising anchored oligo(dT)20 primer (Invitrogen) at a final concentration of 25ng µl-1. To verify 

the efficiency of reverse transcription and to get a handle for the correction of different 

efficiencies the reaction mix was spiked with artificial RNA of two genes of approx. 1.8kb in 

size (MA and NSP) from Pieris rapae (cabbage white butterfly, Lepidoptera: Pieridae). Since 

hardly any insects are present in the marine environment this constitutes an ideal internal 

reference. MA was added at a final concentration of 116 pg µl-1 and NSP at 10 fg µl-1 spanning 4 

orders of magnitude. Reverse transcription of 500ng total RNA and the added spike RNA was 

carried out at 42°C for 1h followed by an inactivation cycle at 85°C for 5 min. For each time 

point and treatment one reverse transcription reaction mix was not supplemented with reverse 

transcriptase to serve as a control for DNA contamination. 

All primers (Table 1) were designed using the Primer Express 2.0.0 (Applied Biosystems 

Germany) software and synthesised from OPERON Biotechnologies Germany. For each primer 

pair, the reliability of the Q-PCR was demonstrated by amplification of the purified target 

sequence in a concentration series spanning six orders of magnitude. Linear regression analysis 

between the target concentration and the Ct value yielded correlation coefficients close to 1 for 
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all primer pairs (Table 2) proving the efficiency of the PCR reaction. The control gene MA was 

constantly detected in all samples at a Ct value of 11.4 (±0.28 n=50), the second control gene 

NSP at a Ct of 33.9 (±1.03 n=44); both values indicative of a consistent efficiency of the reverse 

transcription reaction for high and low copy number genes. 

For Q-PCR, 5µl of a 10-fold diluted RT reaction mix was added to 15µl of a PCR mixture. 

Instead of using the recommended 2x Sybr Green PCR Master Mix (Applied Biosystems) 

dilution, we used a 2.5-fold master mix dilution, i.e. 8µl instead of 10µl per reaction. Each 

primer was added at a concentration of 50 to 500nM depending on optimised reaction efficiency. 

Cycle parameters were as follows: initial denaturation 95°C/10min, followed by 40 cycles of 

95°C/15sec and 59°C/1min. Finally a dissociation step was carried out to check if a single 

product was amplified and for primer dimers. 

Data analysis 

Threshold cycle (Ct) values, slope of the standard curve and correlation were calculated with the 

Sequence Detection Software 1.2.3 (Applied Biosystems Germany). One replicate was removed 

from the experimental data when the Ct value differed more than 0.3 from the most similar 

parallel of the same sampling point. Efficiency of the PCR reaction was calculated from the 

standard curves according to the formula: E = 10-slope –1 where slope is determined from the 

linear regression of Log (target concentration) versus Ct. 
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Results 

Salt shock arrests growth for 12 days 

All results originate from 3 different 5l batch cultures for each set-up (control, 70/0, 70/-4). All 

nine cultures showed an identical growth without lag phase within the 10 days before stress 

exposition (Figure 1).  

 

 

At time point 0 (70/0 and 70/-4 exposed to stress conditions) the control cultures were 

subsequently maintained as semi-continuous batch cultures to prevent them from reaching the 

stationary growth phase to exclude undesired effects due to physiological changes. Control 

cultures were kept at a nearly constant cell density around 1.3 x 106 cells ml-1 representing a 

constant growth rate of µ=0.325 over the course of the experiment. Due to cell death caused by 

the salt shock, cell density of both treatments decreased by approx. 105 cells ml-1 and remained 

stationary for about 12 days. Subsequently both shock treatments regained positive growth albeit 

Figure 1: Growth kinetics of F. cylindrus cultures. Nine cultures were grown in f/2 medium at 0°C, 34 PSU 

and 25 µmol photons m-2 s-1 until day 0. Conditions for three cultures remained unchanged and were further 

on kept as semi-continuous cultures (■), in three cultures the salinity was increased to 70 PSU (●), in the 

remaining three cultures temperature was additionally decreased to -4°C (▲). 
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at a lowered growth rate of µ=0.06 compared to the pre-shock phase of the experiment. 

However, no difference in growth was observed between both treatments – 70/0 and 70/-4 - after 

stress exposition. 

