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A method for systematically deriving simple nonlinear dynamical models from ice-core data is
proposed. It offers a tool to integrate models and theories with paleoclimatic data. The method is
based on the unscented Kalman filter, a nonlinear extension of the conventional Kalman filter. Here,
we adopt the abstract conceptual model of stochastically driven motion in a potential that allows
for two distinctly different states. The parameters of the model, that is, the shape of the potential
and the noise level are estimated from a North Greenland ice-core record. For the glacial period
from 70 to 20 ky before present, a potential is derived that is asymmetric and almost degenerate.
There is a deep well corresponding to a cold stadial state and a very shallow well corresponding to
a warm interstadial state.

PACS numbers: 92.70.Aa, 05.45.Tp

I. INTRODUCTION

The subject of past and future abrupt climate changes
has been extensively discussed in recent years (e. g., [1]).
In particular, one seeks to understand the abrupt climate
transitions between cold stadials and warm interstadials
during the last glacial period, the so-called Dansgaard-
Oeschger (DO) events [2]. Their origin is still contro-
versial; it is not at all obvious which part of the earth’s
climate system is responsible for abrupt changes. Some
attribute them to a temporary collapse and resumption
of the Atlantic meridional overturning cell [3]. Other hy-
potheses refer to internal oscillations of the atmosphere-
ocean-cryosphere system [4–7] or external forcing mech-
anisms [8, 9].

Besides the work with relatively complex numerical
models, it was tried to reduce the system to low-order,
box, and conceptual models. Often a bistable nonlinear
system has been assumed in which shifts between the
two distinctly different states are triggered randomly by
stochastic forcing [10, 11]. Stochastic resonance [3, 12–
14] may or may not play a role in such a model.

Here, we follow a complementary approach in deriving
a dynamical model purely from the data. The method
is based on unscented Kalman filtering, a nonlinear ex-
tension of conventional Kalman filtering. This technique
allows to consistently estimate parameters in determinis-
tic and stochastic nonlinear models. Such methodology
has been applied successfully in engineering and robotics
[15, 16] as well as the nonlinear dynamics community
[17, 18] but has not yet been adopted in paleoclimatol-
ogy. In the present study, we apply this method to de-
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termine parameters within the model setting of nonlinear
stochastically driven motion in a potential. This model
is quite abstract and does not refer to a particular physi-
cal mechanism. We focus on the methodology that could
also be used for parameter estimation in more physically
motivated low-order models.

II. ICE-CORE DATA

The present study is based on the record of δ18O as
a proxy for Northern Hemisphere temperatures from the
North Greenland Ice Core Project (NGRIP) ice core cov-
ering the last 120 ky (1 ky = 1000 years) [19]. When look-
ing at the whole record extending from the present to the
last interglacial period the data are heavily nonstationary
with switches between interglacial, glacial, and present-
day climate. In order to focus on the DO oscillations, we
restrict our analysis to the last glacial period. We actu-
ally use the record for the time period from 70 to 20 ky
before present (Fig. 1). It appears reasonable to assume
that the data are stationary for that time span. The
mean for that period is −42.13 permille; it is removed
from the data set prior to the analysis as the dynamical
model is formulated as an anomaly model. The sampling
interval of the data is δt = 0.05 ky resulting in 1000 data
points used for the analysis.

The ice-core data are subject to some uncertainties.
The instrumental measurement error is very small com-
pared to the variance of the data [19]. However, the in-
terpretation of the δ18O values as temperatures is not one
to one; other climatological aspects such as precipitation
may also be reflected in the isotope record. Moreover,
there might be inaccuracies in the age model due to un-
even layers as deeper ice is more compressed.
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FIG. 1: δ
18O record from the NGRIP ice core during the last

glacial period.

