
 

 

 
 

   

Reconstructing sea surface temperature  

in the South Pacific using organic proxies 

 

 
Dissertation zur Erlangung des akademischen Grades  

eines Doktors der Naturwissenschaften 

Dr. rer. nat. 

an der Fakultät für Geowissenschaften der Universität Bremen 

 

 

 

 

vorgelegt von 

 

Sze Ling Ho 

 

Bremerhaven, 2012 

 

 

 

 

Gutachter der Dissertation 
 

Prof. Dr. Ralf Tiedemann 
Prof. Dr. Gesine Mollenhauer



 

 

 
 

 

 
 
 
 

 
 

Erklärung 
 
 
 
Name: Sze Ling Ho 

Anschrift: Sielstrasse 12, 27568 Bremerhaven. 

 

 

 
 Hiermit versichere ich, dass ich 

 
 1. die Arbeit ohne unerlaubte fremde Hilfe angefertigt habe,  
 
2. keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe 
und  
 
3. die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche 
kenntlich gemacht habe. 
 

 

 

Bremerhaven, 20th September 2012 

…………………………. 

(Unterschrift)



 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

The most exciting phrase to hear in science, the one that heralds 
new discoveries, is not ‘Eureka!’, but ‘That’s funny…’ 

 

Isaac Asimov (1920-1992) 

 

 

 

  



 

 

 

 

 



 

 

I 
 

Abstract 

 Sea surface temperature (SST), at the interface between the atmosphere and the ocean, 

is an important element in the global climate system. Accurate estimates of past SSTs are 

indispensable for studying global climate and for validating the numerical models used for 

projections of future climate. SSTs prior to the instrumentation era could be reconstructed 

using climatically sensitive biomarkers such as alkenones and glycerol dialkyl glycerol 

tetraethers (GDGTs). Herein I use marine sediments, both core-tops and long piston cores, to 

further examine the applicability of organic SST proxies derived from the aforementioned 

biomarkers, with an emphasis on the relatively under-studied subantarctic Southeast Pacific. 

The appraisal of these proxies is based on the correlation of the core-top proxy index values 

with present-day climatological SST, and the comparison of the SST records inferred from 

these proxies with other regional SST records. 

 The alkenone index (UK
37 and UK’

37) values in the South Pacific core-tops display 

linear relationships with climatological World Ocean Atlas 2009 (WOA09) SST at low 

temperatures (1 -12°C), with equally high r2 values (>0.93). These results suggest that both 

alkenone indices are highly correlated to SST even at high latitudes, rendering them 

appropriate for reconstructing SST in the subantarctic Pacific. However, these indices yield 

different Pleistocene SST patterns for study sites in the subantarctic sector of the Southern 

Ocean. Judging from the better structural fit of UK
37 SST records with other subantarctic 

surface proxy records, including foraminiferal 18O and SST records inferred from diatom- 

and foraminiferal assemblages, it appears that the UK
37 index results in more plausible paleo 

SST records in this region, as opposed to the commonly used UK’
37 index.  

 The GDGT index (TEX86 and TEX86
L) values in the subpolar and polar core-tops 

(with overlying SSTs of -2 to 17°C) are not highly correlated (r2 values < 0.3) to the annual 

mean WOA09 SST. Plotting these indices against seasonal SSTs and water temperatures at 

various hydrographic boundaries does not improve the correlation. Nevertheless, when these 

data are combined with previously published core-top data (n = 630) spanning a SST range of 

-2 to 30°C, the r2 values of these relationships improve to ~ 0.8, with a better correlation for 

the TEX86 compared to TEX86
L. The TEX86 calibration yields SST estimates that are in better 

agreement with the WOA09 SST for subpolar and polar regions, rendering it a better SST 

index in these regions. Meanwhile, applying the GDGT index on a Southeast Pacific sediment 

core yields SSTs that are colder than those inferred from the alkenones, and the GDGT-
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derived interglacial SSTs are ~3°C colder than annual mean WOA09 SST. Given the lack of 

seasonality in the archaeal abundance here, the cold-biased GDGT estimates probably reflect 

subsurface temperature instead of SST. 

 The three SST records presented here allow for further understanding of the surface 

oceanographic variability in the subtropical and subantarctic Southeast Pacific over the past 

700 kyr. The extent of glacial cooling increases with latitude, up to ~8°C in the subantarctic 

as opposed to the ~4°C in the subtropics. Intense cooling at high latitudes results in larger 

latitudinal SST gradients during glacials than interglacials. The alkenone-inferred SSTs along 

the latitudinal range of the Peru-Chile Current (PCC) imply massive equatorward migrations 

of the Southern Ocean frontal systems and increased equatorward transport of subantarctic 

waters owing to a stronger PCC during glacials. In addition, GDGT-derived temperatures 

suggest enhanced subsurface warming during MIS 11 and 13 in the subtropical Southeast 

Pacific, plausibly due to water column reorganization analogous to that occurring during 

modern-day El-Niño conditions.  
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Zusammenfassung 

Die Meeresoberflächentemperatur, am unmittelbaren Kontakt zwischen Atmosphäre 

und Ozean, ist ein wichtiges Element im globalen Klimasystem. Die genaue Bestimmung 

vergangener Meeresoberflächentemperaturen ist deswegen unabdingbar für die Erforschung 

der globalen Klimaprozesse und zur Evaluierung numerischer Modelle für die 

Klimaprojektion. Meeresoberflächentemperaturen zu Zeiten vor der instrumentellen Messung 

können anhand von klimasensitiven Biomarkern wie Alkenone und Glycerol Dialkyl Glycerol 

Tetraether (GDGTs) rekonstruiert werden. In der vorliegenden Arbeit nutze ich sowohl die 

obersten Abschnitte von Sedimentkernen also auch lange Kolbenlote aus dem bisher relativ 

wenig untersuchten subantarktischen Südostpazifik, um das Potential der oben genannten 

organischen Biomarker als Proxies für die Meeresoberflächentemperatur zu erfassen. Die 

Beurteilung dieser Proxies basiert auf der Korrelation der Werte der Proxy-Indizes der 

Sedimentoberflächen mit aktuellen, klimatologischen Meeresoberflächentemperaturen. Des 

weiteren werden die rekonstruierten Meeresoberflächentemperaturen mit anderen regionalen 

Rekonstruktionen der Meeresoberflächentemperaturen verglichen.  

In den Sedimentoberflächen des Südpazifiks ist die Beziehung zwischen den Werten 

der Alkenon-Indizes (UK
37 und UK’

37) und den klimatologischen 

Meeresoberflächentemperaturen des World Ocean Atlas 2009 (WOA09) im niedrigen 

Temperaturbereich (1 –12°C) linear. Die gleichermaßen hohen r2-Werten für beide Indizes (> 

0.93) deuten an, dass die Korrelation beider Alkenon-Indizes mit der 

Meeresoberflächentemperatur auch im subantarktischen Südpazifik hoch ist und somit beide 

Indizes zur Rekonstruktion der Meeresoberflächentemperaturen in den hohen südlichen 

Breiten geeignet sind. Trotzdem ergeben beide Indizes jedoch unterschiedliche 

Meeresoberflächentemperaturen für das Pleistozän. Das Ergebnis der UK
37-basierten 

Rekonstruktionen der Meeresoberflächentemperaturen entspricht dabei eher den Resultaten 

anderer proxy-basierten Rekonstruktionen des Oberflächenwassers des subantarktischen 

Südpazifiks, z.B. den auf Diatomeen und Foraminiferen-Vergesellschaftungen basierenden 

Meeresoberflächentemperaturen und Foraminiferen-18O.  Daher erscheint der UK
37-Index, im 

Gegensatz zum häufig genutzten UK’
37-Index, besser geeignet zu sein um plausible 

Rekonstruktionen  der Meeresoberflächentemperaturen zu liefern.  