Photosynthesis is severely inhibited but recovers steadily after salt shock 

In the control cultures in vivo quantum yield (ΦPSII) remained constant at 0.61 ± 0.015 during the 

course of the experiment (Figure 2). In the 70/0 shock treatment, average ΦPSII values instantly 

dropped from 0.59 before treatment to 0.24 within one hour after the salt addition. During the 

next 8 hours there was no change in ΦPSII, but within the first 24 hours ΦPSII increased up to 0.30 

and after 48 hours it reached 0.37.  

 

Afterwards photosynthesis recovered slowly but steadily as shown by increasing ΦPSII, yet did 

not attain values as before the shock treatment and as the control cultures. The 70/-4 cultures 

essentially showed a similar reaction, but the initial drop was even more pronounced (0.18 after 

one hour) and the recovery was retarded compared to the 70/0 treatment. Both shock treated 

cultures regained quantum yield values close to the non-stressed cultures towards the end of the 

experiment. 

Figure 2: Changes of 
the photosynthetic 
quantum yield at PS 
II during the course 
of the experiment; 
(■) control cultures, 
(●) 70PSU/0°C 
cultures, (▲) 
70PSU/-4°C cultures 
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Proline concentration increases several fold during acclimation to high 

salinity 

Before stress exposition F. cylindrus had intracellular proline concentrations of 3.0±0.48 fmol 

cell-1. Whereas the concentrations of the control cultures remained constant, the cells of both 

treatments started to accumulate proline eight hours after stress exposition in both treatments 

(Figure 3). After 24 hours the intracellular proline concentration in the treated cultures had 

already doubled compared to the control.  

 

Furtheron, the cultures exposed to lower temperature kept constantly accumulating proline up to 

12.9±1.29 fmol cell-1 at day 12 and 13.6±1.41 fmol cell-1 at day 20. The unchanged intracellular 

proline concentration within the last two sampling points might be due to regained growth since 

day 12 (Figure 1). However, proline concentrations of F. cylindrus 70/0 cultures varied: While 

increasing simultaneously with the 70/-4 treatment to concentrations of 8.8±0.09 fmol cell-1 on 

day four, they decreased to 6.2 fmol cell-1 on days 8 and 12 after stress exposition. At the end of 

the experiment on day 20 a concentration slightly exceeding the 70/-4 cultures of  15.3±0.47 

fmol cell-1 was measured; which is a 4.5 fold increase compared to the control. 

Figure 3: Temporal 
development of 
intracellular proline 
concentrations (■) 
control cultures, (●) 
70PSU/0°C cultures, 
(▲) 70PSU/-4°C 
cultures 
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δ-OAT rather than P5CS expression is induced by salt shock  

To investigate the genetic mechanisms underlying proline accumulation in salt stressed cells of 

F. cylindrus, we analysed the transcript levels of the key enzymes of proline metabolism, P5CS, 

δ-OAT, P5CR and ProDH, by Q-PCR. δ-OAT, P5CR and ProDH showed a similar expression 

pattern during the experiment in both salt shock treatments (Figure 4b-d). An increase in mRNA 

levels of theses genes could be detected reaching its maximum 24h after the beginning of the 

stress exposition. After this initial induction, mRNA levels of P5CR and δ-OAT constantly 

declined in both treated cultures returning almost to the values of the control at the end of the 

experiment on day 20. However, mRNA levels in the cold treated cultures declined more slowly, 

reflecting a delay in the recovery. A significant correlation in expression between P5CR and δ-

OAT was observed. ProDH expression pattern was different: mRNA levels of the cold treated 

cultures remained strongly up-regulated and the expression level in the 70/0 treatment showed an 

intermediate decline but increased again at the end of the experiment. Showing a positive 

correlation between the genetic expression level of ProDH and the measured intracellular proline 

concentration.  