III. NONLINEARITY IN THE ICE-CORE DATA

In order to assess the level of nonlinearity and make
a case for nonlinear modeling of the ice-core data we
first perform a test for nonlinearity using the method
of surrogate time series. We actually employ a refined
procedure [20] which tests against the null hypothesis
of a nonlinearly rescaled Gaussian linear stochastic pro-
cess rather than just a Gaussian linear stochastic pro-
cess. The generated surrogate time series have both the
same power spectrum and the same probability distri-
bution as the original data. This technique yields a
stronger test for genuine nonlinear structure (and not
just non-Gaussianity) than earlier methods which suffer
from higher rates of spurious detection of nonlinearity.
As test statistic for measuring nonlinearity we use the
mean absolute one-step prediction error of a locally con-
stant (analogue) predictor. The predictor is built in time-
delay space of dimension 3, comprising the current ob-
servation and the previous two observations; it is based
on 50 nearest neighbors with respect to the Euclidian
norm. Figure 2a shows the distribution of mean abso-
lute prediction error estimated from 10000 surrogate time
series together with the prediction error in the ice-core
data. There is very strong evidence for nonlinearity in
the ice-core record. The prediction error in the ice-core
data is smaller than in any of the surrogates; the null
hypothesis can be rejected at any significance level re-
solved with 10000 realizations. However, the reduction in
prediction error compared to the surrogates is relatively
moderate (about 8% on the mean of the surrogate dis-
tribution). Thus, nonlinear structure and determinism
are weak. The ice-core record has a strongly stochastic
character; we expect a high dynamical noise level when
modeling it.

The surrogate data test for nonlinearity is most reliable
for stationary time series; the effect of non-stationarities
on the properties of the test is hard to quantify. In order
to reduce the mild nonstationarity present in the ice-
core data we apply the same nonlinearity test detailed
above also to the one-step increment time series rather
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FIG. 2: (a) Distribution of mean absolute prediction error as
estimated from 10000 surrogate time series. Dashed vertical
line gives the mean value of the distribution; the two dotted
vertical lines indicate one standard deviation. Solid vertical
line gives the prediction error in the ice-core time series. See
text for explanation. (b) As (a), but for the one-step incre-
ment time series.

than the ice-core record itself. The results are given in
Fig. 2b. Again, nonlinearity can be detected at any sig-
nificance level resolved with 10000 surrogate time series.
The nonlinearity in the increment time series is weaker
than in the original record as one expects as the noise
level in the increment time series is higher than in the
time series itself.

IV. DYNAMICAL MODEL

It has been argued that abrupt paleoclimatic changes
might be related to a shift between two distinctly dif-
ferent states in a stochastically driven nonlinear system
(e. g., [3, 14]). Similar arguments have been made with
regard to possible climate changes in the future. In the
present study, we adopt the simple conceptual model of
stochastically driven motion in a one-dimensional po-
tential landscape. The dynamics are governed by the



stochastic differential equation

ż = −dU

dz
+ ση. (1)

The variable z refers to a mean Northern Hemisphere
temperature and is here identified with the isotope
record. The deterministic drift is given by a potential
that is assumed to be of the form

U(z) = a4z
4 + a3z

3 + a2z
2 + a1z (2)

with free parameters {ai}4

i=1 that are to be determined.
This ansatz for the potential may be regarded as the sim-
plest model that possibly allows for two distinct stable
states separated by a potential barrier. The parameters
are readily interpretable: a4 determines the width of the
potential, a2 influences the height of the potential barrier
(if any), whereas a3 and a1 control the degree of asymme-
try in the location and depth of the two potential wells. η
denotes a Gaussian white noise with zero mean and unit
variance; σ is the standard deviation of the stochastic
forcing.

V. MODEL ESTIMATION FROM DATA

A. The unscented Kalman filter

The unscented Kalman filter (UKF) is a nonlinear ex-
tension of the conventional Kalman filter [15]. It offers
a flexible and powerful tool for recursive estimation of
unobserved states and parameters in nonlinear systems
from incomplete, indirect and noisy observations. Unlike
the widely used extended Kalman filter, the UKF keeps
the full system dynamics rather than linearizing it, lead-
ing to a superior treatment of nonlinearities. The UKF
truncates the filter probability density to a Gaussian in
each iteration by only propagating first and second mo-
ments but neglecting higher-order moments. The method
is applicable to deterministic as well as stochastic models
[17]. Here, the UKF is only briefly described in the form
it is actually used in the present context. Readers inter-
ested in theoretical and technical issues of the method in
more detail are refered to the literature [15–18].

