
University of Hamburg

Planet Simulator

User’s Guide

Version 15.0

Frank Lunkeit
Simon Blessing
Klaus Fraedrich
Heiko Jansen
Edilbert Kirk
Ute Luksch

Frank Sielmann

2

The Planet Simulator User’s Guide is a publication of the

Theoretical Meteorology at the Meteorological Institute of

the University of Hamburg.

Address:

Prof. Dr. Klaus Fraedrich

Meteorological Institute

University of Hamburg

Bundesstrasse 55

D-20146 Hamburg

Contact:

Klaus.Fraedrich@zmaw.de

Frank.Lunkeit@zmaw.de

E.Kirk@gmx.de

Contents

1 Installation 5
1.1 Quick Installation . 5
1.2 Most15 directory . 5
1.3 Model build phase . 6
1.4 Model run phase . 7
1.5 Running long simulations . 7

2 Modules 9
2.1 fluxmod.f90 . 10
2.2 miscmod.f90 . 11
2.3 surfmod.f90 . 12
2.4 fftmod.f90 / fft991mod.f90 . 13
2.5 landmod.f90 . 14
2.6 legmod.f90 . 16
2.7 mpimod.f90 / mpimod stub.f90 . 17
2.8 outmod.f90 . 19
2.9 plasim.f90 . 20
2.10 plasimmod.f90 . 24
2.11 radmod.f90 . 25
2.12 rainmod.f90 . 27
2.13 seamod.f90 . 28
2.14 Sea ice and ocean modules . 30
2.15 icemod.f90 . 33
2.16 oceanmod.f90 . 34

3 Parallel Program Execution 35
3.1 Concept . 35
3.2 Parallelization in Gridpoint Domain . 35
3.3 Parallelization in Spectral Domain . 36
3.4 Synchronization points . 36
3.5 Source code . 37

4 Graphical User Interface 39
4.1 Graphical user interface (GUI) . 39
4.2 GUI configuration . 41

4.2.1 Array . 42
4.2.2 Plot . 42
4.2.3 Palette . 43
4.2.4 Title . 43
4.2.5 Geometry . 43

3

4 CONTENTS

5 Postprocessor Pumaburner 45
5.1 Introduction . 45
5.2 Usage . 45
5.3 Namelist . 46
5.4 HTYPE . 46
5.5 VTYPE . 46
5.6 MODLEV . 46
5.7 hPa . 47
5.8 MEAN . 47
5.9 Format of output data . 47
5.10 SERVICE format . 48
5.11 HHMM . 48
5.12 HEAD7 . 48
5.13 MARS . 48
5.14 MULTI . 48
5.15 Namelist example . 49
5.16 Troubleshooting . 49

6 Graphics 51
6.1 Grads . 51
6.2 Vis5D . 54

A List of Constants and Symbols 57

B Planet Simulator Codes for Variables 61

C Namelists 63
C.1 File puma namelist . 63

C.1.1 Namelist INP . 63
C.1.2 Namelist PLANET . 64
C.1.3 Namelist MISCPAR . 64
C.1.4 Namelist FLUXPAR . 65
C.1.5 Namelist RADPAR . 65
C.1.6 Namelist RAINPAR . 65
C.1.7 Namelist SURFPAR . 66

C.2 File land namelist . 66
C.2.1 Namelist LANDPAR . 66

C.3 File sea namelist . 67
C.3.1 Namelist SEAPAR . 67

C.4 File ocean namelist . 67
C.4.1 Namelist OCEANPAR . 67

C.5 File ice namelist . 67
C.5.1 Namelist ICEPAR . 67

Chapter 1

Installation

The whole package containing the models ”Planet Simulator” and ”PUMA” along with ”MoSt”,
the ”Model Starter” comes in a single file, usually named ”Most(n).tgz” with (n) specifying a
version number. The following subsection gives an example, assuming version 15.

1.1 Quick Installation

tar -zxvf Most15.tgz

cd Most15

./configure.sh

./most.x

if your tar-command doesn’t support the ”-z” option (e.g. on Sun UNIX) type instead:

gunzip Most15.tgz

tar -xvf Most15.tar

cd Most15

./configure.sh

./most.x

If this sequence of commands produces error messages, consult the ”FAQ” (Frequent Asked
Questions) and README files in the Most15 directory. They are plain text files, that can be
read with the command ”more” or any text editor.

1.2 Most15 directory

home/Most15> ls -lG

-rw-r--r-- 1 1548 cc_check.c <- Used by configure.sh

-rwxr-xr-x 1 57 cleanplasim <- Delete run bld and bin for PLASIM

-rwxr-xr-x 1 51 cleanpuma <- Delete run bld and bin for PUMA

drwxr-xr-x 2 4096 common <- Topography files

-rwxr-xr-x 1 3911 configure.sh <- The configure script

-rw-r--r-- 1 308 csub.c <- Currently unused

-rw-r--r-- 1 234 f90check.f90 <- Used by configure.sh

-rw-r--r-- 1 3033 FAQ <- Frequent Ask Questions

drwxr-xr-x 2 4096 images <- Directory for images

-rw-r--r-- 1 154 makecheck <- Used by configure.sh

5

6 CHAPTER 1. INSTALLATION

-rw-r--r-- 1 85 makefile <- Used to "make" most.x

-rw-r--r-- 1 107844 most.c <- Source for MoSt (Model Starter)

-rw-r--r-- 1 6399 NEW_IN_VERSION_15 <- New in this version

drwxr-xr-x 8 4096 plasim <- Planet Simulator directory

drwxr-xr-x 2 4096 postprocessor <- Postprocessor directory

drwxr-xr-x 8 4096 puma <- PUMA directory

-rw-r--r-- 1 839 README <- Read this first

-rw-r--r-- 1 191 README_MAC_USER <- Notes for MAC user

-rw-r--r-- 1 698 README_WINDOWS_USER <- Notes for Windows user

The directory structure must not be changed, even empty directories must be kept as they
are, the Most program relies on the existence of these directories!

For each model, currently ”Planet Simulator” and ”PUMA” exist a directory (plasim) and
(puma) with following subdirectories:

Most15/plasim> ls -lg

drwxr-xr-x 2 128 bin <- model executables

drwxr-xr-x 2 1824 bld <- build directory

drwxr-xr-x 2 280 dat <- initial and boundary data

drwxr-xr-x 2 80 doc <- documentation, user’s guide, reference manual

drwxr-xr-x 2 928 run <- run directory

drwxr-xr-x 2 1744 src <- source code

After installation only ”dat”, ”doc” and ”src” contain files, all other directories are empty.
Running ”Most” to setup a model configuration and define an experiment uses the directo-

ries in the following manner:

1.3 Model build phase

Most writes an executable shell script to the ”bld” directory and executes it directly hereafter.
It copies all necessary source files from ”src” to ”bld” and modifies them according to the
selected parameter configuration. Modification of source code is necessary for vertical and
horizontal resolution change and for using more than 1 processor (parallel program execution).
The original files in the ”src” directory are not changed by Most. The program modules are
then compiled and linked using the ”make” command, also issued by Most. Most provides
a makefiles named make plasimfor building the executable. For modules that exist in more
than one version the selection of the module to use is done by environment variables that
are set automatically by MoSt but may be changed manually by the user. Look into the
make plasimfor further information. The resolution and CPU parameters are coded into the
filename of the executable, in order to have different names for different versions. E.g. the
executable ”most plasim t21 l10 p2.x” is an executable compiled for a horizontal resolution of
T21, a vertical resolution of 10 levels and 2 CPU’s. The executable is copied to the model’s
”bin” directory after building. Each time Most is used to setup a new experiments it checks the
”bin” directory for a matching executable. If it’s there, it’s used without rebuilding otherwise
a new executable with the selected parameters is created. Rebuilding may be forced by using
the cleanplasimcommand in the Most directory. The build directory is not cleared after usage.
The user may want to modify the makefile or the build script for his own purposes and start
the building directly by executing ”most plasim build”. For permanent user modifications the
contents of the ”bld” directories have to be copied elsewhere, because each usage of Most
overwrites the contents of ”bld”.

1.4. MODEL RUN PHASE 7

1.4 Model run phase

After building the model with the selected configuration, Most writes or copies all necessary files
to the model’s ”run” directory. These are the executable, initial and boundary data, namelist
files containing the parameter and finally the run script itself. Depending on the exit from
Most, either ”Save & Exit” or ”Run & Exit”, the run script is started from Most and takes
control of the model run. A checkmark on GUI invokes also the the Graphical User Interface for
user control and display of variables during the run. Again all contents of the ”run” directory
are subject of change for the user. But it would be wise to keep changed run setups in other,
user created directories, because each usage of Most may overwrite the contents of the run
directory.

1.5 Running long simulations

For long simulations make a new directory on a filesystem, that has enough free disk space to
store the results. You may use the ”df” command to check filesystems.

Hint 1: Don’t use your home directory if there are filequotas. Your run may crash due to
file quota exceeded.

Hint 2: Use a local disk, not NFS mounted filesystems if possible. The model runs much
faster writing output to local disks.

Example:

• cd Most15

• ./most.x

• Select model and resolution

• Switch GUI off

• Switch Output on

• Edit number of years to run

• Click on ”Save & Exit”

• Make a directory, e.g. mkdir /data/longsim

• cp plasim/run/* /data/longsim

• cd /data/longsim

• edit most plasim run for experiment name

• edit namelist files if necessary

• start simulation with most plasim run &

8 CHAPTER 1. INSTALLATION

Chapter 2

Modules

In the following, the purposes of the individual modules is given and the general structure and
possible input and output opportunities (namelist and files) are explained.

9

10 CHAPTER 2. MODULES

2.1 fluxmod.f90

General The module fluxmod.f90 contains subroutines to compute the different
surface fluxes and to perform the vertical diffusion. The interface to the main PUMA
module puma.f90 is given by the subroutines fluxini, fluxstep and fluxstop which are
called in puma.f90 from the subroutines prolog, gridpointd and epilog, respectively.

Input/Output fluxmod.f90 does not use any extra input file or output file and is
controlled by the namelist fluxpar which is part of the namelist file puma namelist:

Parameter Type Purpose Default

NEVAP Integer Switch for surface evaporation (0 = off,
1 = on)

1

NSHFL Integer Switch for surface sensible heat flux
(0 = off, 1 = on)

1

NSTRESS Integer Switch for surface wind stress (0 = off,
1 = on)

1

NTSA Integer Switch for computing the near surface
air temperature which is used for the
Richardson number (1 = potential tem-
perature, 2 = virtual potential temper-
ature)

2

NVDIFF Integer Switch for vertical diffusion (0 = off,
1 = on)

1

VDIFF LAMM Real Tuning parameter for vertical diffusion 160.
VDIFF B Real Tuning parameter for vertical diffusion 5.
VDIFF C Real Tuning parameter for vertical diffusion 5.
VDIFF D Real Tuning parameter for vertical diffusion 5.

Structure Internally, fluxmod.f90 uses the FORTRAN-90 module fluxmod, which
uses the global common module pumamod from pumamod.f90. Subroutine fluxini
reads the namelist and, if the parallel version is used, distributes the namelist pa-
rameters to the different processes. Subroutine fluxstep calls the subroutine surflx to
compute the surface fluxes and calls the subroutine vdiff to do the vertical diffusion.
Subroutine fluxstop is a dummy subroutine since there is nothing to do to finalize
the computations in fluxmod.f90. The computation of the surface fluxes in surflx
is spitted into several parts. After initializing the stability dependent transfer co-
efficients, the subroutines mkstress, mkshfl and mkevap do the computations which
are related to the surface wind stress, the surface sensible heat flux and the surface
evaporation, respectively.

11

2.2 miscmod.f90

General The module miscmod.f90 contains miscellaneous subroutines which do not
fit well to other modules. The interface to the main module plasim.f90 is given
by the subroutines miscini, miscstep and miscstop which are called in puma.f90
from the subroutines prolog, gridpointd and epilog, respectively. A subroutine to
eliminate spurious negative humidity and an optional subroutine to relax the upper
level temperature towards a prescribed distribution is included in miscmod.f90.

