Aspects of the practical application of ensemble-based Kalman filters

Lars Nerger

Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany

and

Bremen Supercomputing Competence Center BremHLR

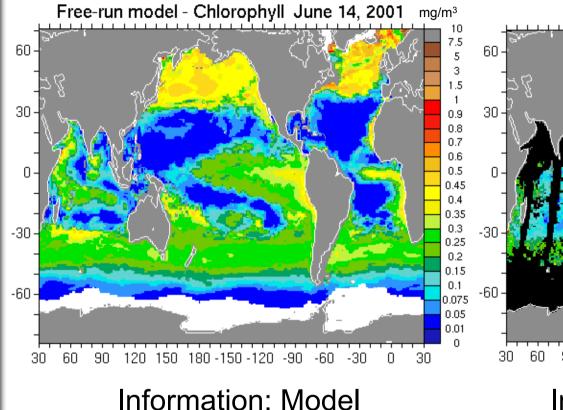
Lars.Nerger@awi.de

Overview

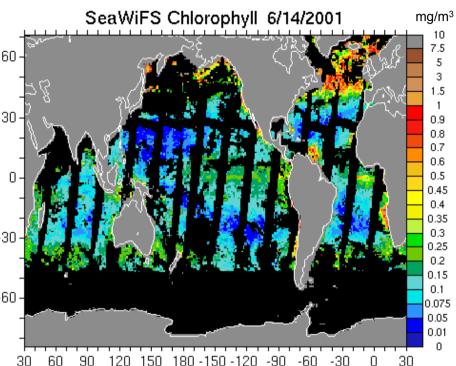
- Ensemble generation
- Localization
- Covariance inflation
- Observations and their errors
- Model errors
- Bias correction
- Validation data

Data Assimilation - in short

System Information: Chlorophyll in the ocean



- Generally correct, but has errors
- all fields, fluxes, ...



Information: Observation

- Generally correct, but has errors
- sparse information (only surface, data gaps, one field)

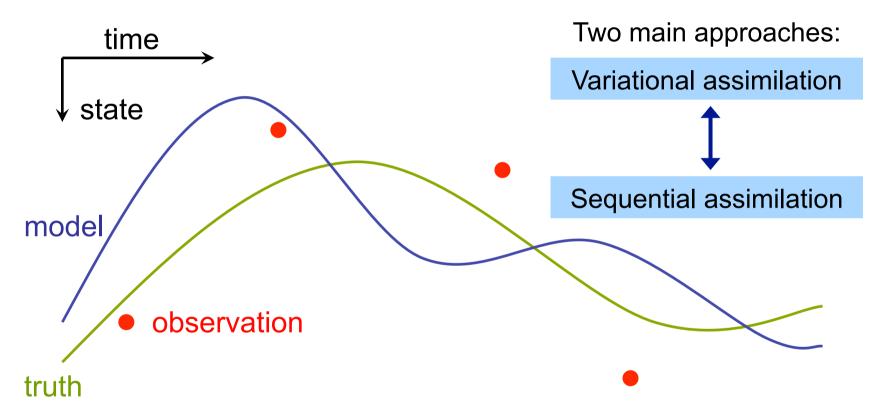
Combine both sources of information by data assimilation

Data Assimilation

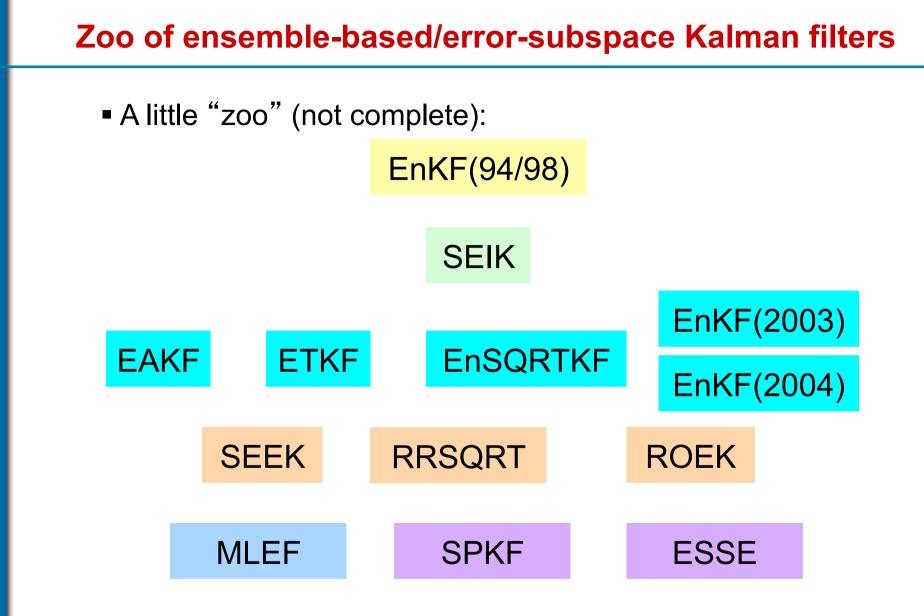
- Optimal estimation of system state:
 - initial conditions (for weather/ocean forecasts, ...)
 - trajectory (temperature, concentrations, ...)
 - parameters (growth of phytoplankton, ...)
 - fluxes (heat, primary production, ...)
 - boundary conditions and 'forcing' (wind stress, ...)
- Characteristics of system:
 - high-dimensional numerical model $\mathcal{O}(10^7)$
 - sparse observations
 - non-linear