Die Korrelation zwischen den Werten der GDGT-Indizes (TEX86 and TEX86
L) in den 

subpolaren und polaren Sedimentkernoberflächen (Temperaturen in den darüberliegenden 

Wasseroberflächen -2 bis 17°C) und den WOA09-basierten Jahresmitteln der 
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Meeresoberflächentemperaturen ist nicht hoch (r2 values < 0.3). Das Auftragen dieser Indizes 

sowohl gegen saisonale Meeresoberflächentemperaturen als auch gegen Wassertemperaturen 

an den verschiedenen hydrographischen Grenzschichten verbessert die Korrelation nicht. Die 

Kombination dieser Daten mit bereits publizierten Daten von Kernoberflächen (n = 630), 

welche Meeresoberflächentemperaturen von -2 bis 30°C umfassen, ergibt r2-Werte von ~ 0.8, 

mit einer besseren Korrelation für TEX86 als für TEX86
L. Da die Abschätzung der 

Meeresoberflächentemperaturen mit Hilfe der TEX86 Kalibrierung besser mit den WOA09-

Meeresoberflächentemperaturen polarer und subpolarer Regionen übereinstimmt, ist dieser 

Index eher zur Abschätzung der Meeresoberflächentemperaturen in diesen Regionen geeignet. 

In einem Sedimentkern im Südostpazifik ergibt der GDGT-Index kältere 

Meeresoberflächentemperaturen als der Alkenon-Index und die GDGT-basierten 

interglazialen Meeresoberflächentemperaturen sind ~ 3°C kälter als die WOA09-

Jahresmitteltemperaturen. Da die Archaea keine saisonalen Schwankungen in der Abundanz 

aufweisen, spiegeln die zu kalten, GDGT-basierten Abschätzungen wahrscheinlich nicht die 

Temperaturen direkt an der Meeresoberfläche sondern die der darunter liegenden 

Wasserschichten wider. 

Die drei Rekonstruktionen der Meeresoberflächentemperaturen in der vorliegenden 

Arbeit tragen zum besseren Verständnis der ozeanographischen Oberflächenvariabilität im 

subtropischen und subantarktischen Südpazifik der letzten 700.000 Jahre bei. Die Abnahme 

der glazialen Temperaturen nimmt mit den Breitengraden zu, bis zu ~ 8°C in subantarktischen 

und bis zu ~ 4°C in subtropischen Regionen. Die starke Abkühlung in den hohen Breiten führt 

zu größeren latitudinalen Temperaturgradienten während der Kaltzeiten (Glazialen) als 

während der Warmzeiten (Interglazialen).  Darüber hinaus deuten die Alkenon-basierten 

Meeresoberflächentemperaturen entlang des Humboldt Stroms eine massive, äquatorwärts 

gerichtete Verlagerung des Frontensystems des Südlichen Ozeans sowie einen zunehmenden, 

äquatorwärts gerichteten Transport von subantarktischem Wasser an. Diese Veränderungen 

werden wahrscheinlich durch einen verstärkten Humboldt Strom während der Kaltzeiten 

bedingt. Außerdem zeigen die GDGT-basierten Temperaturen eine verstärkte Erwärmung im 

subtropischen Südpazifik während der Marinen Isotopen Stadien 11 und 13 an, welche 

womöglich durch eine Umstrukturierung der Wassersäule, analog zu den modernen El-Nino-

Verhältnissen, bedingt ist. 
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Chapter 1: General overview  

 

1.1. Global climate and sea surface temperature (SST) 

One of the pressing issues that plague humanity is climate change. A concerted effort 

from the scientific community shows that the earth surface temperature has risen by almost 

1°C since the Industrial Revolution [IPCC, 2007, http://www.ipcc.ch]. While there is no 

doubt that climate strongly affects our societies, there is still ongoing debates on whether the 

warming is attributed to natural variability or human activities. It is also crucial to know how 

the climate may change in the future in order to develop the best possible mitigation policies. 

Consequently, substantial amount of effort and funding have been invested in the 

development of earth climate models over the years.  

These earth system models are built based on our knowledge on the interaction of 

various climatic components and feedback mechanisms (Figure 1.1). In this regard, the ocean 

is a vital component of the global climate, through its close interaction with the atmosphere, 

 

 

Figure 1.1: Major components of the climate system. (from Roger Pielke Sr.’s 

www.pielkeclimatesci.wordpress.com).  
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the land and the cryosphere. Due to its sheer size and high heat capacity, the ocean stores a 

large amount of energy, which is communicated to the atmosphere via turbulent and radiative 

energy exchange at the air-sea interface [Deser et al., 2010]. For instance, the condensation of 

moisture from the ocean releases latent heat that contributes to drive the atmospheric 

circulation, which in turn affects the sea surface temperature (SST) [Tomczak and Godfrey, 

2003]. Therefore, the temperature at the sea surface is an important parameter that links the 

atmosphere and the ocean, rendering it an indispensable boundary parameter in earth climate 

models (Figure 1.2). Records of past SST changes are therefore useful for two reasons. 

Firstly, these records help us to understand how and why the climate has changed in the past. 

Secondly, we need these records to validate the climate models in order to improve the 

credibility of the projections they simulate. 

 

Figure 1.2: A schematic of the framework for projecting future climate using climate models (from Goosse et 

al.’s online textbook at www.climate.be/textbook/).  

 

1.2. Obtaining SST data 

1.2.1. Instrumental SST measurements 

In modern oceanography, SST data are obtained using instruments such as thermistors 

and thermometers employed on ships and buoys, or the more recently developed infrared 

radiometers (such as the Advanced Very High Resolution Radiometer AVHRR) mounted on 

satellites. Ship-based data have lower and uneven spatial coverage but extend further back in 



Chapter 1 

 

 

3 
 

time to the late 18th century. The voyage of the HMS Challenger in year 1872 marked the first 

global-scale study of the ocean [Roemmich et al., 2012]. Many more organized efforts would 

follow, including the International Geophysical Year (1957-1958), the World Ocean 

Circulation Experiment (WOCE; 1990-2000) and the ARGO program (2004-2010), all of 

which contributed important data sets of various oceanic parameters, including SST. On the 

other hand, satellite SST data have global coverage at high resolution (0.25 degree), but only 

go back to the early 1980s [for more details see Deser et al., 2010]. To get the best spatial and 

temporal coverage to meet the demands of oceanographic research, in-situ and satellite data 

could be combined into a single data set, such as the International Comprehensive 

Atmosphere-Ocean Data Set (ICOADS). Alternatively, observations could be analyzed 

objectively, interpolated and weighted (to account for irregular sampling in time and space) to 

construct climatologies, such as the World Ocean Database (WOD). Climatological data are 

the mean values (of a given oceanic parameter) over many years [Talley et al., 2011]. They 

are usually constructed for the annual mean, individual months and seasons. Spatially gridded 

climatological atlases, such as the World Ocean Atlas (WOA) are useful for visualization of 

climatological fields and are widely used in SST proxy calibration work (Section 1.5.5).  