The UKF deals with estimation in nonlinear state
space models. A state space model consists of two parts:
a dynamical (or state) equation and an observation (or
measurement) equation. The dynamical equation is

zt = f(zt−1, λ) + ηt (3)

where z is a state vector of dimension ns, f is a nonlinear
function, λ is a vector of parameters of dimension np

and η is a Gaussian white noise with zero mean and
covariance matrix Q. The observation equation is

yt = g(zt) + ǫt (4)

where y is a vector of observations of dimension no, g

is a (generally) nonlinear observation function and ǫ is a

Gaussian white observational noise with zero mean and
covariance matrix R. The UKF addresses the problem of

simultaneously estimating the unobserved states {zt}N

t=1

and the parameters λ given only time series of the noisy

observations {yt}N

t=1. For this purpose, an augmented
state vector x of dimension n = ns + np is formed by
merging the state vector z and the parameters λ; its dy-
namical evolution is described by an augmented function
fa given by eq. (3) augmented by a constant dynamics
for the parameters:

xt =

(

zt

λt

)

=

(

f(zt−1, λt−1)

λt−1

)

+

(

ηt

0np

)

= fa(xt−1) +

(

ηt

0np

)

(5)

The dynamical noise has augmented covariance matrix

Qa =

(

Q 0ns×np

0np×ns
0np×np

)

. (6)

For the model considered here, the state is only
one-dimensional (ns = 1), the parameters are λ=

(a1, a2, a3, a4)
T

(np = 4) and the dynamical equation is
given by a discretization of eq. (1) using the Euler scheme
with step size h:

zt = f(zt−1, a1, a2, a3, a4)

= zt−1 − h(4a4z
3
t−1 + 3a3z

2
t−1 + 2a2zt−1 + a1)

+
√

h σηt (7)

The variance of the dynamical noise in the discretized
system is Q = hσ2. The dimension of augmented state
space is n = 5. We have a single observational time series
(no = 1) that is simply related to the state by the identity
observation function:

yt = zt + ǫt (8)

The UKF then takes a particularly simple form.
Let x̂t−1|t−1 be the estimate of the augmented state

vector and Pxx
t−1|t−1

its covariance matrix at time t − 1

having processed all data up to time t − 1. The filter
density is represented by a small number of test points,
so-called sigma points, that are propagated through the
nonlinear dynamical equation. The sigma points have to
be chosen carefully in order to ensure that they capture
the first and second moments of the transformed density
to some order of accuracy [16]. We employ 2n sigma

points, {xi
t−1|t−1

}2n

i=1
, each in augmented state space of

dimension n, given as
{

x̂t−1|t−1 + vj , x̂t−1|t−1 − vj
}n

j=1
.

The vectors
{

vj
}n

j=1
are the columns of A where A can

be any matrix satisfying AAT = nPxx
t−1|t−1

. Here we cal-

culate A using the Cholesky decomposition of Pxx
t−1|t−1

.

The sigma points are propagated through the dynamical
equation and the observation function is applied:

xi
t|t−1 = fa

(

xi
t−1|t−1

)

(9)

yi
t|t−1 = zi

t|t−1 (10)



The means of the transformed sigma points are

x̂t|t−1 =
1

2n

2n
∑

i=1

xi
t|t−1 (11)

ŷt|t−1 =
1

2n

2n
∑

i=1

yi
t|t−1; (12)

the covariances are

Pxx
t|t−1 =

1

2n

2n
∑

i=1

(

xi
t|t−1 − x̂t|t−1

)(

xi
t|t−1 − x̂t|t−1

)T

+ Qa (13)

P
xy

t|t−1
=

1

2n

2n
∑

i=1

(

xi
t|t−1 − x̂t|t−1

)(

yi
t|t−1 − ŷt|t−1

)

+ qa (14)

P yy

t|t−1
=

1

2n

2n
∑

i=1

(

yi
t|t−1 − ŷt|t−1

)2

+ Qa
11 + R (15)

with qa = (Qa
11, 0, 0, 0, 0)