Input/Output miscmod.f90 does not use any extra output file. If the relaxation
is switched on, a climatological annual cycle of the prescribed upper level temper-
ature distribution [K] is read from the external file surface.txt. The file format is
formatted SERVICE format with (8I10) for the headers and (8E12.6) for the tem-
perature fields. To assign the field, the header needs to have the header information
code 130, level 1 and a date identifier of the form yymmdd or mmdd where mm goes
from 1 to 12 (January to December) or from 0 to 14 (including the December of the
previous year and the January of the following year). Fields which are not needed
will be skipped. The module is controlled by the namelist miscpar which is part of
the namelist file puma namelist:

Parameter Type Purpose default

NFIXER Integer Switch for correction of neg-
ative moisture (0 = off , 1=
on)

1

NUDGE Integer Switch for temperature re-
laxation in the uppermost
level (0 = off , 1= on)

0

TNUDGE Real Time scale [d] of the tem-
perature relaxation

10.

Structure Internally, miscmod.f90 uses the FORTRAN-90 module miscmod, which
uses the global common module pumamod from pumamod.f90. Subroutine miscini
reads the namelist and, if the parallel version is used, distributes the namelist param-
eters to the different processes. If the relaxation is switched on, the climatological
temperature is read from surface.txt and distributed to the processors. Subroutine
miscstep calls the subroutine fixer to eliminate spurious negative humidity arising
from the spectral method and, if the relaxation is switched on, calls the subroutine
mknudge to do the temperature nudging. Subroutine miscstop is a dummy sub-
routine since there is nothing to do to finalize the computations in miscmod.f90.

12 CHAPTER 2. MODULES

2.3 surfmod.f90

General The module surfmod.f90 deals as an interface between the atmospheric part
of the model and modules, or models, for the land and the oceans. The interface
to the main PUMA module puma.f90 is given by the subroutines surfini, surfstep
and surfstop which are called in puma.f90 from the subroutines prolog, gridpointd
and epilog, respectively. Calls to subroutines named landini, landstep and landstop
and seaini, seastep and seastop provide the interface to land and the ocean modules,
respectively.

Input/Output surfmod.f90 reads the land-sea mask and the orography (surface
geopotential) [m2/s2] from file surface.txt. The file format is formatted SERVICE
format with (8I10) for the headers and (8E12.6) for the fields. To assign the fields,
the headers need to have the header information code 129 for the surface geopotential
and 172 for the land-sea mask (1.0 = land; 0.0 = sea). Fractional land-sea-masks
containing other values than 1.0 and 0.0 will be converted with values > 0.5 set to
1.0 and all other to 0.0. surfmod.f90 is controlled by the namelist surfpar which is
part of the namelist file puma namelist:

Parameter Type Purpose default

NSURF Integer Debug switch not active
NOROMAX Integer Resolution of orography NTRU
OROSCALE Real Scaling factor for orography 1.0

Structure Internally, surfmod.f90 uses the FORTRAN-90 module surfmod, which
uses the global common module pumamod from pumamod.f90. Subroutine surfini
reads the namelist and, if the parallel version is used, distributes the namelist pa-
rameters to the different processes. If the run is not started from a restart file, the
land-sea-mask and the orography are read from file surface.txt. According to the
namelist input, the orography is scaled by OROSCALE, transfered into spectral
space and truncated to NOROMAX. Calls to subroutines landini and seaini are the
interfaces to the respective initialization routines contained in the land and ocean
modules. During the run, the interface to land and ocean is given by calls to the
external subroutines landstep and seastep, which are called by surfstep. At the end
of the integration, interface subroutines landstop and seastop are called by surfstop.

13

2.4 fftmod.f90 / fft991mod.f90

General The module fftmod.f90 contains all subroutines necessary to perform the
fast fourier transformation and its inverse. The interface to the main module
plasim.f90 is given by the subroutines gp2fc and fc2gp which are called in plasim.f90
from the subroutine gridpoint.

Input/Output fftmod.f90 does not use any extra input file or output file. No
namelist input is required.

Structure Internally, fftmod.f90 uses the FORTRAN-90 module fftmod, which uses
no other modules. Subroutine gp2fc performs the transformation from grid point
space into fourier space while the subroutine fc2gp does the transformation from
fourier space into grid point space. Both routines use several subroutines to do the
direct or indirect transformation for different factors. When gp2fc or fc2gp is called
for the first time, fftini is called to do the initialization of the FFT.

The alternate module fft991mod.f90 may be used instead of fftmod.f90. While fft-
mod.f90 runs faster fft991mod.f90 can be used for resolutions, that are not supported
by fftmod.f90, e.g. T63 or T106. Edit the file Most15/plasim/src/make plasim
for module selection. Use either

FFTMOD=fftmod

or

FFTMOD=fft991mod

14 CHAPTER 2. MODULES

2.5 landmod.f90

General The module landmod.f90 contains parameterizations for land surface and
soil processes which include the simple biome model SIMBA and a model for the river
runoff. The interface to the Planet Simulator is given via the module surfmod.f90
by the subroutines landini, landstep and landstop which are called in surfmod.f90
from the subroutines surfini, surfstep and surfstop, respectively.

Input/Output landmod.f90 reads several surface and soil parameters either from
the initial file surface.txt or from the restart file plasim restart which is written
at the end of an integration. surface.txt contains several surface fields which are
needed for initialization. The file format is formatted SERVICE format with (8I10)
for the header and (8E12.6) for the fields. The file may include the following fields:
surface geopotential (orography) [m2/s2], land-sea mask [1.0,0.0], surface roughness
[m], background albedo [frac.], glacier mask [frac.], bucket size [m], soil temperature
[K], climatological annual cycle of the surface temperature [K], climatological annual
cycle of the soil wetness [m]. To assign the fields, the headers need to have the
header information code 129 for surface geopotential, code 172 for the land-sea
mask (1. = land; 0. = sea), 173 for the surface roughness, 174 for the background
albedo, 232 for the glacier mask (1. = glacier; 0. = no glacier), 229 for the bucket
size, 209 for the soil temperature, 169 for the surface temperature and 140 for the
soil wetness. for the climatological annual cycles of surface temperature and soil
wetness, a date identifier of the form yymmdd or mmdd where mm goes from 1 to 12
(January to December) is required. Two additional months with mm=0 indicating
the December of the preceding year an mm=13 for the January of the following
year may be included for interpolation during transient simulations. If there are
some fields not present in the surface.txt default values will be used which can be
set in the namelist. The use of some fields depend on the setting of some namelist
parameters. The restart file plasim restart is an unformatted file which contains
all variables needed to continue the run. landmod.f90 is controlled by the namelist
landpar given in the namelist file land namelist:

Parameter Type Purpose Default

NLANDT Integer Switch for surface tempera-
ture (1 = computed; 2 = cli-
matology)

1

NLANDW Integer Switch for soil wetness
(1 = computed; 2 = clima-
tology)

1

NBIOME Integer Switch for biome model
SIMBA (1 = on ; 0 = off)

0

ALBLAND Real Background albedo 0.2
DZ0LAND Real Roughnesslength [m] 2.0
DRHSLAND Real Wetness factor 0.25
ALBSMIN Real Minimum albedo for snow 0.4
ALBSMAX Real Maximum albedo for snow 0.8

15

Parameter Type Purpose Default

ALBGMIN Real Minimum albedo for
glaciers

0.6

ALBGMAX Real Maximum albedo for
glaciers

0.8

WSMAX Real Maximum field capacity of
soil water (bucket size) [m]

0.5

DRHSFULL Real Threshold above which wet-
ness factor is 1

0.4

DZGLAC Real Threshold of orography to
be glacier (-1.0 = none) [m]

-1.0

DZTOP Real Thickness of the uppermost
soil layer [m]

0.2

DSOILZ(5) Real Array Soil layer thicknesses [m] 0.4,0.8,1.6,3.2,6.4

Structure Internally, landmod.f90 uses the FORTRAN-90 module landmod, which
uses the global common module pumamod from plasimmod.f90. Subroutine landini
reads the namelist and, if the parallel version is used, distributes the namelist pa-
rameters to the different processes. If the run is not started from a restart file, the
initialization file surface.txt is being read. The soil and the river runoff are ini-
tialized via soilini and roffini and different variables are set according to the values
given by the namelist or the surface.txt. Additionally, the climatological surface
temperatures and soil wetnesses are updated from surface.txt if NRESTART = 2.
If NRESTART = 3 (special application) the bucket size, the roughness length and
the albedo are set to the values given in the namelist. Subroutine landstep computes
new surface and soil values via soilstep which calls tands and wandr for the heat and
water budgets, respectively. If NLANDT and/or NLANDW are set to 0, climato-
logical values are used for the surface temperature and the soil wetness. Via roffstep
the river runoff is computed. Finally the biome model simbastep is called. The land
model is finalized by landstop which writes the restart record to plasim restart.

16 CHAPTER 2. MODULES

2.6 legmod.f90

General The module legmod.f90 contains all subroutines necessary to perform
the Legendre transformation and its inverse. The interface to the main module
plasim.f90 is given by the subroutines legini, inigau, fc2sp, fc3sp, and sp2gp
which are called in plasim.f90 from the subroutines prolog and gridpoint

Input/Output legmod.f90 does not use any extra input file or output file. No
namelist input is required

The following subroutines are included in legmod.f90:

Subroutine Purpose

inigau compute Gaussian abscissas and weights
legini compute Legendre polynomials
fs2sp Fourier to Spectral transformation
sp2fc Spectral to Fourier transformation
sp3fc Simultaneous transformation of T, Div., and Vort.
dirlega Compute and transform adiabatic tendencies
dirlegd Compute and transform diabatic tendencies
invlega Spectral to Fourier - adiabatic part
invlegd Spectral to Fourier - diabatic part

17

2.7 mpimod.f90 / mpimod stub.f90

General The module mpimod.f90 contains interface subroutines to the MPI (Mes-
sage Passing Interface) needed for (massive) parallel computing. Several MPI rou-
tines are called from the module. The interface to other modules are given by nu-
merous subroutines which names starts with mp. Subroutines from mpimod.f90 are
called in sveral other modules. There are no direct calls to MPI other than in mpi-
mod.f90. This encapsulation makes it possible to use mpimod stub.f90 for single CPU
runs without changing any other part of the model code. The selection is done auto-
matically by using MoSt or manually by editing ”Most15/plasim/src/make plasim”.

Input/Output mpimod.f90 and mpimod stub do not use any extra input file or
output file. No namelist input is required

Structure Internally, mpimod.f90 uses the FORTRAN-90 module mpimod, which
uses the global common module pumamod from plasimmod.f90 and the MPI module
mpi. The following subroutines are included in mpimod.f90:

Subroutine Purpose

mpbci broadcast 1 integer
mpbcin broadcast n integers
mpbcr broadcast 1 real
mpbcrn broadcast n reals
mpbcl broadcast 1 logical
mpscin scatter n integers
mpscrn scatter n reals
mpscgp scatter grid point field
mpgagp gather grid point field
mpgallgp gather grid point field to all
mpscsp scatter spectral field
mpgasp gather spectral field
mpgacs gather cross section
mpgallsp gather spectral field to all
mpsum sum spectral field
mpsumsc sum and scatter spectral field
mpsumr sum n reals
mpsumbcr sum and broadcast n reals
mpstart initialize MPI
mpstop finalize MPI

18 CHAPTER 2. MODULES

Subroutine Purpose

mpreadgp read and scatter grid point field
mpwritegp gather and write grid point field
mpwritegph gather and write (with header) grid point field
mpreadsp read and scatter spectral field
mpwritesp gather and write spectral field
mpi info give information about setup
mpgetsp read spectral array from restart file
mpgetgp read gridpoint array from restart file
mpputsp write spectral array to restart file
mpputgp write gridpoint array to restart file
mpmaxval compute maximum value of an array
mpsumval compute sum of all array elements

19

2.8 outmod.f90

General The module outmod.f90 controls the data output of the model. The inter-
face to the main PUMA module puma.f90 is given by the subroutines outini, outgp,
outsp, outreset and outaccu which are called in puma.f90 from the subroutines prolog
and master.

Input/Output outmod.f90 writes the output data to the file puma output which
is an unformatted file. puma output is designed to be post processed by the
program burn (see section 5), which converts the model variables to useful output
in user friendly format. There is no separate namelist for outmod.f90 but some
parameter of namelist inp of plasim.f90 are used to control the format and the
output interval.

Structure Internally, outmod.f90 uses the global common module pumamod from
plasimmod.f90 in several subroutines. Subroutine outini does the initialization. Sub-
routines outgp and outsp write the grid point and the spectral fields to the output
file puma output. outaccu accumulates some output variables over the output
interval. outreset resets the accumulated arrays to zero.