 

1.2.2. Indirect SST data via proxy 

Instrumental SST records span approximately the past two centuries (Section 1.2.1). 

Beyond that, we have to rely on indirect SST data inferred from various proxies, which are 

mostly biogeochemical in nature. Organic or inorganic fossil remains of marine organisms 

represent SST proxies that are incorporated in marine sediments. These proxies are based on 

observed relationships between these compounds/species and SST, e.g., the ratio of chemical 

elements found in the tests of marine organisms, the relative abundance of marine organism 

and the relative distribution of organic compounds within the cells. Considering the 

importance of SST in the climate system (Section 1.1), since the 1950s large arrays of SST 

proxies have been developed to reconstruct SST in the geological past. In a broad sense, paleo 

SST proxies could be categorized into geochemical proxies (oxygen isotope, Mg/Ca, UK’
37 

and TEX86) and faunal/floral census proxies (foraminifera, diatom, radiolaria and 

coccolithophores). Each proxy has its own advantages and weaknesses. In a recent 

international Multiproxy Approach for the Reconstruction of the Glacial Ocean surface 
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(MARGO) project, Kucera et al. [2005] concluded that no single proxy is “right” and “right 

everywhere”. A short description of paleo SST proxies is available in Table 1.1.  

 

Table 1.1: Overview of paleo sea surface temperature (SST) proxies.  

Proxy Working assumptions Limitations / Caveats References 
Faunal transfer functions 
(foraminifera, radiolaria, diatom, 
coccolithophores) 

Temperature as the major 
environmental parameter causing the 
changes in faunal assemblages; 
relationship quantified using statistical 
methods e.g., IKM [Imbrie and Kipp, 
1977], MAT [Prell, 1985], GAM [Hastie 
and Tibshirani, 1990], RAM 
[Waelbroeck et al., 1998], ANN 
[Malmgren et al., 2001], SIMMAX 
[Pflaumann et al., 1996] 

- Lack of diversity at 
temperature extremes 
- Evolutionary events 
- Preferential preservation 

Gersonde et al. 
[2005] 
Barrows and 
Juggins [2005] 
Cortese and 
Abelmann [2002] 
Saavedra-Pellitero 
et al. [2011] 
 
 
 
 

Oxygen isotopes 18O 
(foraminifera, corals, opal) 

Thermodynamic fractionation between 
16O and 18O that occurs during 
precipitation is a logarithmic function of 
temperature 

- Vital effects (e.g., 
carbonate ion 
concentration, ontogenic 
effect) 
- Unknown 18O of 
regional seawater 
- Diagenesis (e.g., partial 
shell dissolution) 

Urey [1947] 
Epstein et al. [1953] 
Emiliani [1955] 
Hays et al. [1976] 
Gagan et al. [2000] 
Shemesh et al. 
[1992] 

Mg/Ca (foraminifera) Incorporation of Mg in calcite varies 
exponentially as a function of 
temperature   

- Dissolution  
- Salinity  
- Vital effects (e.g., 
species, pH) 

Chave [1954] 
Nuernberg [1995] 
Barker et al. [2005] 

Sr/Ca (corals) Incorporation of Sr in calcite varies as 
a negative function of temperature 

- Vital effects (e.g., growth 
rate and symbiont activity) 
- Seawater Sr/Ca overprint 

Beck et al. [1992] 
Hendy et al. [2002] 
 

UK
37 (Unsaturation index of 

Ketones with 37 carbons)  
Unsaturation extent in C37 alkenones 
varies as a linear function of 
haptophyte growth temperature for 
achieving optimum density or 
enzymatic pathway 

- Lateral advection 
- Seasonality of production 
- Non-thermal 
physiological effects 

Brassell et al. [1986] 
Prahl et al. [1988] 
Herbert [2003] 

TEX86 (TetraEther indeX with 86 
carbons) 

Ring moieties in glycerol dialkyl 
glycerol tetraether (GDGT) archaeal 
lipid vary as a linear function of growth 
temperature to regulate the fluidity of 
membrane 

- Terrigenous overprint 
- Unknown depth origin 
- Uncertain source 
organism 

Schouten et al. 
[2002] 
Kim et al. [2010] 
 

LDI (Long chain Diol Index) Fractional abundances of long chain 
diols vary as a function of temperature 

- Unknown mechanism of 
temperature control 
- Unknown source 
organism 
- Relatively new, thus 
remains to be tested 

Versteegh et al. 
[1997] 
Rampen et al. 
[2012] 
Naafs et al. [2012] 

Abbreviations: IKM = Imbrie and Kipp method; MAT = Modern analog technique; GAM = Generalized additive model; RAM = 
Revised analog method; ANN = Artificial neural network; SIMMAX is an acronym for a modern analog technique using a 
similarity index 

 

Over the years, advancement in analytical instrumentation and methods has enabled 

more accurate quantification of compounds / elements used in marine sediment-based SST 

proxies. This development has encouraged the paleoclimatic community to turn to 

geochemical proxies which are generally deemed more quantitative and less time-consuming. 

Among them, organic proxies i.e., UK
37 (Section 1.2.2.1) and TEX86 (Section 1.2.2.2), based 

on specific lipid biomarkers, are currently standard tools for inferring paleo SSTs (along with 
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Mg/Ca on foraminiferal calcite). The advantage of these lipid-based proxies is that they can 

be obtained simultaneously via routine organic geochemical methods, rendering multi-proxy 

comparison less labor-intensive. Furthermore, these lipids, especially the GDGTs, are 

ubiquitous in the global ocean spanning broad biogeographical provinces, enabling 

comparison of SST records derived from a single proxy covering a large latitudinal range. 

This is especially valuable in light of the discrepancies often observed in different SST 

proxies due to seasonality, depth habitat of source organisms and statistical methods / 

calibrations employed. 

 

1.2.2.1. Alkenone-based paleothermometry 

Alkenone paleothermometry [Brassell et al., 1986; Prahl and Wakeham, 1987] is one 

of the most commonly used SST proxies nowadays and has been extensively studied in the 

past two decades (for detailed overview see Appendix 5 and Herbert [2003]). It is based on 

long-chain alkenones with 37 carbon atoms (Figure 1.3), found in marine haptophyte algae 

such as coccolithophores of the family Noelaerhabdaceae, including the extant species 

Emiliani huxleyi and Gephyrocapsa oceanica. This SST proxy is based on the alkenone 

unsaturation extent, which varies as a function of growth temperature of the source organism. 