Data Assimilation

Consider some physical system (ocean, atmosphere,...)



Optimal estimate basically by least-squares fitting



(Properties and differences are hardly understood)

Issues of the practical application

- No filter works without tuning
 - ⇒ Covariance inflation (forgetting factor)
 - ⇒ Localization
- Other issues
 - ⇒ Optimal initialization unknown (is it important?)
 - ⇒ Ensemble integration still costly
 - ⇒ Simulating model error
 - ⇒ Bias (model and observations)
 - ⇒ Observation errors are often unknown
 - ⇒ Nonlinearity
 - ⇒ Non-Gaussian fields or observations
 - ⇒ ...

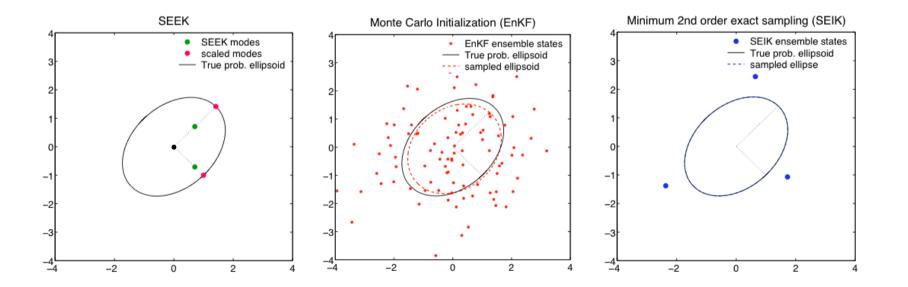
Ensemble generation

Ensemble represents

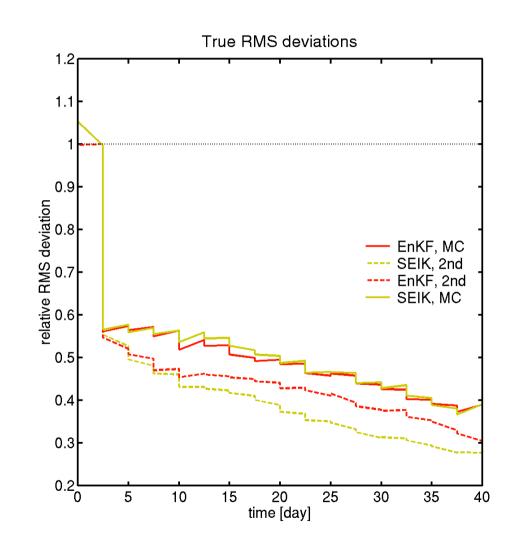
- ⇒ state estimate and error covariance matrix
- ➡ uncertainty of (initial) state estimate
- ⇒ correlations between observed and unobserved variables
- Methods (just a selection)
 - Deviations between model and observations (not all variables/locations observed)
 - Variability from long model integration (self-consistent; correct timing required; related to eigenvalues)
 - ⇒ random drawing vs. SVD-based selection
 - ⇒ Set of short-term model integrations
 - ⇒ "Breeding"

Sampling Example

$$\mathbf{P}_{t} = \begin{pmatrix} 3.0 & 1.0 & 0.0 \\ 1.0 & 3.0 & 0.0 \\ 0.0 & 0.0 & 0.01 \end{pmatrix}; \ \mathbf{x}_{t} = \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix}$$