T
. The augmented covariance

matrix of the dynamical noise Qa is zero except for the
element Qa

11 related to the state variable z which is given
by Qa

11 = Q = hσ2. When reaching a new data point yt

the estimates of the state and the parameters as well as
their uncertainties are corrected using the new observa-
tion according to the ordinary Kalman update equations

x̂t|t = x̂t|t−1 + Kt(yt − ŷt|t−1) (16)

Pxx
t|t = Pxx

t|t−1 − KtP
yy

t|t−1
KT

t (17)

where Kt is the Kalman gain matrix given as

Kt = P
xy

t|t−1
(P yy

t|t−1
)
−1

. (18)

Since the dynamical model is specified here as a
continuous-time equation rather than a discrete system
the step size h usually has to be taken much smaller than
the sampling interval of the data δt. Hence one has to
propagate sigma points many times before reaching the
next data point and updating according to eqs. (16)–(18).

Note that the algorithm is deterministic even for a
stochastic model. It propagates only probability densities
and does not refer to individual noise realizations; for a

particular observational time series {yt}N

t=1 and given ini-
tial guesses for the state and the parameters x̂1|1 as well
as their uncertainties Pxx

1|1 the outcome is determined.

Along with the estimates for the state and the pa-
rameters the algorithm provides information on their
uncertainties. Assuming Gaussian estimation errors, a
symmetric 95%-confidence interval for a particular el-
ement of the augmented state vector xi is given as
[x̂i − 1.96

√

P xx
ii , x̂i + 1.96

√

P xx
ii ].

For vanishing observational noise (R = 0), the state es-
timate degenerates to ẑt|t = yt; but parameter estimation
is then still useful. For technical reasons, even with no ob-
servational noise R is not set eactly to zero but to a very

small number, say, R = 10−12. This prevents the matrix
Pxx

t|t from becoming negative definite due to rounding er-

rors when the algorithm proceeds which would cause the
Cholesky decomposition to break down.

B. Estimation of the noise level

Besides the parameters {ai}4

i=1 one wishes to estimate
the noise level σ directly from the data since it is as essen-
tial in determining the dynamical behavior of the system
as the shape of the potential. Unfortunately, the noise
level (both the dynamical and the observational) cannot
be systematically estimated within the UKF; it has to
be given beforehand based on prior knowledge about the
system and the observation process. This is a fundamen-
tal weakness of all types of Kalman filters. We propose
an adhoc solution to the problem that proves adequate
at least for the specific model setting considered here.
Assuming the observational noise level to be known, the
dynamical noise level is determined by fitting some global
statistical quantity that characterizes the long-term dy-
namics of the system. Stochastically driven motion in a
bistable potential is characterized by a stationary proba-
bility density that is peaked around the minima of the po-
tential. The sharpness of the probability density depends
crucially on the noise level. Therefore it appears reason-
able that for an adequate model the stationary proba-
bility density pm(z), or in the case of observational noise
the observed probability density po

m(y), should match the
empirical density of the data. For this purpose, we run
the UKF for different noise levels and monitor the devia-
tion between the observed cumulative distribution func-
tion of the model Φo

m and that of the data Φd defined as
the Kolmogorov-Smirnov distance

D = max
y

|Φo
m(y) − Φd(y)| (19)

as a function of the noise level and search for a minimum.
For the model considered here, it is known that

pm(z) ∼ exp
[

−2U(z)/σ2
]

(20)

with a proper normalization constant [21]. The normal-
ization and the cumulative distribution can be obtained
by numerical integration. In the case of observational
noise, the probability density of the observed variable y
is given by the convolution integral

po
m(y) ∼

∫ +∞

−∞

pm(z) exp

[

− (y − z)
2

2R

]

dz (21)

which is solved and normalization and the cumulative dis-
tribution are found numerically. The distribution func-
tion of the data is given empirically as Φd(y) = Ny/N
where Ny is the number of data points less or equal y
and N is the size of the whole data set.

In general, for dynamical systems that are not so much
characterized by the shape of their stationary density
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FIG. 3: Sample trajectory of stochastically driven motion in
a symmetric double-well potential with observational noise.

other criteria rather than the measure D may be more
appropriate to determine the noise level. Possible alter-
natives are moment-matching conditions (e. g., tuning
the mean or the variance of some important quantity in
the system) as well as fitting a characteristic timescale
of the system given by the autocorrelation function at
some meaningful lag, the decorrelation time or a regime
transition time.