In the early days of alkenone paleothermometry, it was hypothesized that the alkenones are 

membrane-bound lipids [Prahl et al., 1988], and that the dependency of lipid unsaturation on 

 

 

Figure 1.3: Molecular structure and standard IUPAC names of C37 alkenones with 2, 3, and 4 double bonds 
(Figure from Marlowe et al. [1990], following structure verification by Rechka and Maxwell [1988] and double-
bond position identification by de Leeuw et al. [1980]). 
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temperature is for maintaining the membrane fluidity at low temperatures, a phenomenon 

known as homeoviscous adaptation [Hazel, 1988]. However, more recent studies suggested 

that alkenones are not membrane-bound [Conte and Eglinton, 1993; Sawada and Shiraiwa, 

2004] and they probably serve as metabolic storage lipids [Bell and Pond, 1996; Epstein et 

al., 2001]. The temperature dependence of alkenone unsaturation in the haptophyte is 

therefore not straightforward and could plausibly be attributed to differences in melting point, 

density or enzymatic optima of biochemical pathways of the alkenones [Epstein et al., 2001].  

In spite of our limited understanding on the biochemical role of the unsaturation in the 

alkenones, the empirical correlation between the unsaturation extent and temperature has 

resulted in numerous high-quality paleo SST records spanning various geological time-scales. 

Brassell et al. [1986] first proposed an index known as UK
37 (U = unsaturation, K = Ketone 

(alkenone), 37 = chain length of ketone) to quantify the unsaturation extent in alkenones:  

4:373:372:37

4:372:37K
37 CCC

CC
U




  

As pointed out by Bendle and Rosell-Melé [2004], there is no apparent biogeochemical 

rationale for the form of the numerator in this index and it was derived by empirical trial-and-

error (until an index that correlates best with temperature is obtained). Indeed, Calvo et al. 

[2002] speculated that the inclusion of C37:4 in the numerator might lead to “overly” low index 

values, hence an overestimation of cooling. This index was later simplified as UK’
37 by Prahl 

and Wakeham [1987] by removing the C37:4 alkenones from the equation since the inclusion 

of this compound did not improve the unsaturation extent – temperature correlation in 

laboratory E. huxleyi cultures.  

3:372:37

2:37K'
37 CC

C
U


  

Subsequent studies, mostly in the mid and low latitudes, found no C37:4 alkenones in the 

marine sediments and suspended matters in sea water above SST of 15°C. As a result, most of 

the alkenone-related studies available in literature at present are based on the simplified UK’
37 

index.  

 The most commonly used calibration to convert the alkenone index values into SSTs 

is Prahl et al. [1988]’s culture-based UK’
37 calibration. In this work, Prahl and co-workers 

grew E. huxleyi cultures (strain VAN55 isolated from North Pacific waters) at temperatures 
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between 8 and 25°C, and observed linear relationships between growth temperatures with 

UK
37 and UK’

37 values (the latter showed a slightly better correlation). The UK’
37 calibration 

has since been attested by two global core-top UK’
37 calibrations, proposed by Müller et al. 

[1998] (n=370) and Conte et al. [2006] (n=592), respectively. All three of these calibrations 

are statistically similar.  

 

1.2.2.2. Glycerol dialkyl glycerol tetraether (GDGT) –based paleothermometry 

It was not until year 2002, 16 years after the introduction of alkenone 

paleothermometry, that another organic SST proxy came along. Schouten and co-workers 

[2002] found that the relative distribution of GDGTs (with different ring moieties; Figure 

1.4) in 42 marine sediment samples varies as a function of SST. The authors speculated that 

the source organisms of these lipids, i.e., non-thermophilic Thaumarchaeota (formerly known 

as Marine Group 1 Crenarchaeota), increase the ring moieties in their membrane lipids at 

higher temperatures. Such modification of archaeal lipids as a response to temperature has 

been observed previously in hyperthermophilic Crenarchaeota [De Rosa and Gambacorta, 

1988; Gliozzi et al., 1983; Uda et al., 2001]. The increased ring moieties were thought to 

provide a better packing of the membrane at higher temperatures [Gliozzi et al., 2002]. As 

mentioned by Schouten et al. [2002], microbiologists [De Rosa and Gambacorta, 1988; 

Gliozzi et al., 1983; Uda et al., 2001] quantified the ring moiety – temperature relationship in 

extremophiles using the weighted average number of rings in GDGTs. However, the ring 

index values in marine sediments did not correlate well with overlying SSTs. After some trial-

and-errors, Schouten et al. [2002] found that the best fit was obtained by an index termed 

TEX86 (TetraEther index of tetraethers consisting of 86 carbon atoms): 

Cren'3-GDGT2-GDGT1-GDGT

Cren'3-GDGT2-GDGT
TEX86 




 

The two most abundant isomers, i.e., GDGT-0 and Crenarchaeol, were not included in the 

index because the occurrence of GDGT-0 is not exclusive to Thaumarchaeota – they were 

previously found in methanogenic archaea [Schouten et al., 2000]. Secondly, the abundance 

of Crenarchaeol is one magnitude higher than GDGT-1, -2 and-3, thus it might overwhelm the 

correlation found between these latter compounds with temperature. 
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Figure1.4: Molecular structure of isoprenoid glycerol dialkyl glycerol tetraether (GDGT) lipids with different 
ring moieties (from Ho et al. [2011]).  

 

Later studies [Kim et al., 2010] with a much larger data set (n= 396) showed that a 

better correlation was found between SST and a modified GDGT-based index known as 

TEX86
L: 

)
3-GDGT2-GDGT1-GDGT

2-GDGT
Log(TEXL

86 
  

Notably, this index emerged as the best among all 1953 combinations consisting of the 6 

archaeal isoprenoid GDGTs (Figure 1.4) assessed by Kim and co-workers. Nevertheless, as is 

the case with alkenone paleothermometry, these GDGT indices are empirical. While there is a 

biochemical reason for the temperature dependency of the ring moieties in GDGTs, the 

definition of the indices are derived based on the outcome of many trial-and-errors, performed 

with a priority in finding the one that fits best to SST. 

Calibrations commonly used to convert the index values into SST estimates are based 

on marine sediment studies [Kim et al., 2008; Kim et al., 2010; Schouten et al., 2002]. Marine 
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Thaumarchaeota have not yet been successfully cultured. Whilst a mesocosm study on North 

Sea waters by Wuchter et al. [2004] demonstrated a first-order relationship between TEX86 

and growth temperature, the equation is different from that found in marine sediments, casting 

doubt on its applicability in paleo SST reconstruction. Interestingly, recent development in 

TEX86 paleothermometry has seen several cases in which the index, thereby also the 

calibration, was adapted for a specific study site in order to obtain “more reasonable” SST 

estimates (shortly described in Table 1.2). The global applicability of these indices is not 

granted as they have never been applied elsewhere except in the study they were proposed.  

 

Table 1.2: Short description of several modified GDGT-based indices and calibrations that deviate from the 
commonly applied global core-top calibrations of Schouten et al. [2002], Kim et al. [2008] and Kim et al. [2010]. 

Index Calibration Studied area and 

timescale 

Reference

Cren'2-GDGT1-GDGT

Cren'3-GDGT2-GDGT
TEX 86 


'  

104 unspecified core-top data 

vs. atlas SST 

Arctic; Paleocene – 

Eocene thermal 

maximum 

Sluijs et al. 

[2006] 

1
1





Cren'3-GDGT2-GDGT

1-GDGT

TEX86
 

Kim et al. [2008]’s TEX86 data 

vs. atlas SST data (n=287) 

Global; Eocene-

Oligocene climate 

transition 

Liu et al. 