3D Box - interchanged intializations



Ensemble size=10

Covariance matrix **P** from long model simulation

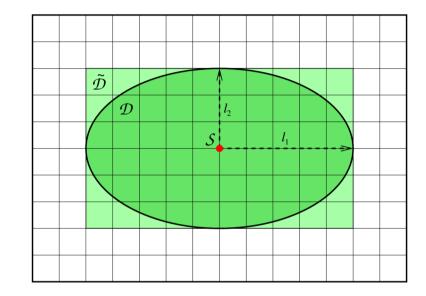
MC: random sampling of **P**

2nd: sample low-rank approximation of **P**

Localization

Domain localization - Local SEIK filter

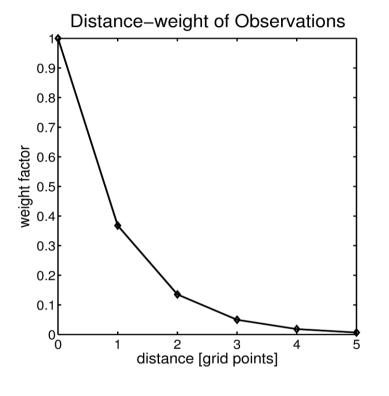
- Analysis:
 - Update small regions (e.g. single vertical columns)
 - Consider only observations within cut-off distance
 - neglects long-range correlations
- Re-Initialization:
 - Transform local ensemble
 - Use same transformation matrix in each local domain



Local SEIK filter II – Observation localization

Localizing weight

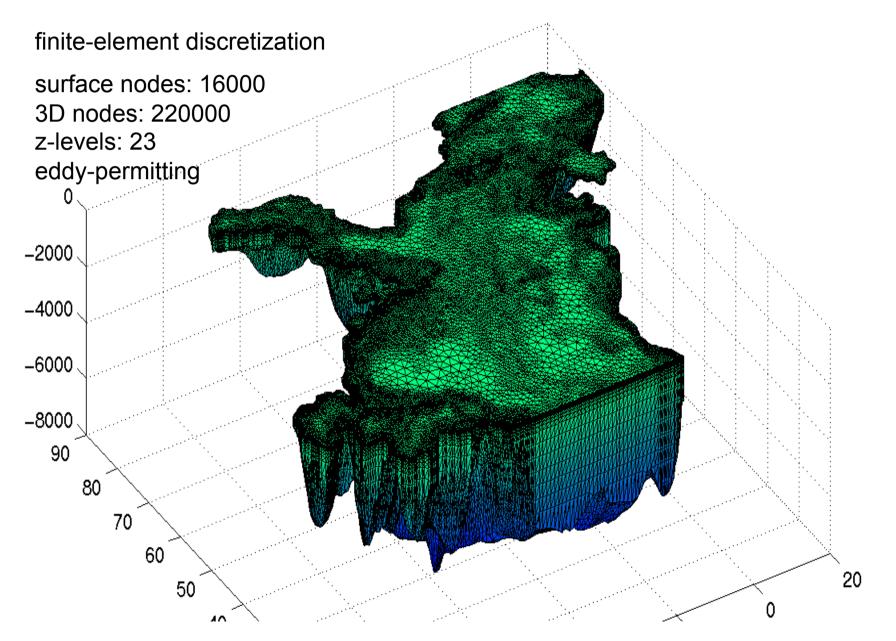
- reduce weight for remote observations by increasing variance estimates
- use e.g. exponential decrease or polynomial representing correlation function of compact support
- similar, sometimes equivalent, to covariance localization used in other ensemble-based KFs



Example:

Assimilation of pseudo sea surface height observations in the North Atlantic (twin experiment)

FEOM – Mesh for North Atlantic

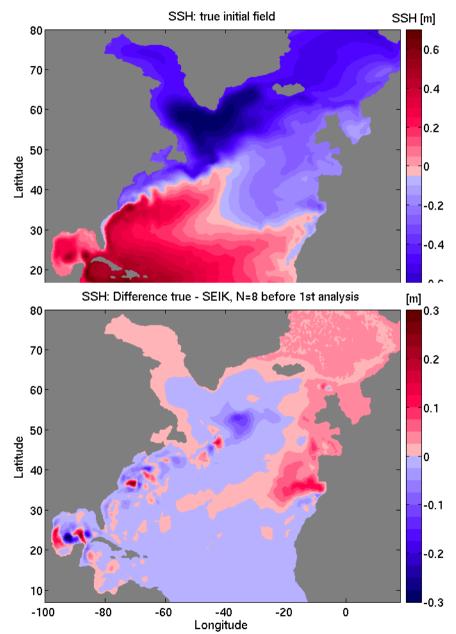


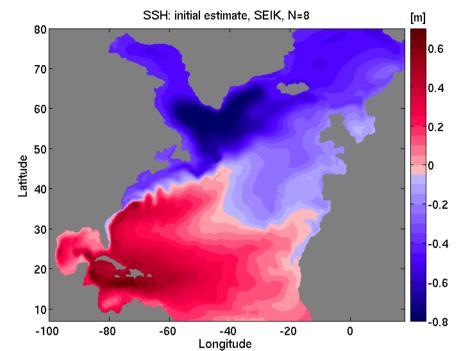
Configuration of twin experiments

- Generate true state trajectory for 12/1992 3/1993
- Assimilate synthetic observations of sea surface height (generated by adding uncorrelated Gaussian noise with std. deviation 5cm to true state)
- Covariance matrix estimated from variability of 9-year model trajectory (1991-1999) initialized from climatology
- Initial state estimate from perpetual 1990 model spin-up
- Monthly analysis updates