VI. DEMONSTRATION OF THE METHOD ON

SIMULATED DATA

In order to assess and demonstrate the ability of the
UKF to reliably identify parameters and noise strengths
in the model setting considered here we first apply it to
simulated data. We assume a symmetric double-well po-
tential given by U(z) = z4−2z2, that is, (a1, a2, a3, a4) =
(0,−2, 0, 1); the noise level is σ = 1.5. The system is sim-
ulated for 1000 time units using the Euler scheme with
a step size of 10−5; the sampling interval is δt = 0.05.
Figure 3 shows a sample trajectory of the system. The
time series is contaminated with observational noise of
standard deviation 0.1. The Kramers mean waiting time
for a transition from one stable state to the other [21]
is about 2.7 which when interpreted as ky is about the
same as in the ice-core data [11]. The symmetry of
the potential is not fixed when applying the UKF al-
gorithm; all four parameters {ai}4

i=1 are treated as un-
known and are to be estimated. The UKF is initial-
ized with (a1, a2, a3, a4) = (2, 2, 2, 2) which is quite far
away from the true solution. The initial state estimate
is given by the first observation: ẑ1|1 = y1. The ini-
tial uncertainties are set to 1 for all four parameters; the
initial state uncertainty is 0.01 in accordance with the
observational noise level. The step size in the UKF is
h = δt/100 = 0.0005; we set R = 0.01.

The UKF is run for different noise levels and the ac-
tual noise level is determined as described above. By
matching the distribution functions of the model and
the data sample the noise level is correctly identified as

σ = 1.5 (Fig. 4a). Without observational noise the min-
imum of D at 1.5 is even sharper (not shown). Figures
4b and 4c give the estimated parameter values together
with 95%-confidence intervals as the algorithm proceeds
through the time series. The final values at t = 1000 are:
a4 = 1.01 ± 0.06, a3 = 0.03 ± 0.06, a2 = −2.01 ± 0.15
and a1 = −0.05 ± 0.17. The estimates are very accu-
rate; for all parameters, the true values lie well within
the confidence intervals. The reconstructed potential is
extremely close to the true one (Fig. 4d). We conclude
that the UKF together with the heuristic estimation of
the noise level is capable of accurately estimating param-
eters for Brownian motion in a potential landscape even
if the time series is corrupted by observational noise.

VII. RESULTS FOR THE ICE-CORE DATA

AND DISCUSSION

The ice-core record was processed in the same way as
the simulated data. The initial guess for the potential
was taken to be U(z) = z4−2z2, that is, (a1, a2, a3, a4) =
(0,−2, 0, 1) with unit uncertainties. The initial estimate
of the state z was taken as the first data point. The
measurement error of the ice-core data is indicated to be
as small as 0.07% [19]. This suggests a value of about
R = 0.001 for the variance of the observational error.
Actually, when setting R = 10−12 the results are virtually
indistinguishable from those obtained with R = 0.001.
Observational noise is negligable for the present ice-core
data compared to the dynamical noise that is of order
unity. We therefore adopt the value R = 10−12 and the
dynamical variable z can be identified with the observed
variable y. The step size in the UKF algorithm was set
to h = δt/100 = 0.0005 ky. The data set spanning a
period of 50 ky with 1000 observations turned out to
be too short to obtain well-converged estimates for the
parameters with small confidence intervals. Therefore
the data were processed ten times in order to improve
the estimates. Each new sweep was started with the final
estimates for the parameters and uncertainties from the
preceeding sweep; however, the off-diagonal elements of
Pxx were set to zero [17].