[2009] 

TEX86 (see text above, proposed by Schouten et 

al., [2002]) 

Kim et al. [2008]’s core-top 

TEX86 data (n=287) vs. atlas 

SST; combined with 7 AP 

core-top TEX86 vs. measured 

SST 

Antarctic Peninsula 

(AP), Holocene 

Shevenell et 

al. [2011] 

 

1.3. Subantarctic Southeast Pacific SST: present and past 

 To get a grasp on how the climate system operates, one first needs to understand its 

components, including the ocean (Section 1.1). Oceanographic studies could be divided into 

two domains, i.e., modern oceanography and paleoceanography. Historical SST data (e.g., 

from merchant ship-based measurements) are heavily concentrated in the North Atlantic, 

western South Atlantic and northern Indian oceans [Deser et al., 2010]. The Southern Ocean, 

on the other hand, is poorly sampled due to a scarcity of trading ports in the Southern 

hemisphere, expensive logistics, and its uninviting rough seas. The same could be said about 

the paleo domain – progress in Southern Ocean research, especially in the Pacific sector, is 

hampered by a dearth of data. This situation partly arises from logistical difficulty since most 

well-funded oceanographic institutions are located in the Northern hemisphere on both sides 

of the North Atlantic. Another contributing factor is the “obsession” with the North Atlantic 
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since the early days of paleoceanography. As dramatically put by Huybers and Wunsch 

[2010], “Like the Genesis story, the idea that the North Atlantic Ocean meridional 

overturning circulation is the major controller of the climate system has taken on an almost 

mythic status”. Nevertheless, recent studies suggest that the upwelling of intermediate and 

deep waters in the Southern Ocean is one of the main components of the global overturning 

circulation, and it influences the exchange of heat and carbon between the deep and the 

surface ocean and the atmosphere [Marshall and Speer, 2012] Therefore, not unlike the North 

Atlantic (one of the locations in the global ocean where deep waters are formed), the Southern 

Ocean too plays an important role in global climate [see review by Fischer et al., 2010], via 

its linkages with the intense wind field [Toggweiler and Russell, 2008] and its seasonally 

varied sea-ice cover [Stephens and Keeling, 2000]. Incidentally, SST is a key element in these 

physical processes, as it either steers them, or it is modified by them.  

The geographic pattern of SST is strongly linked to, and controlled by, atmospheric 

and oceanic processes. Among the latter, physical processes such as heat transport by currents 

and vertical mixing play a major role. The single most important surface current in the 

Southern Ocean is the formidable Antarctic Circumpolar Current (ACC) that flows 

unimpeded around Antarctica, connecting the Atlantic, the Pacific and the Indian Oceans. It is 

also the largest current in the world, transporting around 110 Sv of water [Cunningham et al., 

2003], and its latitudinal position and intensity have implications for the global ocean and 

climate. In the east Pacific sector of the Southern Ocean, a very vigorous eastern boundary 

current i.e., the Peru-Chile Current (PCC; also known as the Humboldt Current and the Peru 

Current) is formed as a result of the bifurcation of the ACC as it approaches the South 

American continent (Figure 3.1). The PCC brings cold and nutrient-rich subantarctic water 

equatorward, feeding the east Pacific equatorial cold tongue. This current is therefore a heat 

conduit and forms the link between high and low latitudes in this sector of the Southern 

Ocean. Furthermore, it provides nutrients that sustain the high productivity in the upwelling 

regions off northern Chile and Peru, without which the profitable fishery industry here, one of 

the largest on the planet [Chavez and Messié, 2009], would perish. More detailed description 

of these surface currents is available in Chapter 3. 

  In spite of the remarkable difficulties in logistic and in finding suitable and datable 

sediments, several studies have been conducted in the Pacific sector of the subantarctic 

Southern Ocean to examine past SST changes (see Figure 1.5). These studies made use of 

various paleo SST proxies described in section 1.2.2 and Table 1.1. An emerging picture 
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from these studies is that different proxies suggest dissimilar extents of glacial cooling in this 

region, plausibly due to differences in production seasonality and habitat depth of the source 

 

Figure 1.5: Literature review of paleo sea surface temperature reconstruction in the subantarctic South Pacific 
south of 40°S. Red squares denote continuous downcore reconstructions; blue triangles denote the Last Glacial 
Maximum (LGM) time-slice study of Luz [1977]; black circles denote LGM time-slice study of Gersonde et al. 
[2005]. For more details see Table 1.3.  

 

Table 1.3: Details of previous paleo sea surface temperature studies in the subantarctic Southeast Pacific (south 
of 40°S). 

Site Time scale Type of Proxy Glacial-interglacial 
amplitude  

Reference 

ODP 1233 70 kyr Alkenone (UK’
37) ~7°C Lamy et al. [2004]; 

Kaiser et al. [2005] 
 27 kyr Coccolithophorid TF ~5°C Saavedra-Pellitero et 

al. [2011] 
MD07-3128 60 kyr Alkenone (UK’

37) ~8°C Caniupán et al. [2011] 
E11-1 LGM (time-slice) Foraminiferal TF 2.3°C Luz [1977] 

 LGM (time-slice) Diatom TF 0.7°C Gersonde et al. [2005] 
E11-2 110 kyr Mg/Ca on N. pachyderma (s) ~3°C Mashiotta et al. [1999] 

 LGM (time-slice) Foraminiferal TF 2.5°C Luz [1977] 
 LGM (time-slice) Diatom TF 0 °C Gersonde et al. [2005] 

E11-3 LGM (time-slice) Foraminiferal TF 1.5°C Luz [1977] 
 LGM (time-slice) Diatom TF 1.6°C Gersonde et al. [2005] 

E11-4 LGM (time-slice) Diatom TF 0.3°C Gersonde et al. [2005] 
E15-4 LGM (time-slice) Diatom TF 0.7°C Gersonde et al. [2005]
E15-6 LGM (time-slice) Diatom TF 0.2°C (LGM warmer than 

present) 
Gersonde et al. [2005]

E15-12 LGM (time-slice) Diatom TF 0.9°C Gersonde et al. [2005]
E19-7 LGM (time-slice) Diatom TF 1.4°C Gersonde et al. [2005]

E20-18 LGM (time-slice) Foraminiferal TF 0.2°C (LGM warmer than 
present) 

Luz [1977] 

E25-10 LGM (time-slice) Foraminiferal TF 4.9°C Luz [1977] 
PS58/271-1 LGM (time-slice) Diatom TF 1.3°C Gersonde et al. [2005]
DWBG 70 LGM (time-slice) Foraminiferal TF 3.4°C Luz [1977] 

Abbreviations: LGM = Last Glacial Maximum; TF = transfer function 
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organisms. SST estimates based on diatom assemblages (max. 1.5°C; Gersonde et al. [2005]) 

and Mg/Ca on planktonic foraminifera N. pachyderma (~3°C; Mashiotta et al. [1999]) 

suggested less severe glacial cooling, as opposed to stronger cooling indicated by alkenone 

unsaturation (UK’
37) (~7°C; Caniupán et al. [2011]; Kaiser et al. [2005]; Lamy et al. [2004]), 

coccolithophorid assemblages (6°C; Saavedra-Pellitero et al. [2011]), and foraminiferal 

assemblages (max. 5°C; Luz [1977]). Since these studies linked the SST changes to the 

latitudinal migrations of key climatic elements in the Southern Ocean - the ACC and its 

associated oceanic frontal systems, the southern hemisphere Westerlies and the sea-ice extent 

– dissimilar glacial cooling leads to diverging view on the latitudinal positions of these 

climatic features. 