 (at initial time and after each month of model integration)
- No model error; forgetting factor 0.8 for both filters

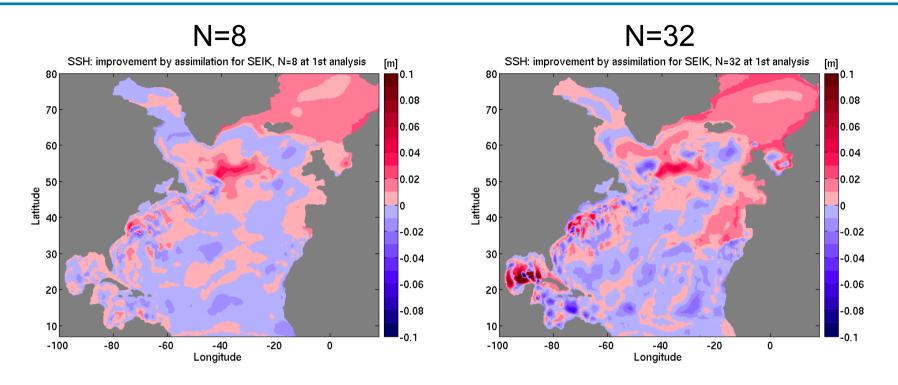
Modeled Sea Surface Height (Dec. 1992)





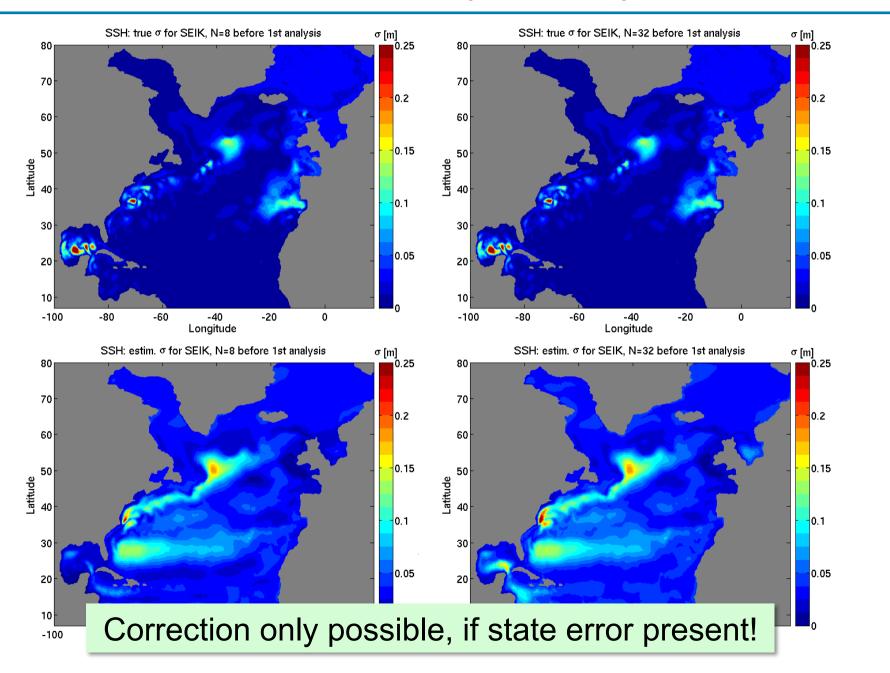
- large-scale deviations of small amplitude
- small-scale deviations up to 40 cm

Improvement of Sea Surface Height (Dec. 1992)