In contrast to δ-OAT and P5CR transcript levels of P5CS and actin strongly decreased during the 

first hours after stress exposition, reaching their lowest level at timepoints 24h and 48h, 

respectively (Figures 4a, 5b). However, the expression level of actin in the 70/-4 was less 

affected compared to the 70/0 and recovered more rapidly, contrasting the observations made 

regarding the up-regulated genes and even P5CS. This is consistent with the less affected growth 

of the additionally cold treated cultures as described above (Figure 1). At day 12 after the shock 

treatment actin mRNA levels regained control levels.  
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Surprisingly, psbA showed the least variation in its expression level over the course of the 

experiment (Figure 5a). Variations of the control and the 70/-4 cultures were within the standard 

error and also no significant difference between the treatments was observed. Only a slight 

decrease in the 70/0 treatment at 48h was significant. However, this strongly contrasts to the 

inhibition of photosynthetic electron transport revealed by the measurements of ΦPSII (Figure 2).  

To summarise: the maximum alteration in the expression level of the observed genes occurred 

within the first 24h after stress exposition, only P5CS and psbA reached their maximum at 48h 

(Table 3). P5CS and actine showed the highest magnitude in changes of the expression level of 

all genes analysed with a 17.3 and 29.7 fold decrease, respectively. While the adjustment phase 

Figure 4: Quantification of transcript levels of the genes a) P5CS, b) δ-OAT, c) P5CR and d) ProDH during the 
course of the experiment as revealed by Q-PCR analyses. mRNA copy-numbers were calculated from standard 
curves of DNA templates and normalised to ng of total RNA extracted. (■) control cultures, (●) 70PSU/0°C 
cultures, (▲) 70PSU/-4°C cultures 
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in terms of transcript levels of the genes analysed in this study was completed within 24 to 48 h, 

it took 12 days until the adjustment became effective in terms of positive cell growth.  

 

 

Discussion 

It is well known that higher plants as well as diatoms accumulate the imino acid proline under 

osmotic stress. The regulation of proline synthesis and degradation upon osmotic stress and relief 

from it has been extensively studied in higher plants. However, the regulatory mechanisms 

involved in the proline metabolism in diatoms have not been investigated at the molecular level 

so far.  

To our knowledge this is one of the first expression analyses involving the use of an absolute 

quantitative instead of a relative quantification Q-PCR method in diatoms. RNA yield and 

quality as measured with the Agilent Bioanalyzer lab chip was very similar for all sampling 

points. The constant detection of the exogenous control genes MA and NSP verified a consistent 

efficiency of the reverse transcription reaction, therefore it can be concluded that expression data 

gained for the target genes were not biased by the reverse transcription step. The strong 

variability of actin transcript levels demonstrates that methods employing endogenous reference 

genes for the analyses of expression changes are very difficult to carry out and that the reference 

genes must be selected very carefully.  

Figure 5: Evaluation of transcript levels of the genes a) psbA and b) actin during the course of the experiment as 
revealed by Q-PCR analyses. mRNA copy-numbers are normalised to ng of total RNA extracted  (■) control 
cultures, (●) 70PSU/0°C cultures, (▲) 70PSU/-4°C cultures 
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Increasing salinity from 33.6 to 70 PSU proved to be a severe, but sub-lethal stress for F. 

cylindrus as manifested by a strong drop in photosynthesis and growth arrest for12 days. Both 

salt shock treatments - at 0°C as well as at -4°C - induced a strong increase in intracellular 

proline concentrations. At -4°C proline increased more rapidly than at 0°C, whereas 

photosynthesis recovered faster at 0°C. The constantly increasing intracellular proline 

concentrations (esp. in 70/-4 cultures) as well as the steady recovery of ΦPSII reflected the 

ongoing acclimatisation process starting within the first 24 h after the beginning of the stress 

exposition. The restart of growth after 12 days could be seen as a measure for the success of the 

acclimation process as has been shown previously with other species (Plettner, 2002). In the 70/0 

cultures the intracellular proline concentration remained constant on day 7 and 12 corresponding 

with ProDH gene expression levels, but not reflected by physiological data (cell numbers, 

recovery of ΦPSII). However, the final intracellular proline concentration of ~14 fmol cell-1 was 

the same as measured in preliminary experiments (data not shown). Faster down regulation of 

P5CR expression after the initial peak in the 70/0 cultures might be responsible for a slower rate 

of proline accumulation during this phase (Figure 4c). Lower proline concentrations in the 70/0 

cultures are correlated to higher and lower transcript levels of P5CS and ProDH, respectively, 

supporting the hypothesis that expression of these genes is regulated by proline.  