For the ice-core data, the parameter estimation turns
out to be ill-conditioned with respect to the parameter
a1. The estimate for a1 is still drifting and has large
uncertainty after processing the data ten times. This
is due to the almost degenerate shape of the potential
and the high dynamical noise level (see below). It does
not occur with the simulated data above as the potential
there has a distinct shape with two deep wells and the
noise level is smaller. The problem is removed by im-
posing a moment-matching condition as a constraint on
the parameters. It appears reasonable to require that the
model has the same mean state as the ice-core data, that
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FIG. 4: Simulated data: (a) Estimation of noise level: Kolmogorov-Smirnov distance between the probability distributions
of the model and the data as a function of the noise level. (b) Estimates for a4 (solid) and a3 (dotted) together with 95%-
confidence intervals as a function of time. (c) Estimates for a2 (solid) and a1 (dotted) together with 95%-confidence intervals
as a function of time. (d) True (solid) and reconstructed (dashed) potential.

is, 〈z〉 =
∫ +∞

−∞
z pm(z) dz = 0, leading to the condition

∫ +∞

−∞

z exp
[

−2U(z)/σ2
]

dz = 0. (22)

It is straightforward to verify that for fixed parameters
a4, a3, a2 and noise level σ the mean state 〈z〉 tends to
+∞ as a1 goes to −∞, tends to −∞ as a1 goes to +∞
and has a monotonic dependence on a1 in between. Thus
eq. (22) uniquely determines a1 for given a4, a3, a2 and
σ. The integral in eq. (22) is evaluated numerically; the
root is then found by running 15 iterations of the bisec-
tion algorithm starting with the (conservative) interval
[−10, 10] for a1. The UKF is modified in that only a4, a3

and a2 are parameters to be determined. We then have
np = 3 and n = 4. a1 is treated as a constant in the UKF
and updated according to eq. (22) at each data point af-
ter the Kalman update using the current estimates for
a4, a3 and a2. Eq. (22) is still valid in the case of obser-
vational noise with mean zero as such a noise does not
alter the mean state of the system (〈y〉 = 〈z〉).

The UKF was run for different levels of dynamical noise
and the model probability distribution function moni-
tored and compared to that of the data. Here, the mea-

sure D turns out to be inconclusive (Fig. 5a). There is a
minimum at 3.2 but the values of D on the whole interval
between 3.2 and 4.2 are quite similar given that the prob-
ability distribution of the data is estimated from only
1000 data points. Therefore the estimate for the noise
level is backed up by looking at other quantities. Fig-
ure 5b displays the standard deviation of z in the model
as a function of the noise level. It increases almost lin-
early over the interval between 2.2 and 5.1 and there is
a sharp match with the data at σ = 3.8. In Fig. 5c, the
autocorrelation function at lag 1, that is, at δt = 0.05
ky as a function of the noise level is given. The esti-
mates are calculated from an integration of the model
for 5000 ky (100000 data points); some sampling fluc-
tuations are still visible. The autocorrelation decreases
more or less linearly with the noise level; the autocorre-
lation of the data is matched at σ = 3.7. Taking both
standard deviation and autocorrelation into account, we
adopt σ = 3.75 as the dynamical noise level of the poten-
tial model. In Figs. 5d and 5e, the estimates of the pa-
rameters are displayed as a function of time together with
95%-confidence intervals. There are inhomogenieties af-
ter about 10 ky of each sweep corresponding to the visible
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FIG. 5: Ice-core data: (a) Estimation of noise level: Kolmogorov-Smirnov distance between the probability distributions of
the model and the data as a function of the noise level. (b) Standard deviation of z in the model as a function of the noise
level (solid). Dotted horizontal line indicates the standard deviation of the data. (c) Autocorrelation at lag δt in the model as
a function of the noise level (solid). Dotted horizontal line indicated the autocorrelation at lag δt in the data. (d) Estimates
for a4 (solid) and a3 (dotted) together with 95%-confidence intervals as a function of time. (e) Estimates for a2 together with
95%-confidence intervals (solid) and a1 (dotted) as a function of time. (f) Potential derived from the data (solid) together with
probability densities of the model (dashed) and the data (dotted).