20 CHAPTER 2. MODULES

2.9 plasim.f90

General The module plasim.f90 is the main module of the model. It includes the
main program plasim and controls the run. From plasim.f90 the interface routines
to the modules miscmod.f90, fluxmod.f90, radmod.f90, rainmod.f90, surfmod.f90 are
called. The output is done by calling the interface routines to outmod.f90. In
addition, the adiabatic tendencies and the horizontal diffusion are computed in
plasim.f90. To do the necessary transformations, calls to the modules fftmod.f90 and
legmod.f90 are used.

Input/Output plasim.f90 does not use any extra input file or output file. A di-
agnostic print out is written on standard output. plasim.f90 is controlled by the
namelist inp which is part of the namelist file puma namelist:

Parameter Type Purpose Default

KICK Integer Switch for initial white
noise disturbance on sur-
face pressure (0 = none;
1 = global; 2 = hemispher-
ically symmetric; 3 = one
wavenumber only)

1

NWPD Integer Number of Writes Per Day
(for output data)

1

NCOEFF Integer Number of spectral coeffi-
cients in diagnostic print
out

0

NDEL(NLEV) Integer Array Order of the horizontal dif-
fusion

NLEV · 2

NDIAG Integer Time interval for diagnostic
print out [time steps]

12

NKITS Integer Number of initial explicit
Euler time steps

3

N RUN YEARS Integer Number of years to run 1
N RUN MONTHS Integer Number of months to run 0
N RUN DAYS Integer Number of days to run (for

short test runs)
-1

N START YEAR Integer Start year 1
N START MONTH Integer Start month 1
N DAYS PER YEAR Integer 365: use real calendar with

leap years, 360: use simple
calendar with 12 months of
equal length

360

N DAYS PER MONTH Integer Number of days per month
for simple calendar

30

21

Parameter Type Purpose Default

MPSTEP Integer Minutes per step = length
of timestep

45

NEQSIG Integer Switch for non equally
spaced sigma levels
(1 = non equally spaced;
1 = equally spaced)

1

NPRINT Integer Switch for extended debug
print out (0 = off; 1 = on;
2 = very extended)

0

NPRHOR Integer Number of the grid point to
be used for very extended
debug print out

0

NPACKSP Integer Switch for spectral output
(0 = normal; 1 = com-
pressed)

1

NPACKGP Integer Switch for grid point out-
put (0 = normal; 1 = com-
pressed)

1

NRAD Integer Switch for radiation
(0 = off; 1 = on)

1

NFLUX Integer Switch for surface fluxes
and vertical diffuson
(0 = off; 1 = on)

1

NDIAGGP Integer Switch for additional di-
agnostic grid point output
(0 = off; 1 = on)

0

NDIAGSP Integer Switch for additional di-
agnostic spectral output
(0 = off; 1 = on)

0

NDIAGCF Integer Switch for additional cloud
forcing diagnostic (0 = off;
1 = on)

0

NDIAGGP2D Integer Number of additional diag-
nostic 2-d grid point output
(0 = off; 1 = on)

0

NDIAGGP3D Integer Number of additional diag-
nostic 3-d grid point output
(0 = off; 1 = on)

0

NDIAGSP2D Integer Number of additional diag-
nostic 2-d spectral output
(0 = off; 1 = on)

0

NDIAGSP3D Integer Number of additional diag-
nostic 3-d spectral output
(0 = off; 1 = on)

0

22 CHAPTER 2. MODULES

Parameter Type Purpose Default

NDL(NLEV) Integer Array Switch for diagnostic print
out of a level (0 = off;
1 = on)

NLEV · 0

NHDIFF Integer Cut off wave number for
horizontal diffusion

15

NTIME Integer Switch for CPU time diag-
nostics (0 = off; 1 = on)

0

NPERPETUAL Integer Switch for perpetual simu-
lations (0 = annual cycle;
>0 = day of the year)

0

DTEP Real Equator to pole tempera-
ture difference [K] for New-
tonian cooling (usually not
used)

0.0

DTNS Real North pole to south pole
temperature difference [K]
for Newtonian cooling (usu-
ally not used)

0.0

DTROP Real Tropopause height [m] for
Newtonian cooling (usually
not used)

12000.0

DTTRP Real Smoothing of the
tropopause [K] for Newto-
nian cooling (usually not
used)

2

TGR Real Surface temperature [K] for
Newtonian cooling (usually
not used)

280

TDISSD(NLEV) Real Array time scale [d] for the hor-
izontal diffusion of diver-
gence

NLEV · 0.2

TDISSZ(NLEV) Real Array time scale [d] for the hori-
zontal diffusion of vorticity

NLEV · 1.1

TDISST(NLEV) Real Array time scale [d] for the hori-
zontal diffusion of tempera-
ture

NLEV · 5.6

TDISSQ(NLEV) Real Array time scale [d] for the hori-
zontal diffusion of moisture

NLEV · 5.6

PSURF Real Global mean sea level pres-
sure [Pa]

101100.00

RESTIM(NLEV) Real Array Time scale [d] for Newto-
nian cooling (usually not
used)

NLEV · 0.0

23

Parameter Type Purpose Default

MARS Integer 1: Set all parameters for
Mars atmosphere

0

NGUI Integer Run with (1) or without (0)
GUI

0

NOUTPUT Integer Global witch for enabling
(1) or disabling (0) output
to file puma output

1

T0(NLEV) Real Array Reference temperature used
in the discretization scheme

NLEV · 250.0

TFRC(NLEV) Real Array Time scale [d] for Rayleigh
friction (0.0 = off)

NLEV · 0.0

Structure Internally, plasim.f90 uses the FORTRAN-90 global common module
pumamod from plasimmod.f90. After starting MPI, the main program plasim calls
prolog for initializing the model. Then, master is called to do the time stepping.
Finally, subroutine epilog finishes the run. In subroutine prolog, calls to different
subroutines, which are part of plasim.f90 or are provided by other modules, initialize
various parts of the model: gauaw and inilat build the grid, readnl reads the namelist
and sets some parameter according to the namelist input, initpm and initsi initialize
some parameter for the physics and the semi implicit scheme, respectively. outini
starts the output. If a file named plasim restart exists all variables and arrays
are read by restart, otherwise initfd sets the prognostic variables to their initial
values. Calls to miscini fluxini, radini, rainini and surfini start the initialization
of the respective external modules.i Finally, the global mean surface pressure is
set according to PSURF (the observed value is 1011 hPa (Trenberth 1981) while
1013 is the ICAO standard) and the orography. Subroutine master controls the
time stepping. First, if its not a restart, initial NKITS explicit forward timesteps
are performed. The main loop is defined by calling gridpointa for the adiabatic
tendencies, spectrala to add the adiabatic tendencies, gridpointd for the diabatic
tendencies (which are computed by the external modules), spectrald to add the
diabatic tendencies and the interface routines to the output module outmod.f90.
The run is finalized by subroutine epilog which writes the restart records and calls
the respective interface routines of the external modules.

24 CHAPTER 2. MODULES

2.10 plasimmod.f90

General The file plasimmod.f90 contains the module pumamod.f90 which de-
clares all parameters and variables which may be used to share information between
plasim.f90 and other modules. No subroutines or programs are included.

Input/Output pumamod.f90 does not use any extra input file or output file. No
namelist input is required

Structure Internally, plasimmod.f90 is a FORTRAN-90 module named pumamod.
Names for global parameters, scalars and arrays are declared and, if possible, values
are preset.

25

2.11 radmod.f90

General The module radmod.f90 contains subroutines to compute radiative energy
fluxes and the temperature tendencies due to long wave and short wave radiation.
The interface to the main PLASIM module plasim.f90 is given by the subroutines
radini, radstep and radstop which are called in plasim.f90 from the subroutines prolog,
gridpointd and epilog, respectively.

Input/Output radmod.f90 does not use an extra output file. If the Switch for ozone
(NO3, see namelist) is set to 2 (externally prescribed), the climatological cycle of
the ozone distribution is read from the external file surface.txt which name is given
in the namelist. The file format is formatted SERVICE format with (8I10) for the
header and (8E12.6) for the fields. To assign the fields, the headers need to have the
header information code 200, level going from 1 to NLEV and a date identifier of
the form yymmdd or mmdd where mm goes from 01 to 12 (January to December).
radmod.f90 is controlled by the namelist radpar which is part of the namelist file
puma namelist:

Parameter Type Purpose Default

NDCYCLE Integer Switch for diurnal cycle of
insolation (0 = off, 1 = on)

0

NO3 Integer Switch for ozone (0 = off,
1 = idealized distribution,
2 = externally presrcibed)

1

CO2 Real CO2 concentration [ppmv] 360.0
GSOL0 Real Solar constant [W/m2] 1367.0
IYRBP Integer Year PB (reference is 1950)

to calculate orbit from
-50

NSWR Integer Switch for short wave radi-
ation (0 = off, 1 = on)

1

NLWR Integer Switch for long wave radia-
tion (0 = off, 1 = on)

1

NSOL Integer Switch for incoming solar
radiation (0 = off, 1 = on)

1

NSWRCL Integer Switch for computed short
wave cloud properties
(0 = off, 1 = on)

1

NRSCAT Integer Switch for Rayleigh scatter-
ing (0 = off, 1 = on)

1

RCL1(3) Real Array Prescribed cloud albedos
[frac.] for high, middle and
low level clouds (spectral
range 1)

0.15,0.30.0.60

26 CHAPTER 2. MODULES

Parameter Type Purpose Default

RCL2(3) Real Array Prescribed cloud albedos
[frac.] for high, middle and
low level clouds (spectral
range 2)

0.15,0.30.0.60

ACL2(3) Real Array Prescribed cloud absorptiv-
ities [frac.] for high, middle
and low level clouds (spec-
tral range 2)

0.05,0.10.0.20

CLGRAY Real Prescribed grayness of
clouds (-1.0 = computed)

-1.0

TPOFMT Real Tuning for point of mean
transmission

0.15

ACLLWR Real Mass absorption coefficient
for clouds (long wave)

0.1

TSWR1 Real Tuning of cloud albedo
(spectral range 1)

0.035

TSWR2 Real Tuning of cloud back scat-
tering (spectral range 2)

0.04

TSWR3 Real Tuning of cloud single
scattering albedo (spectral
range 2)

0.006

DAWN Real Threshold for zenith angle 0.0

Structure Internally, radmod.f90 uses the FORTRAN-90 module radmod, which
uses the global common module pumamod from plasimmod.f90. Additionally, the
FORTRAN-90 module orbparam is used. Subroutine radini reads the namelist and,
if the parallel version is used, distributes the namelist parameters to the different
processes. Orbital parameters are computed by calling orb params. If NO3 is set
to 2, the ozone distribution is read from surface.txt. Subroutine radstep calls the
subroutines solang and mko3 to compute the cosine of the solar angle and the ozone
distribution, respectively. The short wave radiative fluxes are calculate in swr while
the long wave radiative fluxes are computed in lwr. Subroutine radstop is a dummy
subroutine since there is nothing to do to finalize the computations in radmod.f90.

27

2.12 rainmod.f90

General The module rainmod.f90 contains subroutines to compute large scale and
convective precipitation and the related temperature tendencies. In addition, a
parameterization of dry convective mixing of temperature and moisture is included
and cloud cover is diagnosed. The interface to the main PLASIM module plasim.f90
is given by the subroutines rainini, rainstep and rainstop which are called in puma.f90
from the subroutines prolog, gridpointd and epilog, respectively.