Under salt stress conditions P5CS mRNA levels in F. cylindrus were clearly down-regulated and 

remained low throughout the experiment (Figure 6). This contrasts with several observations in 

higher plants, where a strong accumulation or at least an unchanged level of P5CS transcripts 

was determined after exposure to osmotic stress (Peng, Lu & Verma, 1996, Igarashi et al., 1997; 

Hare, Cress & van Staden 1999). The strong down-regulation of P5CS transcript levels indicates 

feedback inhibition of P5CS expression by proline, active even after prolonged presence of high 

salt concentrations (Figure 4a). Additionally, sequence alignment between diatom and higher 

plant P5CS proteins revealed conservation of a phenylalanine residue, that was shown to mediate 

feedback-inhibition by proline in the plant enzymes (Hong et al., 2000). Both observations 

support the conclusion that P5CS is not responsible for proline accumulation under salt stress in 

diatoms.  
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In higher plants proline accumulation during stress was linearly correlated with a strong decline 

in ProDH transcript levels (Peng et al., 1996, Miller et al., 2005), whereas the results of this 

study show the opposite tendency (Figure 4d). We observed a positive correlation between 

proline levels and ProDH gene expression, as was observed in plants treated with proline in the 

absence of salt or osmotic stress (Kiyosue et al., 1996, Verbruggen et al., 1996). Thus, an 

autoregulatory induction of ProDH expression by proline seems to be present in plants and 

diatoms, whereas stress dependent inhibition of proline degradation is absent in diatoms or acts 

at the posttranscriptional level. Obviously, F. cylindrus does not seem to be able to take up 

externally applied L-proline under standard conditions and replete nutrients, since no effect on 

Figure 6: Pathways of proline metabolism using either glutamate or ornithine as a substrate, including those 
enzymes investigated in the present study:  P5CS, δ-OAT, P5CR and ProDH. Thick arrows indicate the initial 
changes in transcript levels after salt shock treatment. 
 



 

 

108                                                                                                                              Publication IV 

the regulation of either of the investigated genes was observed (data not shown), which might 

have elucidated the cause and effect. 

The inductive effect of proline is supported by the constant elevated copy-numbers of ProDH 

after the shock treatment positively correlated to proline concentration, while most other genes 

investigated in this study showed a transient regulation. It remains to be analysed, if ProDH 

activity is regulated at the mRNA level in diatoms as was observed in higher plants, or if 

additional regulatory mechanisms exist. Since an overshot in free proline content might have 

deleterious effects (Hellmann et al., 2000, Mani et al., 2002, Nanjo et al., 2003) a tight 

regulation and therefore an increase in ProDH transcript levels might be necessary. 

The down-regulation of P5CS transcript levels opposed by an up-regulation of δ-OAT and P5CR 

strongly argues for proline synthesis via the ornithine pathway in salt shocked diatoms. This is 

again in contrast to results obtained from studies of higher plants, where P5CS seems to be the 

predominant enzyme for proline synthesis, while up-regulation of δ-OAT by salt stress was only 

observed in young Arabidopsis seedlings (Delauny, 1993; Verbruggen, 1995; Roosens et al. 

1998)  

The possibility of the existence of a differentially regulated P5CS isoform in diatoms was also 

considered, since all known plant genomes contain at least two P5CS genes (Strizhov et al., 

1997, Ginzberg et al., 1998). However, the search with degenerated primers and cloning of the 

P5CS gene in F. cylindrus cDNA libraries and genomic DNA revealed only one copy of this 

gene (data not shown). This result is supported by a blast search of P5CS against the complete 

genome of the centric diatom Thalassiosira pseudonana, equally retrieving only one copy. This 

may imply a potentially different process of regulation in diatoms. Another difference to higher 

plants is the subcellular localization of P5CS, which is cytosolic in higher plants (Kavi Kishor et 

al., 2005). The localisation of P5CS in T. pseudonana and probably also in F. cylindrus is very 

likely to be in the mitochondria (targetp v1.1, mTP 0.797). δ-OAT is predicted to be 

mitochondrial in both diatoms and higher plants. Copy number is also differing for ProDH, of 

which 2 isoforms were identified in Medicago sativa (Miller et al., 2005), whereas again only 

one copy was found in T. pseudonana. In contrast to a confirmed mitochondrial localisation in 
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higher plants (Kavi Kishor et al., 2005) the localisation of ProDH in T. pseudonana is rather 

ambiguous (targetp v1.1, cTP 0.620, mTP 0.113 other 0.449). These findings suggest that the 

enzymatic equipment and the compartmentalization of proline biosynthesis and degradation is 

fundamentally different in diatoms and higher plants, potentially reflecting the different 

evolutionary history of organelles in both taxa. Additionally, the extensive search for putative 

isoforms supports the conception, that the genes analysed in this investigation enclose all steps 

relevant for proline accumulation in F. cylindrus. 