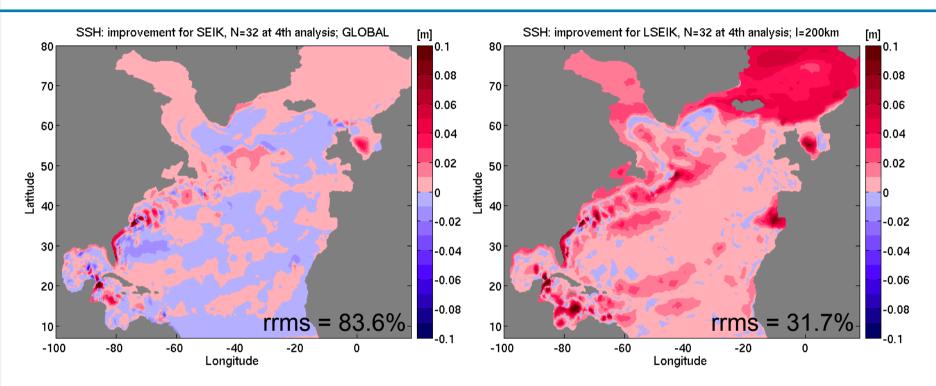


- Improvement: red deterioration: blue
- \Rightarrow For N=8 rather coarse-scale corrections
- \Rightarrow Increased ensemble size adds finer scales (systematically)

True and estimated errors (Dec. 1992)

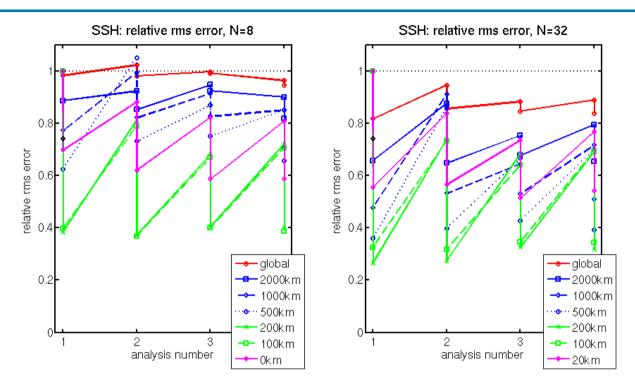


Global vs. Local SEIK, N=32 (Mar. 1993)



- Improvement regions of global SEIK also improved by local SEIK
- localization provides improvements in regions not improved by global SEIK
- regions with error increase diminished for local SEIK

Relative rms errors for SSH



- global filter: significant improvement for larger ensemble
- global filter with N=100: relative rms error 0.74
- localization strongly improves estimate
 - larger error-reduction at each analysis update
 - but: stronger error increase during forecast
- very small radius results in over-fitting to noise

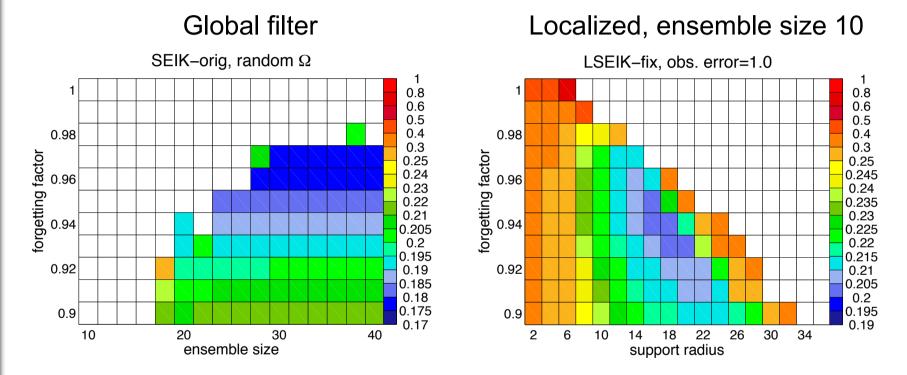
Covariance inflation

Covariance inflation

- True variance is always underestimated
 - finite ensemble size
 - sampling errors (unknown structure of P)
 - model errors
 - → can lead to filter divergence
- Simple remedy
 - → Increase error estimate before analysis
- Possibilities
 - Multiply covariance matrix by a factor (inflation factor, 1/forgetting factor)
 - Additive error (e.g. on diagonal)

Impact of inflation on stability & performance

Experiments with Lorenz96 model



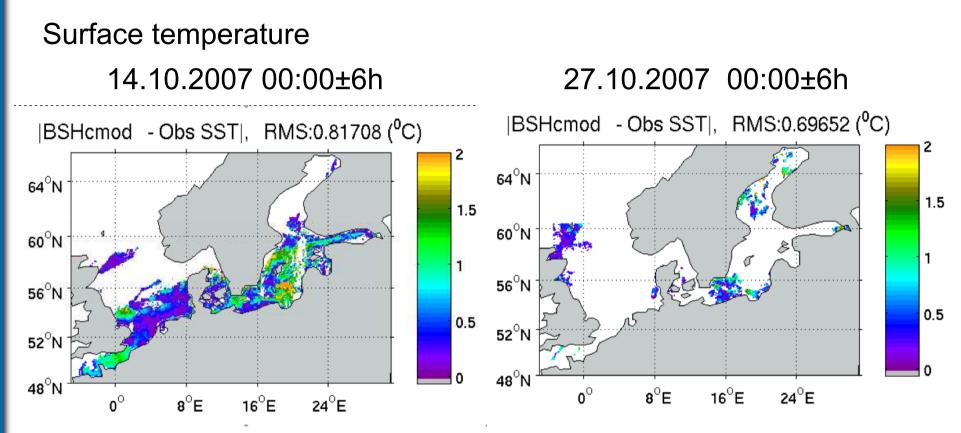
- Increased stability with stronger inflation (smaller forgetting factor)
- Optimal choice for inflation factor