Input/Output rainmod.f90 does not use any extra input or output file and is con-
trolled by the namelist rainpar which is part of the namelist file puma namelist:

Parameter Type Purpose Default

KBETTA Integer Switch for betta in Kuo
parameterization (0 = off,
1 = on)

1

NPRL Integer Switch for large scale pre-
cipitation (0 = off, 1 = on)

1

NPRC Integer Switch for convective pre-
cipitation (0 = off, 1 = on)

1

NDCA Integer Switch for dry convective
adjustment (0 = off, 1 = on)

1

RCRIT(NLEV) Real Array Critical relative humidity
for cloud formation

computed

CLWCRIT1 Real Critical vertical veloc-
ity for cloud formation
[Pa/s] (not active if
CLWCRIT2> CLWCRIT1)

-0.1

CLWCRIT2 Real Critical vertical veloc-
ity for cloud formation
[Pa/s] (not active if
CLWCRIT2> CLWCRIT1)

0.0

Structure Internally, rainmod.f90 uses the FORTRAN-90 module rainmod, which
uses the global common module pumamod from plasimmod.f90. Subroutine rainini
reads the namelist and, if the parallel version is used, distributes the namelist param-
eters to the different processes. Subroutine rainstep calls the subroutine mkdqdtgp
to obtain the adiabatic moisture tendencies in grid point space, which are needed for
the Kuo parameterization. kuo is called to compute the convective precipitation and
the respective tendencies. Dry convective adjustment is performed in mkdca. Large
scale precipitation is computed in mklsp. Finally, diagnostic clouds are calculated
in mkclouds. Subroutine radstop is a dummy subroutine since there is nothing to do
to finalize the computations in radmod.f90.

28 CHAPTER 2. MODULES

2.13 seamod.f90

General The module seamod.f90 is the interface from the atmosphere to the ocean
and the sea ice. The interface to the main PLASIM module puma.f90 is given by
the subroutines seaini, seastep and seastop which are called in puma.f90 from the
subroutines prolog, gridpointd and epilog respectively.

Input/Output seamod.f90 reads different surface parameters either from the file
surface.txt (see namelist) and the file ocean parameter or from the restart file
sea restart which is written at the end of an integration.. The files formats are
unformatted for the restart file, formatted SERVICE format with (8I10) for the
header and (8E12.6) for the fields for surface.txt and formatted EXTRA format
with (4I10) for the header and (6(1X,E12.6)) for the fields for ocean parameter.
The file surface.txt may include the following fields: The climatological annual
cycle of the surface temperature [K] and the climatological annual cycle of the sea
ice compactness [frac.]. To assign the fields, the headers need to have the header
information code 169 for surface temperature and code 210 for the compactness
(1 = ice; 0. = open water). a date identifier of the form yymmdd or mmdd where
mm goes from 1 to 12 (January to December) is required. Fields which are not
needed will be skipped. The file ocean parameter includes the following fields:
The climatological annual cycle of the sea surface temperature [K], the climatological
annual cycle of the mixed layer depth [m] and the climatological average of the deep
ocean temperature [m]. To assign the fields, the order must be as described above
(no header information is used). The restart file sea restart contains all variables
needed to continue the run. seamod.f90 is controlled by the namelist seapar given
in the namelist file sea namelist:

Parameter Type Purpose Default

ALBSEA Real Albedo for ice free ocean 0.069
ALBICE Real Maximum albedo for sea ice 0.7
DZ0SEA Real Minimum roughness length

[m] for ice free ocean
1.0 · 10−5

DZ0ICE Real Roughness length [m] for
sea ice

1.0 · 10−3

DRHSSEA Real Wetness factor for ice free
ocean

1.0

DRHSICE Real Wetness factor for sea ice 1.0
NOCEAN Integer Switch for ocean model

(0 = climatological SST,
1 = ocean model)

1

NICE Integer Switch for sea ice model
(0 = climatological, 1 = sea
ice model)

1

29

Parameter Type Purpose Default

NCPL ICE OCEAN Integer ice-ocean coupling time
steps

32

NCPL ATMOS ICE Integer ice atmosphere coupling
time steps

1

TDEEPSEA Real Homogeneous deep ocean
temperature [K]

0.0

DHICEMIN Real Minimum sea ice thickness
[m]

0.1

Structure Internally, seamod.f90 uses the FORTRAN-90 module seamod, which
uses the global common module pumamod from plasimmod.f90. Subroutine seaini
reads the namelist and, if the parallel version is used, distributes the namelist pa-
rameters to the different processes. If it is not a restart (i.e. if NRESTART from inp
of plasimmod.f90 is 0), the files surface.txt and ocean parameter are being read.
The climatological sea ice compactness is converted to a sea ice thickness as initial
condition and additional surface parameters are set. If it is a restart, the restart
file sea restart is read. Subroutine seastep accumulates the variables used for the
coupling between the atmosphere and the ocean. The coupling is done via the sea
ice model. There is no direct connection between atmosphere and ocean model. If
there is no sea ice, the coupling quantities are passed through the ice model without
changes. Subroutine seastop finalizes the run and writes the restart records.

30 CHAPTER 2. MODULES

2.14 Sea ice and ocean modules

This section describes the modules that represent sea ice and ocean and the necessary interfaces
between these modules and the atmospheric modules. Conceptually, the sea ice model lies
inbetween the atmosphere model and the ocean model. Thus, the PUMA main part and the
ocean model are both coupled to the sea ice model, but not directly to each other. The sea ice
model decides whether a given gridpoint is covered with ice or not, in the latter case, it merely
functions as passing the ocean fluxes to the atmosphere and vice versa. The parameters that
are exchanged are listed in Table 2.1. The sea ice and ocean model use a time step of one day.
Thus, atmospheric coupling to the sea ice model is performed every 32 time steps, while the
sea ice and ocean model are coupled every time step. The coupling scheme is shown in Fig.
2.1. Fig. 2.2 shows how the subroutines are placed when no external coupler is used.

Parameter Atmosphere ←→ Ice Ice ←→ Ocean
Ice cover ← −
Ice thickness ← →
Snow thickness ← →
Surface temperature ← ←
Deep sea temperature − ←
Mixed layer depth − ←
Net precipitation, runoff → →
Salinity − ←
Melt and freeze volume − →
Heat fluxes → →
d(Heat fluxes)/dT → −
Radiation → −
Wind stress → →

Table 2.1: Parameters to be exchanged between models. Arrows denote the direction in which
the parameter is passed, e.g. the atmosphere receives ice cover information from the ice model.

2.14. SEA ICE AND OCEAN MODULES 31

OCEAN

SEA ICE

ATMOSPHERE

net precipitation,
runoff,
total heatflux,
sensible heatflux,
radiation,
wind stress

surface temperature,
ice cover,
snow thickness,
ice thickness

sea surface temperature,
deep sea temperature,
mixed layer depth,
salinitynet precipitation,

runoff,
total heatflux,
wind stress,
freeze and melt volume

32

11

11

11

Ti
m

es
te

ps
Ti

m
es

te
ps

Figure 2.1: Schematic illustration of the model coupling.

32 CHAPTER 2. MODULES

PUMA MAIN LOOP
puma.f90

SURFSTEP
surfmod.f90 SEASTEP

seamod.f90

LANDSTEP
landmod.f90

SURFSTEP
surfmod.f90

CPLEXCHANGE_ICE
intermod_atm.f90

ICESTEP
icemod.f90

CPLEXCHANGE_OCEAN
iintermod_ice.f90

OCEANSTEP
oceanmod.f90

CPLEXCHANGE_ATMOS
intermod_ice.f90

FLOW DIAGRAM
ATMOSPHERE − ICE − OCEAN

EXCHANGE

Figure 2.2: Subroutine flow when no external coupler is used.

2.14. SEA ICE AND OCEAN MODULES 33

2.15 icemod.f90

General The module icemod.f90 contains subroutines to compute sea ice
cover and thickness. The interface to the main PLASIM module is given
by the subroutine icestep, which is called by cplexchange_ice (defined in
intermod_atm.f90), which is called by seastep (defined in seamod.f90).

Input/Output icemod.f90 requires the file ice_flxcor if NFLXCORR is set to
a negative value. If NOUTPUT is set to 1, the output files fort.75 containing
global fields of ice model data and the file fort.76 containing diagnostic ice
data are produced (for details, see the reference manual). Both output files
are in service format. The module is controlled by the namelist icepar in the
file ice_namelist.

Parameter Type Purpose default
NDIAG INTEGER Diagnostic output every NDIAG

time steps
160

NOUT INTEGER Model data output every NOUT
time steps

32

NOUTPUT INTEGER Icemodel output (0=no,1=yes) 1
NFLXCORR INTEGER Time constant for restoring (> 0),

no flux correction (= 0), use flux-
correction from file (< 0)

360 d

Structure icemod.f90 uses the module icemod which is not dependent on
the module pumamod. Subroutine iceini reads the namelist and, when re-
quired, the flux correction from the file ice_flxcor. Subroutine icestep calls
cplexchange_atmos (defined in intermod_ice) to get the atmospheric forcing
fields. If the sea_namelist parameter NICE is set to 1, the subroutine subice
is called, which calculates ice cover and thickness. Otherwise, climatologi-
cal data, interpolated to the current time step by iceget are used. If an ice
cover is present, the surface temperature is calculated in skintemp. Otherwise,
the surface temperature is set to the sea surface temperature calculated by
the ocean model. Every NCPL_ICE_OCEAN (defined in sea_namelist) time
steps, the external subroutine cplexchange_ocean (defined in intermod_ice) is
called to pass the atmospheric forcing to and retrieve oceanic data from the
ocean module oceanmod.f90. The oceanic data is used for ice calculations in
the next time step.

34 CHAPTER 2. MODULES

2.16 oceanmod.f90

General The module oceanmod.f90 contains a mixed layer ocean model, i.e.
subroutines to compute sea surface temperature and mixed layer depth. The
interface to the main PLASIM module is via the module icemod.f90 given
by the subroutine oceanstep, which is called by cplexchange_ocean (defined in
intermod_ice).

Input/Output oceanmod.f90 requires the file ocean_flxcor if NFLX-
CORRSST or NFLXCORRMLD is set to a negative value. If NOUTPUT
is set to 1, the output file fort.31 containing global fields of ocean model data
in service format is produced (for details, see the ice modul section of the ref-
erence guide). The module is controlled by the namelist oceanpar in the file
ocean_namelist.

Parameter Type Purpose default
NDIAG INTEGER Diagnostic output every NDIAG

time steps
480

NOUT INTEGER Model data output every NOUT
time steps

32

NOUTPUT INTEGER Oceanmodel output
(0=no,1=yes)

1

NFLXCORRMLD INTEGER Time constant for restoring
mixed layer depth (> 0), no flux
correction (= 0), use fluxcorrec-
tion from file (< 0)

60 d

NFLXCORRSST INTEGER Time constant for restoring sea
surface temperature (> 0), no
flux correction (= 0), use fluxcor-
rection from file (< 0)

60 d

Structure oceanmod.f90 uses the module oceanmod which is not dependent
on the module pumamod. Subroutine oceanini reads the namelist and, when
required, the flux corrections from the file ocean_flxcor. Subroutine oceanstep
calls mixocean, which calculates mixed layer depth and temperature. If an ice
cover is present, mixed layer depth is set to the climatological value and the
sea surface temperature is set to the freezing temperature. For details of the
mixed layer model, see the Planet Simulator Reference Manual.

Chapter 3

Parallel Program Execution

3.1 Concept

The Planet Simulator is coded for parallel execution on computers with multiple CPU’s
or networked machines. The implementation uses MPI (Message Passage Interface), that is
available for nearly every operating system http://www.mcs.anl.gov/mpi.

In order to avoid maintaining two sets of source code for the parallel and the single CPU
version, all calls to the MPI routines are encapsulated into a module. Users, that want to
compile and execute the parallel version use the module mpimod.f90 and the commands
mpif90 for compiling and mpirun for running.

If MPI is not implemented or the single CPU version is sufficient, mpimod stub.f90 is
used instead of mpimod.f90. Also remove or comment the line:

! use mpi

and set the number of processors to 1:

parameter(NPRO = 1)

3.2 Parallelization in Gridpoint Domain

The data arrays in gridpoint domain are either three-dimensional e.g. gt(NLON, NLAT, NLEV)
referring to an array organized after longitudes, latitudes and levels, or two-dimensional, e.g.
gp(NLON, NLAT). The code is organized such, that there are no dependencies in latitudinal
direction, while in gridpoint domain. Such dependencies are resolved during the Legendre-
Transformations. So the the partitioning of the data is done in latitudes. The program can
use as many CPU’s as latitudes with the extreme of every CPU doing the computations for a
single latitude. There is the restriction however, that the number of latitudes (NLAT) divided
by the number of processors (NPRO), giving the number of latitudes per process (NLPP) must
have zero remainder. E.g. A T31 resolution uses NLAT = 48. Possible values for NPRO are
then 1, 2, 3, 4, 6, 8, 12, 16, 24, and 48.