 

1.4. Outstanding research issues 

1.4.1. Occurrence of alkenones and GDGTs in the South Pacific 

To date there is no report on the occurrence of alkenones and GDGTs in surface 

sediments between the shallow waters off New Zealand [Sikes et al., 1997] and the 

continental shelves off Chile [Kim et al., 2002], casting some uncertainties on the potential of 

these biomarkers for paleo SST reconstruction work in this region.  

 

1.4.2. Is TEX86 paleothermometry applicable in (sub)polar regions? 

Figure 1.6: Crossplots of GDGT-based indices (a) TEX86 and (b) TEX86
L with satellite SSTs from Kim et al. 

[2010]. Blue symbols represent subpolar and polar samples from the Arctic, the Barents Sea, off Svalbard, the 

Southern Ocean, and off Antarctica (see Figure 2.1 for location). Purple whisker bars denote residual standard 

error (±1σ). 

The applicability of TEX86 in the subpolar and polar regions has not been rigorously 

tested, especially in the context of late Pleistocene glacial-interglacial SST shifts. A recent 

(a) TEX86  (b) TEX86
L 

r2=0.77; n=396 r2=0.86; n=396
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reconstruction by Shevenell et al. [2011] on Holocene SST changes off Antarctic Peninsula 

demonstrated that although the TEX86 index did show climatic shift that were qualitatively 

consistent with other proxy data, both the latest global core-top calibrations of TEX86 and 

TEX86
L of Kim et al. [2010] resulted in unrealistic SST estimates. As mentioned by Kim et al. 

[2010], the crossplots of both indices versus SST (Figure 1.6) show large scatter at the low 

temperature end, where the indices seem to be invariant with temperature. The fact that the 

scatter at low temperature in the TEX86
L-SST correlation is as large as, if not larger, than that 

in the TEX86-SST relationship, casts doubts on the justification of the TEX86
L as the better 

index at low temperature range (recommended by Kim et al. [2010]). The marginally 

improved r2 value in the TEX86
L-SST relationship is probably a statistical artifact due to the 

amplified variance of TEX86
L at the low temperature end. Furthermore, since most of the data 

forming the scatter are retrieved from continental shelves prone to terrestrial GDGT input, it 

is not clear whether the scatter is due to the physiological limit of archaeal response to 

temperature, or other underlying cause (e.g., terrigenous overprint).  

In addition, there are very few data from the Southern Ocean and the Pacific (see 

Chapter 2; Figure 2.1), so the TEX86-SST relationship in these regions is currently not well 

constrained. Although a study by Ho et al. [2011] suggested that there is no apparent regional 

bias in the South Pacific (see Appendix 5), the study is based on only 20 data points. More 

data are necessary to appraise the applicability of TEX86 paleothermometry in this region.  

A further complicating factor is represented by the two modified versions of TEX86, 

namely the TEX86
L and TEX86

H for application at sites <15°C proposed by Kim et al. [2010]. 

Applying different indices at opposite temperature ends adds more uncertainty in comparing 

SST records from high and low latitudes (which are not directly comparable since they are 

based on different indices and calibrations). Therefore, work is needed in order to establish a 

universal calibration which is applicable throughout the entire temperature range.   

 

1.4.3. Which alkenone index is more suitable for paleo SST reconstruction in the South 

Pacific?  

The few marine sediment and water column studies in the high latitudes show 

contradictory findings on the applicability of UK
37 and UK’

37. The UK
37 index appears to be a 

better SST proxy in the Nordic Sea [Bendle and Rosell-Melé, 2004] while the UK’
37 seems to 
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be a better choice in the Southern Ocean [Sikes et al., 1997]. Multi-proxy downcore SST 

reconstructions in the North Atlantic by Bard [2001] showed that the UK
37, instead of the 

simplified UK’
37, resulted in SST estimates that are more comparable with other proxy data. 

This is somehow to be expected, considering the working principle of alkenone 

paleothermometry, which dictates that the unsaturation extent in alkenones increases with 

decreasing temperature. The abundance of the more unsaturated alkenones (i.e., C37:4) 

becomes numerically important at low temperatures, hence the exclusion of this compound 

from the SST index might undermine its predictive power (as is the case in the simplified 

UK’
37).  

Notwithstanding, Sikes et al. [1997] found better correlation in the UK’
37-SST 

relationship in the Southern Ocean. Notably, the UK
37 values in the Southern Ocean surface 

sediment reported by Sikes et al. [1997] are systematically lower than those observed in the E. 

huxleyi culture of Prahl et al. [1988] (The UK’
37-SST relationship in the latter study has been 

attested by two global core-top calibration studies and is the most commonly employed 

calibration). The discrepancy between these two data sets is due to the higher relative 

abundance of C37:4 alkenones in the Southern Ocean surface sediment, which amounted to 

~15% at 15°C and even as high as 38% at 9°C, while the cultured E. huxleyi started producing 

this compound at relatively low abundance at 10°C (absolute concentration data not reported). 

Therefore, it is still debatable which alkenone index is more suitable for paleo SST 

reconstruction in the Southern Ocean. 

 

1.4.4. How has the Southeast Pacific SST evolved during the Pleistocene?  

In spite of climatically important oceanic features in the east Pacific sector of the 

Southern Ocean such as the ACC and the PCC, studies are scarce in this region (see Chapter 

3). In the past 50 years, there have been fewer than a dozen studies on paleo SST here using 

marine sediment-based proxies (see Section 1.3). These SST records also do not go very far 

back in time, with the longest record [Kaiser et al., 2005] spanning merely 70 kyr. Therefore, 

the late Pleistocene SST evolution prior to MIS 4 here is virtually unknown, a fact that has 

important implications, as we lack information on the warmer-than-present MIS 5 and MIS 

11, and on the Mid-Brunhes Event (MBE), a climatic reorganization of the glacial-interglacial 

cycles which is well-expressed in the ice core records from Antarctica and is thought to play a 
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key role in the global carbon cycle. The data scarcity also impedes circumpolar comparison of 

climatic evolution in the Southern Ocean and Antarctica. 

 

1.4.5. How do the TEX86-derived SSTs compare to the UK
37-derived SSTs during the 

Pleistocene? 