Observations and their errors

Real observations

- They are not ideal
 - Incomplete (space, time)
 - Errors only estimated
 - Errors can be correlated
 - Can be biased
- → Usual way of handling: pragmatism

Observation availability

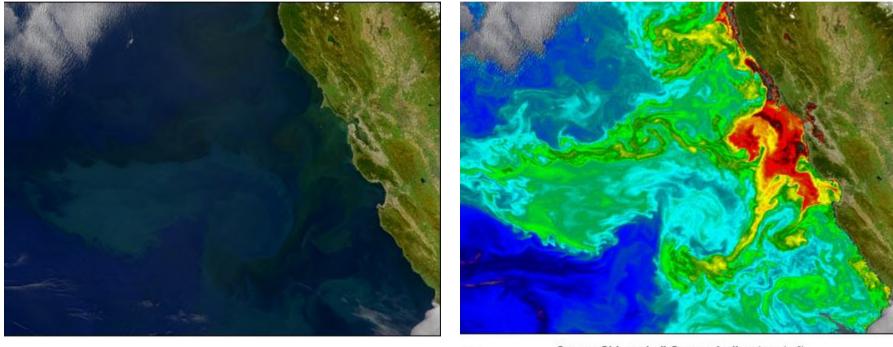


- Strongly irregular data availability
- Frequent data gaps
- Assume constant error and homogeneous spatial influence

S. Losa, Project DeMarine Environment

Satellite Ocean Color (Chlorophyll) Observations

Natural Color 3/16/2004

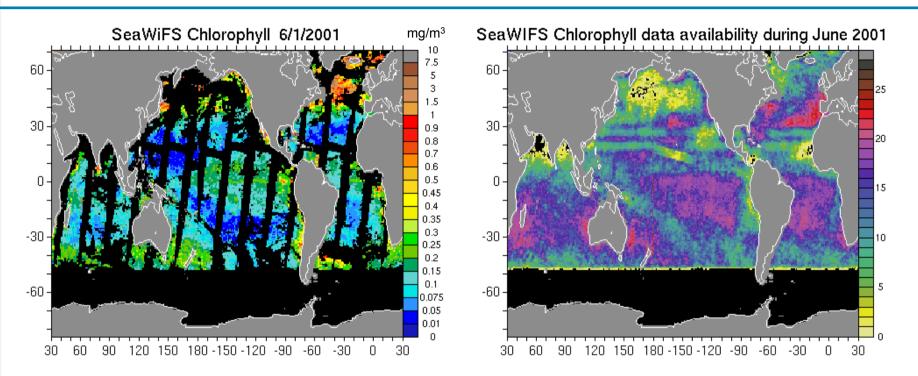


Ocean Chlorophyll Concentration (mg/m³)

Chlorophyll Concentrations

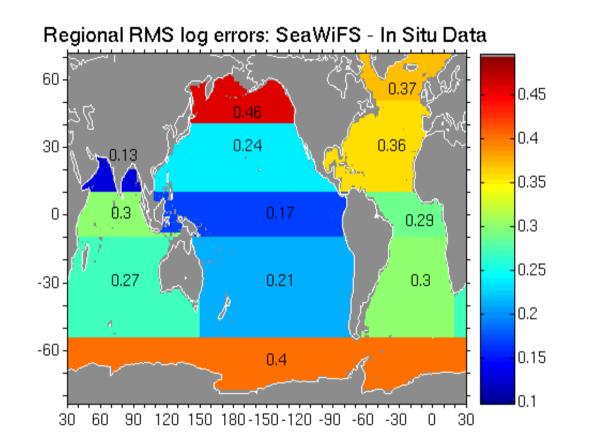
Source: NASA "Visible Earth", Image courtesy the SeaWiFS Project, NASA/GSFC, and Orbimage