All loops dealing with a latitudinal index look like:

do jlat = 1 , NLPP

....

enddo

There are, however, many subroutines, with the most prominent called calcgp, that can
fuse latitudinal and longitudinal indices. In all these cases the dimension NHOR is used. NHOR
is defined as: NHOR = NLON ∗ NLPP in the pumamod - module. The typical gridpoint
loop that looks like:

35

http://www.mcs.anl.gov/mpi

36 CHAPTER 3. PARALLEL PROGRAM EXECUTION

do jlat = 1 , NLPP

do jlon = 1 , NLON

gp(jlon,jlat) = ...

enddo

enddo

is then replaced by the faster executing loop:

do jhor = 1 , NHOR

gp(jhor) = ...

enddo

3.3 Parallelization in Spectral Domain

The number of coefficients in spectral domain (NRSP) is divided by the number of processes
(NPRO) giving the number of coefficients per process (NSPP). The number is rounded up to
the next integer and the last process may get some additional dummy elements, if there is a
remainder in the division operation.

All loops in spectral domain are organized like:

do jsp = 1 , NSPP

sp(jsp) = ...

enddo

3.4 Synchronization points

All processes must communicate and have therefore to be synchronized at following events:

• Legendre-Transformation: This involves changing from latitudinal partitioning to spectral
partitioning and such some gather and scatter operations.

• Inverse Legendre-Transformation: The partitioning changes from spectral to latitudinal
by using gather, broadcast, and scatter operations.

• Input-Output: All read and write operations must be done only by the root process, who
gathers and broadcasts or scatters the information as desired. Code that is to be executed
by the root process exclusively is written like:

if (mypid == NROOT) then

...

endif

NROOT is typically 0 in MPI implementations, mypid (My process identification) is
assigned by MPI.

3.5. SOURCE CODE 37

3.5 Source code

It needs some discipline in order to maintain parallel code. Here are the most important rules
for changing or adding code to the Planet Simulator:

• Adding namelist parameters: All namelist parameters must be broadcasted after reading
the namelist. (Subroutines mpbci, mpbcr, mpbcin, mpbcrn)

• Adding scalar variables and arrays: Global variables must be defined in a module header
and initialized.

• Initialization code: Initialization code, that contains dependencies on latitude or spectral
modes must be done by the root process only and then scattered from there to all child
processes.

• Array dimensions and loop limits: Always use parameter constants (NHOR, NLAT,
NLEV, etc.) as defined in pumamod.f90 for array dimensions and loop limits.

• Testing: After significant code changes the program should be tested in single and in
multi-CPU configuration. The results of a single CPU run is usually not exactly the
same as the result of a multi-CPU run due to effects in rounding. But the results should
show only small differences during the first timesteps.

• Synchronization points: The code is optimzed for parallel execution and minimizes there-
fore communication overhead. The necessary communication code is grouped around
the Legendre-transformations. If more scatter/gather operations or other communica-
tion routines are to be added, they should be placed just before or after the execution
of the calls to the Legendre-Transformation. Any other place would degrade the overall
performance in introducing additional process synchronization.

38 CHAPTER 3. PARALLEL PROGRAM EXECUTION

Chapter 4

Graphical User Interface

4.1 Graphical user interface (GUI)

The Planet Simulator may be used in the traditional fashion, with shell scripts, batch jobs,
and network queuing systems. This is acceptable for long running simulations on complex
machines and number-crunchers, like vector- computers, massive-parallel-computers and work-
station clusters. There is now, however, a much more convenient method by using a graphical
user interface (GUI) for model setup with parameter configurations and for interaction between
user and model.

The Planet Simulator is configured and setup by the first GUI module named MoSt
(Model Starter, screenshot in 4.1). MoSt is the fastest way to get the model running. It
gives access to the most important parameters of the model preset to the most frequently
used values. The model can be started with a mouse click on the button labelled ”Save &
Run” either with the standard paramater setting or after editing some of the parameters in
the MoSt window. Some parameters, like horizontal and vertical resolution, or the number of
processors, require the building (compile, link and load) of new executables. MoSt achieves
this by generating and executing build scripts, that perform the necessary code changes and
create the required executable. Other parameters define startup- and boundary conditions or
settings for parameterisations. They can be edited in MoSt and, after a check for correct range
and consistency with other parameters, are written to the model’s namelist file.

Depending on all settings MoSt generates a runscript for the simulation. The user has the
choice of leaving MoSt and continue with the simulation under control of a GUI right away,
or to exit MoSt with the scripts prepared to run. The second alternative is useful for users,
who want to modify the setup beyond the scope of MoSt or want to run the Planet Simulator
without GUI.

There’s also a simple graphical editor for topograpy. Check the box Orography and then
use the mouse to mark rectangular areas in the topography display. Enter a value for rising
(positive) or lowering the area and press the button labelled Preprocess. The preprocessor
will be built and executed, a new topography will be computed and written to a start file.

Another editor is the mode editor for spherical harmonics. Green modes are enabled, red
modes are disabled. This feature can be used to make runs with only certain modes of spherical
harmonics being active. MB1, MB2, MB3 refer to the left, middle, and right mouse button.
You may toggle individual modes or whole lines and columns. Currently this mode editor can
only be used for Planet Simulator in the T21 resolution.

The GUI for running the Planet Simulator (screenshot in 4.2) has two main purposes.
The first one is to display model arrays in suitable representations. Current implementations
are:

• Zonal mean cross sections

39

40 CHAPTER 4. GRAPHICAL USER INTERFACE

Figure 4.1: Screenshot of Model Starter (MoSt)

Figure 4.2: Screenshot of Graphical User Interface (GUI)

4.2. GUI CONFIGURATION 41

• Horizontal global fields in cylinder projection

• Horizontal global fields in polar projection

• Time-longitude (Hovmoeller) diagrams

• Amplitudes of coefficients of spherical harmonics

• Time series

• Numerical values

In case of horizontal global grids pressing the MMB (Middle Mouse Button) toggles between
cylinder and polar projection. If the grid is just one level from many of a three dimensional
field like u or v, the level shown can be decreased by the LMB or increased by the RMB. For
Hovmoeller and longitude height sections the LMB and RMB can be used to select the latitude.

The second purpose is the interaction part of the GUI, which allows the user to change
selected model variables during the model run. It is not necessary, though possible, to pause
the model while changing variables. Changes to model variables are, of course, monitored in
the outputfile and checked by GUI for the appropriate range of values and maximum possible
change per timestep because, otherwise, a rapid parameter change or a choice of values beyond
the normal range may blow up the model.

All model variables, which are candidates for the display or interactive changes, have a
special code to communicate with the Planet Simulator. The experienced modeller can add
new code for more variables using the existing communication code as template. Thus all model
fields or even fields received via coupling with other models can be put on the GUI display.

Both, MoSt and GUI are implemented using the Xlib (X11R5), which is a library of routines
for graphics and event communication. As this library is part of every UNIX/Linux operating
system and base of all desktop environments, there is no need to install additional software for
running MoSt and GUI. Another important property of Xlib is the full network transparency.
The display of MoSt and GUI is not locked to the machine running the programs or the model.
In fact, the best performance is obtained in running the Planet Simulator on two or four
CPUs of a remote server while displaying the GUI on the user’s workstation. In summarizing,
the MoSt and GUI programs automate many tedious tasks, minimize the time to become
familiar with the Planet Simulator, and make debugging and parameter tuning much easier.
More kinds of presentations, coordinate projections and interactivity are being developed. A
graphical preprocessor with editor for boundary conditions and a graphical postprocessor are
future expansions to build an almost complete environment for modellers.

4.2 GUI configuration

On initialization the GUI reads its configuration from a file GUI.cfg which must be present
in the current directory. MoSt copies the file GUI.cfg from the ../dat/ directory to the run
directory while building the Planet Simulator. After reading GUI.cfg an attempt is made
to read the file GUI last used.cfg. This file is always written at the end of a GUI controlled
simulation. So one may rearrange and position GUI windows during a run and the new layout
will be saved to the file GUI last used.cfg. In order to make this user layout default for
following runs, just copy this file like:

Most15/plasim/run$ cp ../dat/GUI.cfg ../dat/GUI.cfg.old

Most15/plasim/run$ cp GUI_last_used.cfg ../dat/GUI.cfg

42 CHAPTER 4. GRAPHICAL USER INTERFACE

MoSt will then copy your new layout to the run directory at the next invocation.

The GUI.cfg is a text file that may be also edited manually. There is a section for each
window (counting from 0 to 8) which looks like:

[Window 00] <- window number (0..8)

Array:CSU <- array name

Plot:ISOCS <- picture type

Palette:U <- colour palette

Title:Zonal Wind [m/s] <- window title

Geometry: 529 299 2 3 <- width height left top

[Window 01]

Array:SPAN

Plot:ISOSH

Palette:AMPLI

Title:Spherical Harmonics Ps

Geometry: 529 299 535 3

...

Possible values for these items are:

4.2.1 Array

Name Description
CSU Cross Section U - Zonal mean zonal wind
CSV Cross Section V - Zonal mean meridional wind
CST Cross Section T - Zonal mean temperature
SPAN Spherical harmonics coefficients of surface pressure
GU Three dimensional grid of zonal wind
GV Three dimensional grid of meridional wind
GP Grid of surface pressure
DQVI Vertically integrated humidity
SCALAR Selected scalars for timeseries and tables

4.2.2 Plot

Name Description
ISOHOR Isolines and colouring of horizontal grids
ISOCS Isolines and colouring of cross sections
ISOHOV Colouring of Hovmoeller diagram
ISOTS Timeseries
ISOTAB Tables
ISOSH Coloured amplitudes
ISOLON Isolines and colouring of longitude height section

4.2. GUI CONFIGURATION 43

4.2.3 Palette

Name Range Description
AUTO automatic rainbow colours
U -10 .. 50 rainbow colours
V -10 .. 10 rainbow colours
T -50 .. 50 blue - red
P 985 .. 1025 blue - red
Q 0 .. 60 rainbow colours
MARST -90 .. 0 blue -red
AMPLI 0 .. 12 blue - green -red
VEG 0 .. 100 shades of green

4.2.4 Title

The title item may contain any text, but keep it short, the length of the window’s title bar is
limited. The words Latitude and Level have special features in conjunction with threedimen-
sional arrays, where the user may scroll the level or latitude. The GUI will insert the level
number after the world Level or the latitude after the word Latitude.

4.2.5 Geometry

The four integers following the geometry item describe the size and screen position of the
window. The first two parameters refer to width and height in screen pixel. These are the
sizes of the inner window, title bar, border and other decorations are not counted. The third
and fourth parameter set the coordinates of the upper left corner of the window x and y, again
without borders. If the geometry item is not defined, the GUI will initialize the window’s
geometry depending on the screen size.

44 CHAPTER 4. GRAPHICAL USER INTERFACE

Chapter 5

Postprocessor Pumaburner

5.1 Introduction

The Pumaburner is a postprocessor for the Planet Simulator and the PUMA model
family. It’s the only interface between raw model data output and diagnostics, graphics, and
user software.

The output data of the Planet Simulator are stored as packed binary (16 bit) values using
the model representation. Prognostic variables like temperature, divergence, vorticity, pressure,
and humidity are stored as coefficients of spherical harmonics on σ levels. Variables like radi-
ation, precipitation, evaporation, clouds, and other fields of the parameterization package are
stored on Gaussian grids.

The tasks of the Pumaburner are:

• Unpack the raw data to full real representation.

• Transform variables from the model’s representation to a user selectable format, e.g. grids,
zonal mean cross sections, fourier coefficients.

• Calculate diagnostic variables, like vertical velocity, geopotential height, wind compo-
nents, etc.

• Transfrom variables from σ levels to user selectable pressure levels.

• Compute monthly means and standard deviations.

• Write selected data either in SERVICE, GRIB, or NetCDF format for further processing.