  As the MARGO community [Kucera et al., 2005] concluded, no single proxy is 

“right” and “right everywhere”, highlighting the importance of a multi-proxy approach to 

better constrain SST reconstruction. Within the context of organic SST proxies, multi-proxy 

studies comparing alkenone- and GDGT-derived SST estimates are still not widespread but 

are on the rise, including studies from Castañeda et al. [2010]; Huguet et al. [2006b], , 

Huguet et al. [2011], , Lopes dos Santos et al. [2010] and McClymont et al. [2012]. Most of 

these studies are based on sediment records from shallow continental margins with high 

sedimentation rates. The emerging picture from these studies is a complex one, with some 

studies suggesting diverging SST evolutions [Huguet et al., 2006b; Lopes dos Santos et al., 

2010], while other studies do not support this scenario [Castañeda et al., 2010; Huguet et al., 

2011; McClymont et al., 2012]. In light of the recent finding that sedimentation settings 

(coastal vs. offshore) result in contrasting biases in TEX86-derived SSTs [Leider et al., 2010], 

a study based on material from an open ocean setting with moderate to low sedimentation rate 

would further add to our understanding of these organic SST proxies.  

 

1.5. Material and methods 

Marine sediments are the climatic archive used in this thesis to address the issues 

discussed above (Section 1.4). These sediment samples were analyzed using organic 

geochemical methods outlined in the following sub-sections.  

 

1.5.1. Marine sediments 

Various chemical (e.g., degradation and remineralization) and physical (e.g., 

advection) processes occurring in the water column during the sinking of biomarkers from the 

sea surface to the sediment might alter the empirical relationship between biomarkers and 

environmental parameters, resulting in dissimilar calibrations in the suspended organic matter 
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and in the sediment [e.g., Conte et al., 2006]. Hence, temporally and spatially averaged 

surface sediments are appropriate for assessing the applicability of a proxy in downcore 

reconstruction, as the sediments have undergone similar processes in the water column before 

being incorporated into the sediments. In this thesis, an extensive set of surface sediments 

were analyzed (Figure 1.7). These sediments are the upper most 0-1 cm of multicores, 

retrieved during various cruises in under-sampled regions such as the North Pacific, the Arctic 

and the Southern Ocean (see Section 2.6). The core sites are strategically located to fill the 

geographical voids in the global core-top calibration data sets (see Figure 2.1). 

 

 

Figure 1.7: Location of marine sediments used in this study. Red triangles denote long piston cores for 

downcore reconstruction (Chapter 3 and 4); black circles denote surface sediments used for TEX86 calibration 

(Chapter 2); blue crosses denote surface sediments used for UK
37 calibration (Chapter 3). 

 

To examine the evolution of SST in the Southeast Pacific at different latitudes on 

orbital time scale, we analyzed three marine sediment cores obtained via piston coring along 

the latitudinal range of the Peru-Chile Current (see Section 3.3.1). These sediments span at 

least 500 kyr, and the oldest core extends back to 700 kyr, according to the stratigraphic 

framework established via graphic alignment of benthic foraminiferal 18O to the global stack 

LR04 [Lisiecki and Raymo, 2005], or visual tuning of the SST record to the air temperature 

record in the EPICA ice core at Dome C, Antarctica (see Section 3.4.1).  
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1.5.2. Sample preparation 

Standard organic geochemical techniques were employed in this work. All sediment 

samples were freeze-dried and homogenized before being subjected to extraction using 

organic solvents. Freeze-drying is preferred for sediments used for alkenone analysis because 

air-drying (commonly used for samples prior to microfossil analysis) might lead to significant 

loss of alkenones and potentially bias the temperature estimation [McClymont et al., 2007]. 

Several extraction methods were applied in this work, such as the Accelerated Solvent 

Extractor (DIONEX 200), ultrasonication, and microwave-assisted extraction (see Section 

2.2.1). It is conceivable that different extraction techniques might lead to dissimilar recovery 

rates of extractable compounds which could affect the absolute compound concentration per 

sediment weight. However, this is not a concern for this thesis since the focus is not on 

comparing the concentration of biomarkers at various study sites. Furthermore there is no 

evidence of extraction method-induced bias in index values.  

 

Figure 1.8: Types of biomarkers and their precursors in the three domains of life. Red circles denote biomarkers 

used in this study for paleo SST reconstruction. (Figure courtesy of Florian Rommerkirschen; in Gaines et al. 

[2008]). 
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The total lipid extract is composed of a large suite of biomarkers derived from 

organisms spanning archaea, bacteria and eucarya (i.e., the three domains of life), as 

illustrated in Figure 1.8. To have purer samples for a better quantification, the total lipid 

extracts were partitioned into different fractions by means of silica gel chromatography or via 

a high performance liquid chromatography system equipped with a silicon dioxide column 

(details in Section 2.2.1 and 3.3.3). 

Organic compounds move through silica or alumina columns at different rates 

depending on the type of column (stationary phase) and solvents (mobile phase) used, as 

illustrated in Figure 1.9. There is higher affinity between silica / alumina and polar 

compounds, hence the less polar alkenones elute through the columns before the more polar 

GDGTs. 

 

Figure 1.9: Schematic of silica or alumina column chromatography to separate a mixture of organic compounds 

into different fractions prior to analysis. (Figure from explow.com/chromatography)  

 

1.5.3. Alkenone analysis  

After the separation of total lipid extracts, the fraction containing alkenones was 

saponified using weak potassium hydroxide (KOH) in methanol to remove ester-bound
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compounds such as alkenoates which might co-elute with alkenones in gas chromatography. 

In general, saponification is not a standard protocol of alkenone analysis, especially for 

pelagic sediments which are usually depleted in organic matter. However, it was essential for 

the sediment core-tops examined here as co-elution of an unknown compound with the C37:4 

alkenones occurred in many samples from sites with overlaying SST < 10°C, resulting in 

similar UK’
37 values but different UK

37 values (Figure 1.10). The co-elution artificially 

increased the %C37:4 and lowered the UK
37-derived temperature estimates. Notably, this 

unknown compound was not found in deeper sediments in piston core PS75/034-2, suggesting 

that it is probably not as refractory as the alkenones and was degraded in the upper few 

centimeters. Saponification of six samples with %C37:4 of 10% to 20% did not result in 

different temperature estimates and %C37:4 values, as they were comparable to those obtained 

from untreated samples. Therefore, the alkenone samples for core PS75/034-2 were not 

saponified prior to analysis.  

 

Figure 1.10: South Pacific core-top alkenone index values with and without saponification. 

 

Alkenones were analyzed using gas chromatography (GC) equipped with a flame 

ionization detector. In a GC system, injected samples are vaporized and pushed through the 

column by a carrier gas (mobile phase). The separation of different compounds is achieved 

via differences in boiling point, molecular size and affinity for the mobile phase. The 

identification of alkenones was done by comparing the sample chromatogram to that of a 

reference standard extracted from an Emiliania huxleyi culture (similar compounds should 
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have similar retention times). The instrumental precision for alkenones analysis is estimated 

to be ~0.2 °C based on replicate measurements. 

 

1.5.4. GDGT analysis 

Unlike for alkenones, gas chromatography is not adequate for analyzing the relatively 

high-molecular-weight GDGTs. Instead, a high performance liquid chromatography (HPLC) 

was used. In this work, GDGT analysis was carried out using HPLC systems coupled to a 

mass spectrometer, operating with an atmospheric pressure chemical ionization (APCI) 

interface (see Section 2.2.2 for details). The TEX86 values obtained using these systems were 

not compared directly, but significant bias is unlikely since an interlaboratory comparison 

study suggests that different HPLC systems result in comparable TEX86 values [Schouten et 

al., 2007]. Samples were passed through polytetrafluoroethylene (PTFE) filters prior to 

injection to prevent clogging in the column. The detection of the GDGTs was achieved by 

Selected ion Monitoring (SIM) of the [M+H]+ ions in the m/z ranges described by Hopmans 

et al. [2000].  