Assimilated Observations



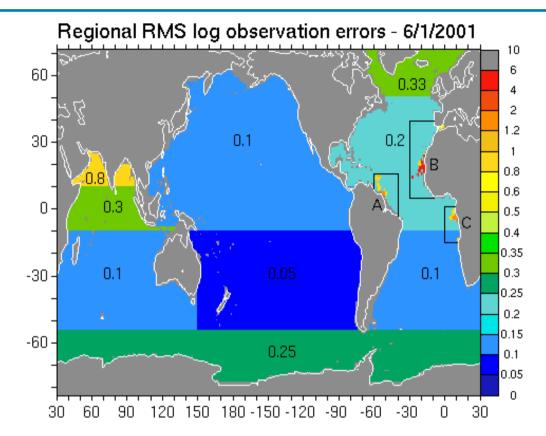
- Daily gridded SeaWiFS chlorophyll data
 - > gaps: satellite track, clouds, polar nights
 - ~13,000-18,000 data points daily (of 41,000 wet grid points)
 - irregular data availability

Error Estimates



Regional data errors from comparison with 2186 collocation points of in situ data

Observation errors II



- Account regionally for larger errors caused by
 - > aerosols (North Indian Ocean, tropical Atlantic)

CDOM (Congo and Amazon)

• Error estimates adjusted for filter performance and stability

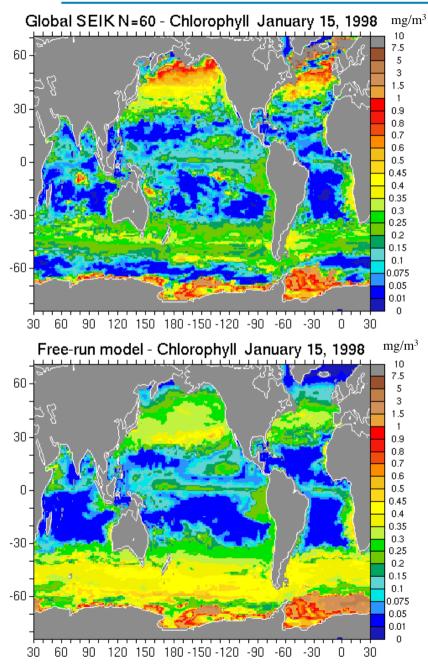
Model Errors

Model errors

- Representation of reality is not exact
 - Incomplete equations (e.g. missing processes)
 - Inexact forcing (e.g. wind stress on ocean surface)
- Accounting for model error
 - Inflation (partly)
 - Simulate stochastic part
 - Bias estimation

Bias correction

Assimilation with global SEIK filter



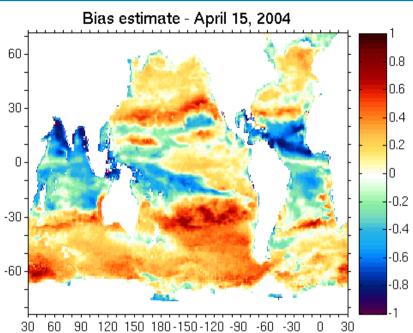
SeaWIFS Chlorophyll monthly mean - January 1998 mg/m³ 10 7.5 60 5 3 1.5 30 0.9 0.8 0.7 0.6 0.5 0.45 0.4 0.35 0.3 -30 0.25 0.2 0.15 0.1 -60 0.075 0.05 0.01 0 30 60 90 120 150 180 - 150 - 120 - 90 - 60 - 30 0 30

- some improvements of estimated total Chlorophyll
- Increased estimation errors in region with polar night
- SEIK assimilation crashes (earlier for larger ensemble sizes)