inhomogeniety in the ice-core record at about 60 ky be-
fore present (Fig. 1). After ten sweeps well-converged
estimates for all parameters with reasonably small con-
fidence intervals are obtained. Taking averages over the
last sweep of 50 ky, the values of the parameters are:
a4 = 0.16 ± 0.01, a3 = −0.37 ± 0.03, a2 = −0.79 ± 0.12,

and a1 = 2.34. The potential is highly asymmetric and
almost degenerate (that is, close to a bifurcation); there
is a deep well corresponding to a cold stadial state and
a very shallow well corresponding to a warm interstadial
state (Fig. 5f). The finding that the system is right at
the bifurcation to multiple equilibria might help under-



stand the large and abrupt millennial-scale climate fluc-
tuations during the last glacial, associated with the DO
oscillations and Heinrich/DO tandems [22]. The station-
ary probability density of the model and the probability
density of the ice-core data are plotted together with the
potential (Fig. 4f). The probability density of the data
is calculated using a standard Gaussian kernel estima-
tor. Both probability densities are normalized to 25 in
order to increase the readability of the plot. The model
captures the two maxima in the probability density cor-
responding to the stadial and interstadial state with ap-
proximately the correct population; there is a slight shift
in the amplitudes of the states themselves on the z-axis.
The mean and standard deviation of z in the model are
µ = 0 and s = 1.83 compared to µ = 0 and s = 1.84 in
the ice-core data.

In Fig. 6, the autocorrelation function of the poten-
tial model is contrasted with the sample autocorrelation
function of the ice-core data. Moreover, the autocorrela-
tion functions of an AR(1) model and an AR(3) model
(the linear model with the same number of parameters
as the nonlinear model) are given for comparison. The
potential model captures the initial decay of the auto-
correlation very well but then decays too fast at larger
lags. However, the memory at larger lags in the auto-
correlation function of the ice-core data turns out to be
more an artefact due to the nonstationarity of the data
rather than genuine long-term memory due to a deter-
ministic dynamical mechanism. This is revealed by look-
ing at autocorrelation functions over parts of the time
series where the data is more stationary (not shown).
The memory at larger lags is then greatly reduced and
the autocorrelation function is much closer to that of the
potential model. The model is stationary by construction
and can only model the stationary part of the autocor-
relations. The nonlinear potential model outperformes
the AR(1) model, albeit not dramatically, and its au-
tocorrelation function is virtually indistinguishable from
that of the AR(3) model. The nonlinear potential model
captures the linear properties of the data as well as the
linear model of the same complexity. On top of this,
it models some nonlinear features such as the strongly
non-Gaussian probability density whereas the probabil-
ity density of an AR model is always Gaussian.

In Figure 7, a sample trajectory of the model derived
from the ice-core data is displayed. The stochastic equa-
tion was integrated using the Euler scheme with step size
10−5 and sampled with δt = 0.05. The ice-core time se-
ries is shown again, here with its mean value removed,
to facilitate comparison. The trajectory bears clear sim-
ilarity with the ice-core record; transitions from the cold
stadial state to the warm interstadial state and back are
reproduced on the correct timescale. However, the model
is not able to capture the pronounced temporal asymme-
try of DO events. DO events are systematically charac-
terized by an abrupt warming followed by a slow cooling
which is not the case in the model.

The ansatz of eq. (2) can be generalized to U(z) =
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FIG. 6: Sample autocorrelation function of the ice-core data
(solid) and autocorrelation functions of the nonlinear poten-
tial model (dashed), an AR(1) model (dot-dashed) and an
AR(3) model (dotted).
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FIG. 7: (a) δ
18O record from the NGRIP ice core during the

last glacial period with the mean value removed. (b) Sample
trajectory of the model derived from the ice-core data.

∑L

i=1 aiz
i with L being an even integer. For the data

set considered here, it was found that using a sixth-
order polynomial instead of a fourth-order polynomial
only provides a slightly better capture of the stationary
density but does not visibly improve the dynamical be-
havior of the model. A higher-order potential is useful if
the data display more than two distinctly different states.