5.2 Usage

pumaburn4 [options] InputFile OutputFile <namelist >printout

option -h : help (this output)

option -c : print available codes and names

option -d : debug mode (verbose output)

option -g : Grib output (override namelist option)

option -n : NetCDF output (override namelist option)

option -m : Mean=1 output (override namelist option)

InputFile : Planet Simulator or PUMA data file

OutputFile : GRIB, SERVICE, or NetCDF format file

namelist : redirected <stdin>

printout : redirected <stdout>

45

46 CHAPTER 5. POSTPROCESSOR PUMABURNER

5.3 Namelist

The namelist values control the selection, coordinate system and output format of the post-
processed variables. Names and values are not case sensitive. You can assign values to the
following names:

Name Def. Type Description Example
HTYPE S char Horizontal type HTYPE=G
VTYPE S char Vertical type VTYPE=P
MODLEV 0 int Model levels MODLEV=2,3,4
hPa 0 real Pressure levels hPa=500,1000
CODE 0 int ECMWF field code CODE=130,152
GRIB 0 int GRIB output selector GRIB=1
NETCDF 0 int NetCDF output selector NETCDF=1
MEAN 1 int Compute monthly means MEAN=0
HHMM 1 int Time format in Service format HHMM=0
HEAD7 0 int User parameter HEAD7=0815
MARS 0 int Use constants for planet Mars MARS=1
MULTI 0 int Process multiple input files MULTI=12

5.4 HTYPE

HTYPE accepts the first character of the following string. Following settings are equivalent:
HTYPE = S, HTYPE=Spherical Harmonics HTYPE = Something. Blanks and the equal-sign
are optional.
Possible Values are:

Setting Description Dimension for T21 resolution
HTYPE = S Spherical Harmonics (506):(22 * 23 coefficients)
HTYPE = F Fourier Coefficients (32,42):(latitudes,wavenumber)
HTYPE = Z Zonal Means (32,levels):(latitudes,levels)
HTYPE = G Gauss Grid (64,32):(longitudes,latitudes)

5.5 VTYPE

VTYPE accepts the first character of the following string. Following settings are equivalent:
VTYPE = S, VTYPE=Sigma VTYPE = Super. Blanks and the equal-sign are optional.
Possible Values are:

Setting Description Remark
VTYPE = S Sigma (model) levels Some derived variables are not available
VTYPE = P Pressure levels Interpolation to pressure levels

5.6 MODLEV

MODLEV is used in combination with VTYPE = S. If VTYPE is not set to Sigma, the
contents of MODLEV are ignored. MODLEV is an integer array that can get as many values
as there are levels in the model output. The levels are numbered from top of the atmo-
sphere to the bottom. The number of levels and the corresponding sigma values are listed in
the pumaburner printout. The outputfile orders the level according to the MODLEV values.
MODLEV=1,2,3,4,5 produces an output file of five model levels sorted from top to bottom,
while MODLEV=5,4,3,2,1 sorts them from bottom to top.

5.7. HPA 47

5.7 hPa

hPa is used in combination with VTYPE = P. If VTYPE is not set to Pressure, the contents
of hPa are ignored. hPa is a real array that accepts pressure values with the units hectoPascal
or millibar. All output variables will be interpolated to the selected pressure levels. There
is no extrapolation on the top of the atmosphere. For pressure values, that are lower than
that of the model’s top level, the top level value of the variable is taken. The variables tem-
perature and geopotential height are extrapolated if the selected pressure is higher than the
surface pressure. All other variables are set to the value of the lowest mode level for this
case. The outputfile contains the levels in the same order as set in hPa. Example: hpa =
100,300,500,700,850,900,1000.

5.8 MEAN

MEAN can be used to compute montly means and/or deviations. The Pumaburner reads date
and time information from the model file and handles different lengths of months and output
intervals correctly.

Setting Description
MEAN = 0 Do no averaging - all terms are processed.
MEAN = 1 Compute and write monthly mean fields. Not for spherical har-

monics, Fourier coefficients or zonal means on sigma levels.
MEAN = 2 Compute and write monthly deviations. Not for spherical harmon-

ics, Fourier coefficients or zonal means on sigma levels. Deviations
are not available for NetCDF output.

MEAN = 3 Combination of MEAN=1 and MEAN=2. Each mean field is fol-
lowed by a deviation field with an identical header record. Not for
spherical harmonics, Fourier coefficients or zonal means on sigma
levels.

5.9 Format of output data

The pumaburner supports three different output formats:

• GRIB (GRIdded Binary) WMO standard for gridded data.

• NetCDF (Network Common Data Format)

• Service Format for user readable data (see below).

For more detailed descriptions see for example:
http://www.nws.noaa.gov/om/ord/iob/NOAAPORT/resources/

Setting Description
GRIB = 1 NetCDF = 0 The output file is written GRIB format. This option

can be used only for HTYPE=Spherical Harmonics or
HTYPE=Gauss Grid.

GRIB = 0 NetCDF = 1 The output file is written in NetCDF format. This op-
tion can be used for HTYPE=Gauss Grid only.

GRIB = 0 NetCDF = 0 The output file is written in Service format. This is
the preferred format for user programs. For a detailed
description see the following section.

GRIB = 1 NetCDF = 1 Illegal combination.

http://www.nws.noaa.gov/om/ord/iob/NOAAPORT/resources/

48 CHAPTER 5. POSTPROCESSOR PUMABURNER

5.10 SERVICE format

The SERVICE format uses the following structure: The whole file consists of pairs of header
records and data records. The header record is an integer array of 8 elements.

head(1) = ECMWF field code

head(2) = modellevel or pressure in [Pa]

head(3) = date [yymmdd] (yymm00 for monthly means)

head(4) = time [hhmm] or [hh] for HHMM=0

head(5) = 1. dimension of data array

head(6) = 2. dimension of data array

head(7) = may be set with the parameter HEAD7

head(8) = experiment number (extracted from filename)

Example for reading the SERVICE format (GRIB=0 , NETCDF=0)

INTEGER HEAD(8)

REAL FIELD(64,32) ! dimensions for T21 grids

READ (10,ERR=888,END=999) HEAD

READ (10,ERR=888,END=999) FIELD

....

888 STOP ’I/O ERR’

999 STOP ’EOF’

....

5.11 HHMM

Setting Description
HHMM = 0 head(4) shows the time in hours (HH).
HHMM = 1 head(4) shows the time in hours and minutes (HHMM).

5.12 HEAD7

The 7th. element of the header is reserved for the user. It may be used for experiment numbers,
flags or anything else. Setting HEAD7 to a number exports this number to every header record
in the output file (SERVICE format only).

5.13 MARS

This parameter is used for processing simulations of the Mars atmosphere. Setting MARS=1
switches gravity, gas constant and planet radius to the correct values for the planet Mars.

5.14 MULTI

The parameter MULTI can bes used to process a series of input data within one run of the
pumaburner. Setting MULTI to a number (n) tells the pumaburner to procees (n) input files.
The input files must follow one of the following two rules:

• YYMM rule: The last four characters of the filename contain the data in the form YYMM.

5.15. NAMELIST EXAMPLE 49

• .NNN rule: The last four characters of the filename consist of a dot followed ny a 3-digit
sequence number.

Examples:

Namelist contains MULTI=3

Command: pumaburn <namelist >printout run.005 out

pumaburn processes the files <run.005> <run.006> <run.007>

Namelist contains MULTI=4

Command: pumaburn <namelist >printout exp0211 out

pumaburn processes the files <exp0211> <exp0212> <exp0301> <exp0302>

5.15 Namelist example

VTYPE = Pressure

HTYPE = Grid

CODE = 130,131,132

hPa = 200,500,700,850,1000

MEAN = 0

GRIB = 0

NETCDF = 0

This namelist will write Temperature(130), u(130) and v(131) on pressure levels 200hPa,
500hPa, 700hPa, 850hPa and 1000hPa. The output interval is the same as found on the model
data, e.g. every 12 or every 6 hours (MEAN=0). The output format is SERVICE format.

5.16 Troubleshooting

If the pumaburner reports an error or doesn’t produce the expected results, try the following:

• Check your namelist, especially for invalid codes, types and levels.

• Run the pumaburner in debug-mode by using the option -d. Example:

pumaburn <namelist >printout -d data.in data.out

This will print out some details like parameters and memory allocation during the run.
The additional information may help to detect the problem.

• Not all combinations of HTYPE, VTYPE, and CODE are valid. Try to use HTYPE=Grid
and VTYPE=Pressure before switching to exotic parameter combinations.

50 CHAPTER 5. POSTPROCESSOR PUMABURNER

Chapter 6

Graphics

6.1 Grads

In this section, visualisation using the graphics package GrADS is described. A useful Internet
site for reference and installation instructions is

<http://grads.iges.org/grads/grads.html>.

Latest versions of GrADS can handle data in NETCDF format (via the command sdfopen), GRIB,
HDF-SDS, and in its native binary format. The native format can conveniently be derived from
SERVICE format. In the following it is assumed that the PUMA output has been converted to
SERVICE format with the pumaburner and the resulting file is called puma.srv. Monthly mean
data is either obtained directly from the pumaburner (namelist parameter MEAN=1, see section
5) or via a PINGO command:

srv monmeans puma.srv puma_m.srv

Information on the PINGO package can be found in DKRZ report 11 at

<http://www.mad.zmaw.de/Pingo/repdl.html>.

The SERVICE file has to be converted to GrADS’s native format by the command:

srv2gra puma_m.srv

which results in the files puma_m.gra and puma_m.ctl. The first file contains the data, the
latter one information on the grid, time steps, and variable names. The program srv2gra is
one of the postprocessing tools available at

<http://puma.dkrz.de/puma/download/map/>.

If you chose to compile it yourself, please read the comments in the first few lines of the program
text. Sometimes the srv2gra tool has difficulties to calculate an appropriate time increment
from the date headers of the data records, so you should check this. In this example the file
puma_m.ctl should look like this:

DSET ^puma_m.gra

UNDEF 9e+09

XDEF 64 LINEAR 0.0000 5.6250

OPTIONS YREV

YDEF 32 LEVELS

-85.7606 -80.2688 -74.7445 -69.2130 -63.6786 -58.1430 -52.6065 -47.0696

51

52 CHAPTER 6. GRAPHICS

-41.5325 -35.9951 -30.4576 -24.9199 -19.3822 -13.8445 -8.3067 -2.7689

2.7689 8.3067 13.8445 19.3822 24.9199 30.4576 35.9951 41.5325

47.0696 52.6065 58.1430 63.6786 69.2130 74.7445 80.2688 85.7606

ZDEF 1 LINEAR 1 1

TDEF 12 LINEAR 00:00Z01jan0001 1mo

VARS 3

c139 0 99 139 0 0

c151 0 99 151 0 0

c175 0 99 175 0 0

ENDVARS

Here, the line starting with TDEF ends with 1mo, since we are handling monthly mean data.
When the PUMA output is used without averaging, this should correspond to the output interval
given by the nafter variable used in the namelist of your PUMA run (see section C). The
number of variables depends on how the pumaburner was called. In this example, only 3
variables were processed, i.e. the surface temperature (c139), the sea level pressure (c151) and
the albedo (c175; refer to appendix B for a list of codes).
The GrADS program is started by typing grads in a terminal window. Then, data is visualised
either by typing commands line-by-line, or, preferably, by using scripts. The following script,
called tglob.gs, displays the monthly mean surface temperature:

tglob.gs

function pass(m)

’reinit’

’open puma_m’

’enable print print.mf’

’set t ’m

’c’

’set gxout shaded’

’d (c139-273.16)’

’cbar.gs’

’set gxout contour’

’d (c139-273.16)’

’draw title Surface Temperature (deg C) month ’m

’print’

’disable print’

’!gxps -i print.mf -o tglob’m’.ps’

The variable m at the beginning of the script defines the month which should be displayed. It
is passed from the terminal with the script call. Note that in this line, no quotation marks are
present, since only GrADS specific commands are framed by quotation marks. Script commands,
like variable definitions, if-clauses etc. are used without quotation marks. The script is executed
by typing its name without the ending and the number of the month to be shown. For example,
tglob 7 displays the monthly mean surface temperature in July. The resulting output file is
called tglob7.ps.