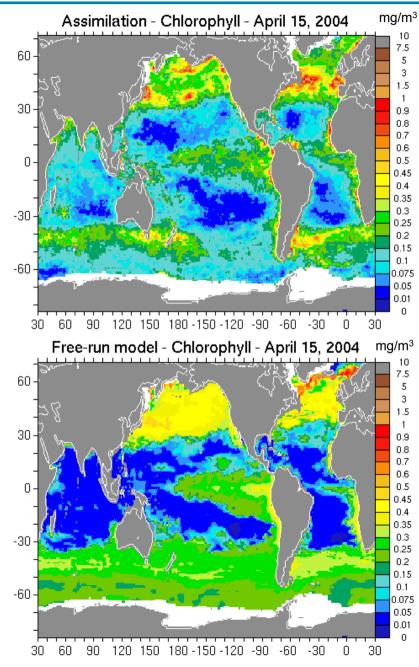
Bias Estimation

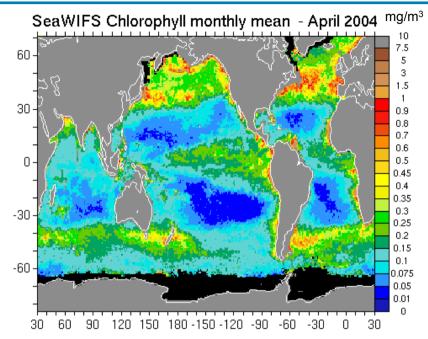
- un-biased system: fluctuation around true state
- biased system: systematic over- and underestimation (common situation with real data)
- 2-stage bias online bias correction
 - 1. Estimate bias (using fraction of covariance matrix used in 2.)
 - 2. Estimate de-biased state
- Forecast
 - 1. forecast ensemble of biased states
 - 2. no propagation of bias vector

Nerger, L., and W.W. Gregg. J. Marine Systems, 73 (2008) 87-102



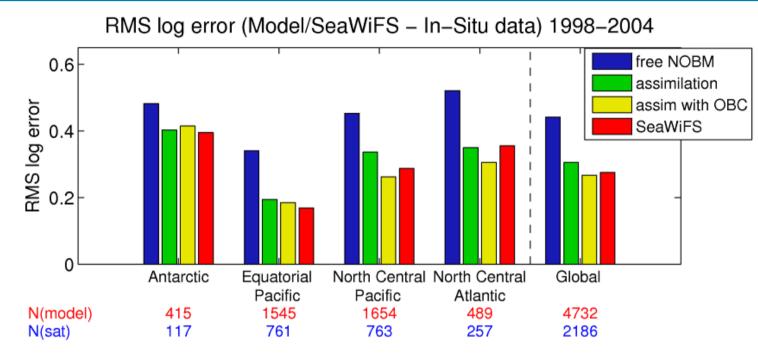
Estimated Chlorophyll - April 15, 2004





- strongly improved surface Chlorophyll estimate
- intended deviations (Arabian Sea, Congo, Amazon)
- other deviations in high-Chlorophyll regions

Comparison with independent data



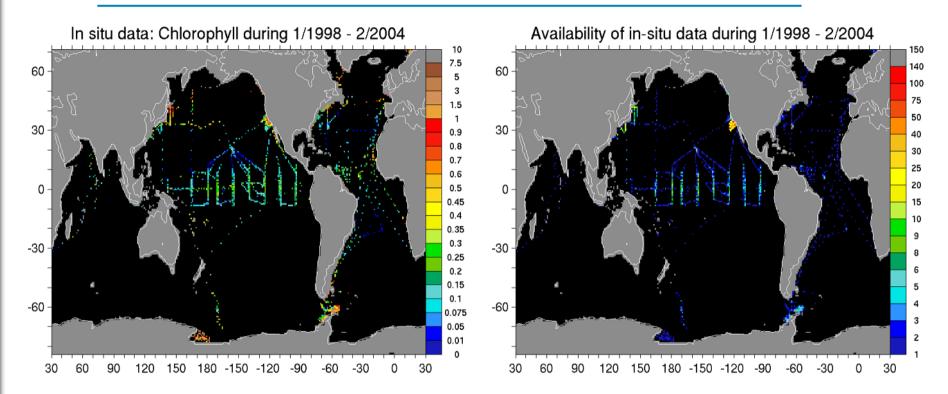
- In situ data from SeaBASS/NODC over 1998-2004 (shown basins include about 87% of data)
- Independent from SeaWiFS data (only used for verification of algorithms)
- Compare daily co-located data points
- ⇒ Assimilation in most regions below SeaWiFS error
- \Rightarrow Bias correction improves almost all basins

Validation data

Validating a data assimilation system

- Need independent data for validation
 - Necessary, but not sufficient: Reduction of deviation from assimilated data
 - Required:
 - Reduction of deviation from independent data
 - Reduction of errors for unobserved variables
- Want to assimilate all available data
 - Data-withholding experiments
 - Twin experiments
 - Validate with data of small influence

In-Situ chlorophyll data



- In situ data from SeaBASS/NODC over 1/1998-2/2004
- Independent from SeaWiFS data (only used for verification of algorithms)
- North Central Pacific dominated by CalCOFI data
- North Central Atlantic dominated by BATS data

- Practical assimilation with ensemble-based Kalman filters
 - → Care and pragmatism required
 - → "pure" filter works suboptimal or not at all
- Theoretical foundation is incomplete
 - Advancements in between

Thank you!

Acknowledgements:

W. Hiller, J. Schröter, T. Janjic, S. Losa (AWI) Watson Gregg, Nancy Casey (NASA/GSFC)

Lars Nerger – Application of Ensemble KFs – lars.nerger@awi.de