Energetic aspects of proline synthesis might play a role in the preference of either the glutamate 

or ornithine route to proline. Although both routes involve the consumption of one molecule 

ATP and two molecules of NADPH for the formation of one molecule of proline from glutamate 

(Figure 6), ornithine might also be derived via the urea cycle from arginine originating from 

protein degradation. In the latter case, proline synthesis from ornithine would require only one 

molecule of NADPH consumed by P5CR (Figure 6) (Hare & Cress, 1997). The presence of a 

complete urea cycle in diatoms was recently demonstrated at the molecular level (Armbrust et 

al., 2004). Under normal growth conditions, expression of P5CS was high and δ-OAT 

expression was low, indicating that proline was synthesised via P5CS from glutamate, while 

ornithine was used for the synthesis of arginine. Similar amounts of proline and arginine would 

be consumed for protein synthesis during growth. Our results show that upon salt shock the 

growth of F. cylindrus is halted for a considerable period. During this time arginine utilisation is 

reduced, and hence ornithine is directed to the synthesis of proline for osmotic adjustment. The 

strong inhibition of photosynthesis and hence decline in reduction equivalents by salt shock 

might force diatoms to employ energy saving routes of acclimation. 

The strong decline in ΦPSII (Figure 2) suggests a devastating effect of elevated salt concentrations 

on the photosynthetic apparatus. Measurements of ΦPSII in cold shocked (+5°C to -1.8°C) 

cultures of F. cylindrus caused only a minor reduction from 0.61 to 0.53 (Mock & Valentin, 

2004) recovering to 0.60 within 5 days, opposed to a decrease from 0.59 to 0.24 (70/0) and 0.18 

(70/-4) in this study, respectively. These results suggest that under the conditions employed in 

this investigation, linear electron transport and thus the photosynthetic production of reduction 
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equivalents strongly declined and was restored only slowly during acclimation. The unchanged 

levels of psbA transcripts (Figure 5a) indicate, that photodamage to the D1 protein and repair 

were not the limiting factors for photosynthesis in salt shocked diatoms. This might be due to a 

rather stabilising effect of high salt concentrations on the psbA transcript as observed by 

(Allakhverdiev et al., 2002). A similar complete inhibition of linear electron transport was 

observed by (Cruz et al., 2001) in Clamydomonas reinhardtii after salt shock. They attributed the 

inhibition to the shrinkage of luminal space hindering the docking of plastocyanin to PS I or 

cytochrome c6. An observation which is supported by the findings of (Allakhverdiev et al., 2000) 

who equally asserted the inactivation of PS I and II in salt stressed cyanobacteria to a water 

deficit in the cytoplasm. This could explain the slow recovery of ΦPSII since in our study the 

magnitude of recovery was correlated to the concentration of proline, which is able to restore the 

internal water potential and hence luminal space.  

These results suggest that under such conditions as employed in this investigation, the contingent 

of reduction equivalents at least during the first period after the initial salt shock strongly 

declined and only slowly regained its function. Thus, the ornithine pathway might be preferred 

under such circumstances of energy deficiency and in turn lead to an elevated expression of δ-

OAT.  