VIII. ALTERNATIVE METHOD

Given that observational error is negligable in the
present ice-core data the one-to-one correspondence of
the stationary density to the potential [eq. (20)] suggests
deriving the potential directly from the probability den-
sity of the data (cf., [10]). Eq. (20) yields

U = −σ2

2
log pd (23)

where pd is the probability density of the data. A least-
squares fit of the ansatz of eq. (2) to − log pd provides the
shape of the potential that is independent of the noise
level up to a constant factor. The stationary density of
the corresponding model and all its moments are inde-
pendent of the noise level. The timescale of the system
remains undetermined, suggesting a fit to the autocorre-
lation of the data to obtain the noise level. Actually, a
weighted least-squares procedure was used, weighing each
data point with the probability density of the data at that
point. This guarantees the closest fit in regions where the
data are. A standard least-squares algorithm overweighs
the outside regions of the potential at the expense of the
inner region around zero that is indeed most interesting.
The noise level is determined by fitting the autocorrela-
tion at lag δt to that of the data. Again, the autocorrela-
tion decreases monotonically with increasing noise level
(not shown). A match is obtained for σ = 3.75, just the
same value adopted before. The potential for that noise
level is shown in Fig. 7 together with the probability den-
sity of the corresponding model and the data, allowing
a direct comparison with the UKF result (Fig. 4f). The
coefficients of the potential are a4 = 0.15, a3 = −0.44,
a2 = −0.65 and a1 = 2.89. The two potentials are fairly
similar. The Kolmogorov-Smirnov distance between the
probability distributions of the model and the data is here
D = 0.034, somewhat smaller than for the UKF model.
The mean and standard deviation of z in the model are
µ = 0 and s = 1.87, a slight overestimation of the vari-
ance of the system. The autocorrelation function is very
close to that for the UKF model (not shown), the UKF
model being slightly closer to the autocorrelation of the
data. It was found that using a sixth-order polynomial
for the potential instead of a fourth-order one does not
provide a significant improvement of the model perfor-
mance in any of the quantities mentioned above.

In the present model setting, the simple least-squares
fitting method already yields similar results to the more
elaborated UKF method. The system is already very
much characterized by its stationary density alone. It
should be noted, however, that the least-squares fit to the
probability density is very limited whereas the UKF ap-
proach is much more general. Already with observational
noise, the least-squares fit is no longer possible (cf., [24]).
Moreover, most dynamical systems do not have a straight
correspondence between the equation of motion and the
stationary density such as eq. (20) at all. They are not
uniquely identifiable from only the stationary density.
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FIG. 8: Potential derived by least-squares fit from the proba-
bility density of the ice-core data (solid) together with prob-
ability densities of the model (dashed) and the data (dotted).

IX. CONCLUSIONS AND OUTLOOK

We have introduced and verified a methodology for de-
riving dynamical models from paleoclimatic time series.
As an example, we have obtained a stochastically driven
nonlinear potential model from NGRIP ice-core data. It
is able to capture some basic statistical properties of the
data. Admittedly, the model does not provide a physical
mechanism and thus conclusions about the underlying
dynamics are somewhat limited. Our analysis reveals
that the system switches randomly between two different
states and that the climate state may linger for a longer
time around the locally extreme points of the potential.
On the other hand, the abstract character of our model
might be regarded as an advantage in that it is based
purely on data. The question of the underlying dynam-
ics is related to the stability of the stadial and interstadial
states. The present method may be used to perform a
bifurcation analysis of a paleoclimatic time series by trac-
ing changes in the shape of the potential, the number of
states and their stability over time [23].

The model derived here could be used as a null-
hypothesis for DO-like oscillations against which other
models should be tested. This constitutes a stronger test
than the common null-hypotheses of white or red noise
[26].

A possible extension of the present work lies in adding
a deterministic periodic forcing to eq. (1), that is, a peri-
odic variation of the parameter a1 in the potential in or-
der to investigate the importance of stochastic resonance
(cf., [11]). Another interesting point would be the inclu-
sion of multiplicative (that is, state-dependent) noise and
its influence on the performance of the model. There has
indeed been evidence that the statistical properties of the
data are different in the stadial and the interstadial state
[25, 26]. Other extensions refer to colored or heavy-tailed
noises.

The methodology employed in the present paper is
fairly general and applicable to a variety of different de-



terministic and stochastic low-order models. It has also
been used to derive a nonlinear stochastically driven os-
cillator model from the ice-core data [24]. It could serve
as a tool to compare the different conceptual models that
have been proposed to explain the dynamics of DO events
and to clarify to what extent they are quantitatively in
accordance with paleoclimatic data records.
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