The following script thh displays the time dependent surface temperature of Hamburg.
Here, two variables are passed to GrADS, the first and last day to plot (note that here, the file
puma.gra is opened, which contains data on a daily basis). The call thh 91 180 displays the
surface temperature of Hamburg for the spring season from April 1st to June 30th.

thh.gs

6.1. GRADS 53

function pass(d1 d2)

’reinit’

’open puma’

’enable print print.mf’

’set lat 53’

’set lon 10’

’set t ’d1’ ’d2

’c’

’d (c139-273.16)’

’draw title Surface Temperature (deg C) in Hamburg’

’print’

’disable print’

’!gxps -i print.mf -o thh.ps’

It is possible to have more than one figure in a plot, which is illustrated in the following
script. It plots seasonal means of the sea level pressure. The data file is prepared like this:

srv selcode,151 puma.srv slp.srv

srv seasmean slp.srv slp_sm.srv

srv2gra slp_sm.srv

The commands set vpage sets virtual pages inside the graphic window. The full window is
11 inch wide and 8.5 inch high, so set vpage 0 5.5 4.25 8.5 defines the upper left corner. If
setlevs=1 is specified, the pressure levels as given are used. Otherwise, GrADS defines contour
levels depending on the data set.

slp_sm.gs

setlevs=1

’reinit’

’open slp_sm’

’enable print print.mf’

’c’

’set vpage 0 5.5 4.25 8.5’

’set gxout contour’

if (setlevs=1)

’set clevs 990 995 1000 1005 1010 1015 1020’

endif

’set ccols 1’

’set grads off’

’set t 1’

’d c151/100’

’draw title SLP [hPa] yr ’ny’ DJF’

’set vpage 5.5 11 4.25 8.5’

’set gxout contour’

if (setlevs=1)

’set clevs 990 995 1000 1005 1010 1015 1020’

endif

’set ccols 1’

’set grads off’

’set t 2’

54 CHAPTER 6. GRAPHICS

’d c151/100’

’draw title yr ’ny’ MAM’

’set vpage 0 5.5 0 4.25’

’set gxout contour’

if (setlevs=1)

’set clevs 990 995 1000 1005 1010 1015 1020’

endif

’set ccols 1’

’set grads off’

’set t 3’

’d c151/100’

’draw title yr ’ny’ JJA’

’set vpage 5.5 11 0 4.25’

’set gxout contour’

if (setlevs=1)

’set clevs 990 995 1000 1005 1010 1015 1020’

endif

’set ccols 1’

’set grads off’

’set t 4’

’d c151/100’

’draw title yr ’ny’ SON’

’print’

’disable print’

’!gxps -c -i print.mf -o slp_sm.ps’

6.2 Vis5D

“Vis5D is a system for interactive visualization of large 5-D gridded data sets such
as those produced by numerical weather models. One can make isosurfaces, contour
line slices, colored slices, volume renderings, etc of data in a 3-D grid, then rotate
and animate the images in real time. There’s also a feature for wind trajectory
tracing, a way to make text annotations for publications, support for interactive
data analysis, etc.”

from the Vis5D home page,
http://www.ssec.wisc.edu/~billh/vis5d.html

This powerful visualisation tool together with its documentation is available through the above
home page. Vis5D uses its own data format which makes it necessary to transform your data.
Depending on their format and the flowchart on http://puma.dkrz.de/puma/download/map/

you have the following choices: If

• your data is raw PUMA output,
you need to process it with the pumaburner postprocessor (see section 5) in order to
transform it to either NETCDF (option -n or namelist parameter NETCDF=1) or GRIB (option
-g or namelist parameter GRIB=1) and proceed from there.

• your data is in SERVICE format,
you need to convert it to either GRIB, for instance with the PINGOs:

http://www.ssec.wisc.edu/~billh/vis5d.html
http://puma.dkrz.de/puma/download/map/

6.2. VIS5D 55

grb copy2 data.srv data_with_grib_metainfo.grb output.grb,

or NETCDF, using the program puma2cdf, which is available with the PUMA postprocessing
tools. Despite of its name this program cannot process raw PUMA output but takes SERVICE
format as input. It can as well be called as srv2cdf which changes its behaviour: oddities
of model output such as the existence of February, 30th are then no longer removed. Once
the format is changed proceed from there.

• your data is in NETCDF format,
it can easily transformed to Vis5D’s native format by means of the program cdf2v2d,
which is available with the PUMA postprocessing tools.

• your data is in GRIB format,
you can find a transformation tool named Grib2V5d at
<http://grib2v5d.sourceforge.net> which offers various practical features.

Once the conversion to Vis5D’s native format is achieved please follow the instructions from
the Vis5D documentation or, if Vis5D is already installed on your system, try finding your own
way by typing:

vis5d my_data.v5d

56 CHAPTER 6. GRAPHICS

Appendix A

List of Constants and Symbols

Symbol Definition Value Unit

a earth radius 6371·103 m

A = D + ~V · ∇ ln ps −
A absorptivity/emissivity −
AS surface emissivity −
B(T) Planck function Wm−2

cc cloud cover −
Cchar Charnock constant 0.018 −
Ch transfer coefficient for heat −
Cm drag coefficient for momentum −
cp specific heat of moist air at constant pressure J kg−1 K−1

cpd specific heat of dry air at constant pressure 1005.46 J kg−1 K−1

cpv specific heat of water vapor at constant pressure 1869.46 J kg−1 K−1

cpi
specific heat of sea ice 2070 W s kg−1 K−1

cps specific heat of snow 2090 W s kg−1 K−1

cpw specific heat of sea water 4180 W s kg−1 K−1

cw coefficient for the deep ocean heat flux 4 W m−2 K−1

Cw wetness factor −
D scaled divergence −
E evaporation m s−1

E0 extrateristical solar flux density W m−2

f Coriolis parameter =: 2Ω sinϕ s−1

Fp tendency of the first moment=: dR1

dt
K m2 s−1

Fq tendency of the zeroth moment=: dR0

dt
K m s−1

Fq surface moisture flux kg m−2 s−1

FT surface sensible heat flux W m−2

Fu surface zonal wind stress Pa
Fv surface meridional wind stress Pa
FLW long wave radiation flux density Wm−2

F SW short wave radiation flux density Wm−2

g gravitational acceleration 9.81 m−2

hmix mixed layer depth m
hmixc climatological mixed layer depth m
Hq effective mixed layer depth =: R0

Tmix−Tref
m

Hp reduced center of gravity =: R1

R0
m

57

58 APPENDIX A. LIST OF CONSTANTS AND SYMBOLS

Symbol Definition Value Unit

Jq vertical turbulent moisture flux kg m−2 s−1

JT vertical turbulent temperature flux K m−2 s−1

Ju vertical turbulent flux of zonal momentum Pa
Jv vertical turbulent flux of meridional momentum Pa
k von Karman constant 0.4 −
Kh exchange coefficient for heat −
Km exchange coefficient for momentum −
L latent heat J kg−1

Lf latent heat of fusion = Ls − Lv 3.28·105 J kg−1

lh mixing length for heat m
lm mixing length for momentum m
Ls latent heat of sublimation 2.8345·106 J kg−1

Lv latent heat of vapourization 2.5008·106 J kg−1

Pc convective precipitation ms−1

Pl large scale precipitation ms−1

Pm
n (µ) associated Legendre function of the first kind −
p pressure Pa
pS surface pressure Pa
ps scaled surface pressure −
q specific humidity kg kg−1

Q total heat flux through sea ice W m−2

Q̃ flux correction heat flux through sea ice W m−2

Qa total atmospheric heat flux W m−2

Qc conductive heat flux through sea ice W m−2

Qf heat flux available for freezing sea ice W m−2

Qg heat flux into the soil Wm−2

Qm snow melt heat flux Wm−2

Qo oceanic heat flux W m−2

qS surface specific humidity kg kg−1

qsat saturation specific humidity kg kg−1

R refexivity/albedo −
RS surface albedo −
Rd gas constant for dry air 287.05 J kg−1 K−1

Rl surface long wave radiation W m−2

Rs surface short wave radiation W m−2

Rv gas constant for water vapor 461.51 J kg−1 K−1

R0 zeroth moment of the temperature distribution K m
R1 first moment of the temperature distribution K m2

Ri Richardson number −
Sw salinity of sea water 34.7 psu

59

Symbol Definition Value Unit

t time s
t scaled time step −
T transmissivity −
T temperature K
T ′ temperature anomaly =: T − T0 −
Td deep ocean temperature (at 400m) K
Ti sea ice surface temperature K
Tf freezing temperature 271.25 K
Ts surface temperature K
Tsea sea surface temperature K
Tmelt melting point 273.16 K
Tmix mixed layer temperature K
Tmixc climatological mixed layer temperature K
Tref asymptotic reference temperature K
Tw oceanic temperature profile K
T0 reference temperature profile 250.0 K
U scaled zonal wind =: u · cosϕ −
u zonal wind m s−1

u∗ friction velocity m s−1

V scaled meridional wind =: v · cosϕ −
v meridional wind m s−1

~v horizontal wind vector m s−1

WL cloud liquid water path gm2

Wsnow mass of snow water kg
Wsoil soil water m
z height m
z0 roughness length m
∆t time increment s
∆z height increment m

α thermal expansion coefficient 1
ρ

dρ
dT

2.41·10−4 K−1

β back scattering coefficient −
βd diffusivity factor 1.66 −
ζ scaled vorticity −
θ potential temperature K
κ Rd/Cpd −
κ̄ mean heat conductivity in ice and snow W m−1 K−1

κi heat conductivity in ice 2.03 W m−1 K−1

κs heat conductivity in snow 0.31 W m−1 K−1

λh asymptotic mixing length for heat m
λm asymptotic mixing length for momentum m
λ longitude −
µ sinϕ −
µ0 cosine of the solar zenith angle −
ρ density of air kg m−3

ρi density of sea ice 920 kg m−3

ρs density of snow 330 kg m−3

ρw density of sea water 1030 kg m−3

ρo density of fresh water 1000 kg m−3

60 APPENDIX A. LIST OF CONSTANTS AND SYMBOLS

Symbol Definition Value Unit

σ normalized pressure coordinate =: p/ps −
σ̇ vertical velocity in σ system −
σSB Stefan-Bolzmann constant 5.67·10−8 Wm−2K−4

τN cloud optical depth −
τF time scale for RF −
τR time scale for NC −
τT time scale for temperature flux correction s
τh time scale for depth flux correction s
φ geopotential height := g · z m2 s−2

φ scaled geopotential height −
ϕ latitude −
χ scaled velocity potential −
ψ scaled streamfunction −
Ω angular velocity of the earth 7.292·10−5 s−1

ω̃0 single scattering albedo −

Appendix B

Planet Simulator Codes for Variables

Codes available from PUMA-burner (adapted from ECHAM)

Code Levels Type Variable Unit

110 1 g mixed layer depth m
129 1 s surface geopotential m2/s2

130 NLEV s temperature K
131 NLEV c u-velocity m/s
132 NLEV c v-velocity m/s
133 NLEV s specific humidity kg/kg
135 NLEV c vertical velocity Pa/s
138 NLEV s vorticity 1/s
139 1 g surface temperature K
140 1 g soil wetness m
141 1 g snow depth (water equi.) m
142 1 ga large scale precipitation m/s
143 1 ga convective precipitation m/s
144 1 ga snow fall m/s
146 1 ga surface sensible heat flux W/m2

147 1 ga surface latent heat flux W/m2

148 NLEV c horizontal streamfunktion m2/s
149 NLEV c velocity potential m2/s
151 1 c mean sea level pressure Pa
152 1 s ln(surface pressure)
153 NLEV g cloud liquid water content kg/kg
155 NLEV s divergence 1/s
156 NLEV c geopotential height gpm
157 NLEV c relative humidity frac.
159 1 g (u?)3 (m/s)3

160 1 ga surface runoff m/s

61

62 APPENDIX B. PLANET SIMULATOR CODES FOR VARIABLES

Code Levels Type Variable Unit

162 NLEV g cloud cover frac.
164 1 ga total cloud cover frac.
169 1 ga surface temperature K
170 1 g deep soil temperature K
172 1 g land sea mask [0:sea,1:land]
173 1 g surface roughness m
175 1 g surface albedo frac.
176 1 ga surface solar radiation W/m2

177 1 ga surface thermal radiation W/m2

178 1 ga top solar radiation W/m2

179 1 ga top thermal radiation W/m2

180 1 ga u-stress Pa
181 1 ga v-stress Pa
182 1 ga evaporation m/s
183 1 g soil temperature K
203 1 ga top solar radiation upward W/m2

204 1 ga surface solar radiation upward W/m2

205 1 ga surface thermal radiation upward W/m2

207 1 g soil temperature (level 2) K
208 1 g soil temperature (level 3) K
209 1 g soil temperature (level 4) K
210 1 g sea ice cover frac.
211 1 g sea ice thickness m
212 1 g vegetation cover frac.
218 1 g snow melt (water equiv.) m/s
221 1 g snow depth change (water equiv.) m/s
230 1 ga vertical integrated spec. hum. kg/m2

232 1 g glacier cover frac.

s: PUMA spectral field

g: PUMA grid point field

c: computed by PUMA-burner

a: accumulated

Appendix C

Namelists

C.1 File puma namelist

C.1.1 Namelist INP

Name Def. Type Description
kick 1 int 0: no noise initialization (ps = const.)