Conclusion 

The accumulation of proline as a mean to counteract the negative effects of osmotic stress has 

been maintained throughout evolution in bacteria, higher plants, and in diatoms. However, there 

seem to be differences regarding the number of isoforms of the genes and subcellular localisation 

of the proteins involved in the proline metabolism. Additionally, the mechanisms regulating 

proline accumulation in response to osmotic stress at the transcriptional level seem to differ 

between higher plants and diatoms. High external salt concentrations lead to an accumulation of 

proline in F. cylindrus, primarily synthesised via the ornithine route. Proline accumulation 

caused a feedback inhibition of P5CS and induction of ProDH, possibly to overcome a shortage 

in reduction equivalents caused by a severe inhibition of linear electron transport. Lowering the 
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temperature parallel to the salt shock did not alter the primary response, although it was initially 

beneficial for survival, potentially by slowing down deleterious processes. At later stages, low 

temperature induced a more steady increase in proline concentration and acclimation was equally 

successful as measured by regained growth. This investigation furthermore shows that if F. 

cylindrus is entrapped into newly forming sea ice, experiencing increased external salinities and 

decreased temperatures, growth is halted and only regained after a considerable adaptation phase 

during which proline is accumulated. A further dissection of the regulatory mechanisms, 

including post-transcriptional regulation of the proline metabolism in heterokonts as well as an 

understanding of the signal transduction pathways mediating salt stress responses would be of 

genuine importance for our understanding of the survival strategies of one of the most important 

primary producers in polar oceans.  
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Table 1: Genes investigated during this study and sequences of the primers used to amplify target genes 

by Q-PCR 

 

 

 

 

 

 

 

 

 

 

NCBI 
Accession 
no. 

Function 
Primer sequence 
5´ → 3´ 

Ampli
con 
size 
(bp) 

Best hit 
Signifi
cance 

CF269358 
∆
1-pyrroline-5-

carboxylate 
synthetase 

fw:  
GTGCAATGCAATGGAATCGT 
rev:  
TCTGAGCAGCAACTCCGTTACTAA 

66 AAB67875 
7e-40 

 

DR026040 
∆
1-pyrroline-5-

carboxylate 
reductase 

fw:  
CTCCGCCCTCTTGTGAATGA 
rev:  
CCACCCATTTCAAGCGATCT 

61 
ZP_003575

25 
5e-47 

 

CF269667 
δ-Ornithin 
aminotransferase 

fw:  
GGTAGGAAATTCGGCCGTAGA 
rev:  
GATTGATTCGGACAGCGTTTAGA 

65 AAH77314  2e-47 

DR026487 
Proline 
dehydrogenase  

fw:  
GAAGTTGATGAGGTGATGCCATAC 
rev:  
GCACCACCAATAGCACTGTTTTC 

65 
 

A47302 
4e-44 

 

DR026674 Actin 

fw:  
ATGAAGATATCGCTGCCCTTGT 
rev:  
CCAGCGAAACCGGCTTT 

64 CAA42559 
8e-125 

 

CF269420 psbA 

fw:  
AGAACCACCAAATACACCAGCAA 
rev:  
TCCAAGCTGAGCACAACATCTT 

71 
AAM6206

9 
1e-130 

 

unpublished MA control 

fw:  
TCGGTTGACAGATACCTTAAAGGAA 
rev:  
TCAAAGGTGACGTTCGAGTTCAT 

100   

AY425622 NSP control 

fw:  
ACGATGCCTTCAGAGCTACCTT 
rev:  
TACGCATCAAGCGTTTGGAA 

100   
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Table 2: Efficiency of the Q-PCR reaction derived from standard curves using PCR products of the 

corresponding plasmid as a template. 

Gen slope Efficiency r2 

∆1-pyrroline-5-carboxylate synthetase -3.472 0.94 0.9979 
∆1-pyrroline-5-carboxylate reductase -3.56 0.91 0.9991  

δ-Ornithin aminotransferase -3.98 0.78 0.9938 
Proline dehydrogenase -3.428 0.96 0.9987 

Actin -3.666 0.87 0.9984 
psbA -3.38 0.98 0.9989 

MA control -3.588 0.90 0.9979 
NSP control -3.634 0.88 0.9981 
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Table 3: Maximum changes in the expression level compared to the mean of the control and time point 

when it occurred. 

Gen 70PSU/0°C 70PSU/-4°C 

 fold change time (h) fold change time (h) 

∆1-pyrroline-5-carboxylate 
synthetase 

-17.26 48 -15.37 48 

∆1-pyrroline-5-carboxylate 
reductase 

2.5 24 2.7 48 

δ-Ornithin aminotransferase 7.55 24 8.93 24 
Proline dehydrogenase 2.88 24 3.21 24 

Actin -29.71 24 -20.67 24 
psbA -1.76 48 -1.45 48 
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