1: random white noise
2: Equator symmetric random white noise
3: mode (1,2) no random initialization

mars 0 int 1: initialize PLASIM for planet Mars
mpstep 45 int minutes per step (lenghth of timestep)
ncoeff 0 int spectral coefficients to print in wrspam
ndel(NLEV) all 2 int order of hyperdiffusion for each level (2*h)
ndiag 12 int output interval for diagnostics [timesteps]
ndiagcf 0 int 1: turn on cloud forcing diagnostic
ndiaggp 0 int 1: process franks gp-diagnostic arrays
ndiaggp2d 0 int number of additional 2-d gp-diagnostic arrays
ndiaggp3d 0 int number of additional 3-d gp-diagnostic arrays
ndiagsp 0 int 1: process franks sp-diagnostic arrays
ndiagsp2d 0 int number of additional 2-d sp-diagnostic arrays
ndiagsp3d 0 int number of additional 3-d sp-diagnostic arrays
ndl(NLEV) all 0 int 1: activate spectral printouts for this level
neqsig 1 int 1: use equidistant sigma levels
nflux 1 int 1: switches vertical diffusion on
ngui 0 int 1: run with active GUI
nhdiff 15 int critical wavenumber for horizontal diffusion
nkits 3 int number of short initial timesteps
noutput 1 int enables (1) or disables (0) output file
npackgp 1 int 1: pack gridpoint fields on output
npacksp 1 int 1: pack spectral fields on output
nperpetual 0 int radiation day for perpetual integration
nprhor 0 int 1: grid point for print out (only for checks!)
nprint 0 int 1: comprehensive print out (only for checks!)
nrad 1 int 1: switches radiation on
ntime 0 int 1: turn on time use diagnostics
nwpd 1 int number of writes per day (to puma output)

63

64 APPENDIX C. NAMELISTS

Namelist INP continued

Name Def. Type Description
n days per month 30 int length of month for simple calendar
n days per year 360 int length of year for simple calendar or 365
n run days -1 int Simulation time (days to run)
n run months 0 int Simulation time (months to run)
n run years 1 int Simulation time (years to run)
n start month 1 int Starting month
n start year 1 int Starting year
psurf 101100.0 real global mean surface pressure [Pa]
restim(NLEV) all 15.0 real restoration timescale for each level
sigh(NLEV) all 0.0 real user definable sigmah array
t0(NLEV) all 250.0 real reference TR-temperature profile
tfrc(NLEV) 0,0,0,.. ,1 int Rayleigh friction timescale τF in days
tdissd 0.2 real diffusion time scale for divergence [days]
tdissq 5.6 real diffusion time scale for specific humidity [days]
tdisst 5.6 real diffusion time scale for temperature [days]
tdissz 1.1 real diffusion time scale for vorticity [days]
time0 0.0 real start time (for performance estimates)

C.1.2 Namelist PLANET

Name Def. Type Description
akap 0.286 real kappa
alr 0.0065 real lapse rate
ga 9.81 real gravity
gascon 287.0 real gas constant
plarad 6371000.0 real planetary radius
pnu 0.1 real time filter
ra1 610.78 real parameter in Magnus-Teten formula
ra2 17.269 real parameter in Magnus-Teten formula
ra4 35.86 real parameter in Magnus-Teten formula
solar day 86400.0 real length of solar day
siderial day 86164.0 real length of siderial day
ww 7.29e-5 real 2π/siderialday
yplanet ”Earth” char name of planet

C.1.3 Namelist MISCPAR

Name Def. Type Description
nfixer 1 int 1: correct negative moisture
nudge 0 int 1: temperature relaxation in the uppermost level
tnudge 10.0 real Time scale [d] of the temperature relaxation

C.1. FILE PUMA NAMELIST 65

C.1.4 Namelist FLUXPAR

Name Def. Type Description
nevap 1 int 1: turn on surface evaporation
nshfl 1 int 1: turn on surface sensible heat flux
nstress 1 int 1: turn on surface wind stress
nvdiff 1 int 1: turn on vertical diffusion
vdiff lamm 160.0 real tuning parameter for vert. diff.
vdiff b 5.0 real tuning parameter for vert. diff.
vdiff c 5.0 real tuning parameter for vert. diff.
vdiff d 5.0 real tuning parameter for vert. diff.

C.1.5 Namelist RADPAR

Name Def. Type Description
acl2(3) 0.05,0.1,0.2 real cloud absorptivities spectral range 2
acllwr 0.1 real mass absorption coefficient for clouds (lwr)
clgray -1.0 real cloud grayness
co2 360.0 real co2 concentration (ppmv)
dawn 0.0 real zenith angle threshhold for night
gsol0 1365.0 real solar constant (w/m2)
iyrbp -50 int Year before present (1950 AD); default = 2000 AD
ndcycle 0 int switch for daily cycle 1=on/0=off
nlwr 1 int switch for long wave radiation (dbug) 1=on/0=off
no3 1 int switch for ozon 1=on/0=off
nrscat 1 int switch for rayleigh scattering (dbug) 1=on/0=off
nsol 1 int switch for solar insolation (dbug) 1=on/0=off
nswr 1 int switch for short wave radiation (dbug) 1=on/0=off
nswrcl 1 int switch for computed or prescribed cloud props. 1=com/0=pres
rcl1(3) 0.15,0.3,0.6 real cloud albedos spectral range 1
rcl2(3) 0.15,0.3,0.6 real cloud albedos spectral range 2
th2oc 0.04 real absorption coefficient for h2o continuum
tpofmt 1.0 real tuning of point of mean (lwr) transmissivity in layer
tswr1 0.04 real tuning of cloud albedo range1
tswr2 0.048 real tuning of cloud back scattering c. range2
tswr3 0.004 real tuning of cloud s. scattering alb. range2

C.1.6 Namelist RAINPAR

Name Def. Type Description
clwcrit1 -0.1 real 1st critical vertical velocity for clouds
clwcrit2 0.0 real 2nd critical vertical velocity for clouds
kbetta 1 int switch for betta in kuo (1/0=yes/no)
ncsurf 1 int conv. starts from surface (1/0=yes/no)
ndca 1 int dry convective adjustment (1/0=yes/no)
nmoment 0 int momentum mixing (1/0=yes/no)
nprc 1 int large convective precip (1/0=yes/no)
nprl 1 int switch for large scale precip (1/0=yes/no)
rcrit(NLEV) real critical relative hum. for non conv. clouds

66 APPENDIX C. NAMELISTS

C.1.7 Namelist SURFPAR

Name Def. Type Description
noromax model resolution (NTRU) int resolution of orography
nsurf not active int debug switch
oroscale 1.0 real scaling factor for orography

C.2 File land namelist

C.2.1 Namelist LANDPAR

Name Def. Type Description
albgmax 0.8 real max. albedo for glaciers
albgmin 0.6 real min. albedo for glaciers
albland 0.2 real albedo for land
albsmax 0.8 real max. albedo for snow
albsmaxf 0.4 real max. albedo for snow (with forest)
albsmin 0.4 real min. albedo for snow
albsminf 0.3 real min. albedo for snow (with forest)
co2conv 14.0 real co2 conversion factor
drhsfull 0.4 real threshold above which drhs=1 [frac. of wsmax]
drhsland 0.25 real wetness factor land
dsmax 5.00 real maximum snow depth (m-h20; -1 = no limit)
dsoilz(NLSOIL) real soil layer thickness
dz0land 2.0 real roughness length land
dzglac -1. real threshold of orography to be glacier (-1=none)
dztop 0.20 real thickness of the uppermost soil layer (m)
forgrow 1.0 real growth factor initialization
gs 1.0 real stomatal conductance initialization
nbiome 0 int switch for vegetation model (1/0 : prog./clim)
ncveg 1 int compute new dcveg (0=keep initial state)
newsurf 0 int (dtcl,dwcl) 1: update from file, 2:reset
nlandt 1 int switch for land model (1/0 : prog./clim)
nlandw 1 int switch for soil model (1/0 : prog./clim)
rinisoil 0.0 real soil carbon initialization
riniveg 0.0 real biomass carbon initialization
rlaigrow 0.5 real above ground growth factor initialization
rlue 8.0E-10 real
rnbiocats 0.0 real
tau soil 42.0 real [years] - in landini scaled to seconds
tau veg 10.0 real [years] - in landini scaled to seconds
wsmax WSMAX EARTH real max field capacity of soil water (m)
z0 max 2.0 real maximum roughness length for vegetation

C.3. FILE SEA NAMELIST 67

C.3 File sea namelist

C.3.1 Namelist SEAPAR

Name Def. Type Description
ncpl atmos ice 32 int atmosphere ice coupling time steps
albsea 0.069 real albedo for open water
albice 0.7 real max. albedo for sea ice
dz0sea 1.5 · 10−5 real roughness length sea [m]
dz0ice 1.0 · 10−3 real roughness length ice [m]
drhssea 1.0 real wetness factor sea
drhsice 1.0 real wetness factor ice

C.4 File ocean namelist

C.4.1 Namelist OCEANPAR

Name Def. Type Description
dlayer(NLEV OCE) 50.0 real layer depth (m)
ndiag 480 int diagnostics each ndiag timestep
newsurf 0 int 1: read surface data after restart
nfluko 0 int switch for flux correction
nocean 1 int ocean model (1) or climatology (0)
nperpetual ocean 0 int perpetual climate conditions (day)
nprhor 0 int gridpoint for debug printout
nprint 0 int switch for debug printout
taunc 0.0 real time scale for newtonian cooling
vdiffk 1.0e-4 real vertikal diffusion coeff. [m**2/s]

C.5 File ice namelist

C.5.1 Namelist ICEPAR

Name Def. Type Description
newsurf 0 int 1: read surface data after restart
nfluko 0 int switch for flux correction
nice 1 int sea ice model (1) or climatology (0)
nout 32 int model data output every nout time steps
nperpetual ice 0 int perpetual climate conditions (day)
nprhor 0 int gridpoint for debug printout
nprint 0 int switch for debug printout
nsnow 1 int allow snow on ice yes/no (1/0)
ntskin 1 int compute skin temperature (0=clim.
ncpl ice ocean 1 int ice ocean coupling time steps
taunc 0.0 real time scale for newtonian cooling
xmind 0.1 real minimal ice thickness (m)

	Installation
	Quick Installation
	Most15 directory
	Model build phase
	Model run phase
	Running long simulations

	Modules
	fluxmod.f90
	miscmod.f90
	surfmod.f90
	fftmod.f90 / fft991mod.f90
	landmod.f90
	legmod.f90
	mpimod.f90 / mpimod_stub.f90
	outmod.f90
	plasim.f90
	plasimmod.f90
	radmod.f90
	rainmod.f90
	seamod.f90
	Sea ice and ocean modules
	icemod.f90
	oceanmod.f90

	Parallel Program Execution
	Concept
	Parallelization in Gridpoint Domain
	Parallelization in Spectral Domain
	Synchronization points
	Source code

	Graphical User Interface
	Graphical user interface (GUI)
	GUI configuration
	Array
	Plot
	Palette
	Title
	Geometry

	Postprocessor Pumaburner
	Introduction
	Usage
	Namelist
	HTYPE
	VTYPE
	MODLEV
	hPa
	MEAN
	Format of output data
	SERVICE format
	HHMM
	HEAD7
	MARS
	MULTI
	Namelist example
	Troubleshooting

	Graphics
	Grads
	Vis5D

	List of Constants and Symbols
	Planet Simulator Codes for Variables
	Namelists
	File puma_namelist
	Namelist INP
	Namelist PLANET
	Namelist MISCPAR
	Namelist FLUXPAR
	Namelist RADPAR
	Namelist RAINPAR
	Namelist SURFPAR

	File land_namelist
	Namelist LANDPAR

	File sea_namelist
	Namelist SEAPAR

	File ocean_namelist
	Namelist OCEANPAR

	File ice_namelist
	Namelist ICEPAR