 

1.5.5. Choice of environmental data for calibration 

To calibrate alkenone- and GDGT-based proxies, the indices were plotted against 

various environmental data sets retrieved from the World Ocean Atlas 2009 [Locarnini et al., 

2010]. These include the annual mean and seasonal SSTs, in addition to temperature data at 

different water depths. As mentioned in Section 1.2.1, several reanalyzed and climatological 

SST products are available for research purposes. The WOA09 data sets were employed in 

this work, in consistency with most calibration studies in the past which opted for earlier 

versions of WOA data sets [e.g., Kim et al., 2008; Müller et al., 1998; Sikes et al., 1997]. 

However, Kim et al. [2010] used the NSIPP AVHRR Pathfinder and Erosion Global 9 km 

climatology data [Casey and Cornillon, 1999] in their most recent global core-top TEX86 

study. This data set is not significantly different from the WOA09 data set, rendering 

calibrations based on these data sets comparable. The deviations between these data sets occur 

at the low temperature end (Figure 1.11), where the Pathfinder SST values are colder than 

those from the WOA09, and can get as low as -2.4°C. Such low SST values are probably 
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errors related to the processing of satellite data, given the theoretical coldest seawater 

temperature is -1.8°C.  

 

Figure 1.11: Correlation between the climatology SST data sets from the NSIPP AVHRR Pathfinder and 

Erosion Global 9km [Casey and Cornillon, 1999] and the World Ocean Atlas 2009 [Locarnini et al., 2010].  

 

1.6. Thesis outline 

The outstanding research issues outlined in Section 1.4 are addressed in Chapter 2 to 

4 of this thesis, presented in the form of three manuscripts submitted or to be submitted to 

international peer-reviewed journals. Two additional manuscripts produced during the course 

of this PhD study, i.e. a review paper on alkenone paleothermometry and a Pacific TEX86 

core-top calibration paper based on the data generated during MSc. study, are included in 

Appendix 5.  

Chapter 2 presents 160 new (sub)polar core-top TEX86 and TEX86
L data that greatly 

enhance the spatial coverage and the temperature range of the previous global core-top 

calibration of Kim et al. [2010]. In this chapter, the implications of new data addition for the 

global core-top calibrations are appraised. The suitability of TEX86 and TEX86
L as SST proxy 

in subpolar and polar regions are further evaluated based on temperature residuals. The 

extensive compilation (~600 data) comprising data presented here and published data is 

rigorously assessed for any potential bias between the high- and low latitudes, and between 

different sedimentation settings.  

Chapter 3 contributes to the spatial mapping of alkenones in surface sediment in the 

South Pacific, which is of great importance for the planning of future paleoceanographic 
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studies in this region. The assessment of the suitability of alkenone indices as SST proxy in 

the Southeast Pacific is carried out with a two-pronged approach, i.e., by examining the 

correlation of core-top alkenone index values with modern SST; and by comparing the 

alkenone indices-derived SST records with other proxy records. After establishing the more 

appropriate alkenone index for paleo SST estimation, the SST records are used to infer the 

latitudinal migration of the oceanic frontal systems during the late Pleistocene, with an 

emphasis on the glacial-interglacial amplitude and notable climatic events such as the MBE. 

Chapter 4 presents a comparison of alkenone- and GDGT-based Pleistocene SST 

records in the Southeast Pacific. Several scenarios related to climatic events and proxies are 

suggested to reconcile the differences in the absolute values and the temporal trends of these 

SST records.  

 Chapter 5 summarizes the findings discussed in abovementioned chapters. In light of 

these findings, perspectives for future work to further improve the proxies and their 

application are proposed.  
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Chapter 2: Appraisal of the TEX86 and TEX86
L thermometries in the 

subpolar and polar regions: implications for global core-top calibrations 

 

Sze Ling Ho a*, Gesine Mollenhauer a, Susanne Fietz b, Alfredo Martínez-Garcia b,1, Frank 
Lamy a, Gemma Rueda b, Konstanze Schipper a,c, Marie Méheust a, Antoni Rosell-Melé b,d, 

Rüdiger Stein a, Ralf Tiedemann a 

 

a Alfred Wegener Institute for Polar and Marine Research, P.O.Box 12 01 61, 27515 Bremerhaven, Germany.  
b Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193 Bellatera, Spain. 
c Department of Geosciences, University of Bremen, 28334 Bremen, Germany. 
d Also at Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain. 
1 Presently at Geological Institute, Swiss Federal Institute of Technology Zürich, NO G 55, Sonneggstrasse 5, 
CH-8092 Zürich, Switzerland. 

 

(Under review with Geochimica et Cosmochimica Acta) 

2.0. Abstract 

TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms) 

paleothermometry is an organic sea surface temperature (SST) proxy based on the archaeal 

isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs). In this study, we improved the 

spatial coverage of the global core-top TEX86 calibration by contributing additional core-top 

data from the subpolar and polar regions, and appraised the applicability of the TEX86 and a 

modified version, i.e., L

86TEX , in these regions. The SST estimates derived from both TEX86 

and L

86TEX  are anomalously warm in the Arctic especially in the vicinity of the sea ice 

margin, calling for caution in interpreting paleo TEX86/
L

86TEX  reconstruction in this region. 

Judging from the temperature residuals, the TEX86 calibration resulted in better SST estimates 

in subpolar and polar regions, especially the Southern Ocean and the North Pacific, where the 
L

86TEX -inferred SSTs are considerably warmer than summer SSTs, in spite of the fact that the 

L

86TEX  is recommended for application at sites with SST < 15°C. Linear regressions through 

our compiled global data set (excluding the Arctic data) resulted in TEX86 (n = 482) and 
L

86TEX  (n = 480) calibrations with r2 values of 0.8 and 0.73 respectively, further confirm the 

robust relationship between both GDGT-based indices and SST for a broader geographical 

coverage. Between these indices, TEX86 appears to be a more suitable SST proxy for the 
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application in subpolar and polar regions, judging from better correlation in TEX86-SST 

calibration and smaller TEX86-derived temperature estimates residuals in these regions. 

 

2.1. Introduction 

TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms) 

paleothermometry is an organic sea surface temperature (SST) proxy based on the relative 

distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) in archaeal lipids 

[Schouten et al., 2002]. These lipids appear to be mostly biosynthesized by Thaumarchaeota 

(previously known as Group I.1a Crenarchaeota) [Brochier-Armanet et al., 2008] that are 

omnipresent in the global ocean. The number of cyclopentane moieties of these archaeal 

GDGT lipids in marine sediments was found to demonstrate an empirical linear relationship 

with the annual mean temperature of the overlaying sea surface water [Schouten et al., 2002], 

suggesting its potential as a proxy for paleo-environmental conditions. Later on, a mesocosm 

study confirmed that indeed the relative distribution of the GDGTs in seawater varied as a 

function of the growth temperature of the source organism [Wuchter et al., 2005].  

Since then, many more studies have been carried out to scrutinize the potential of 

TEX86, revealing that the ring numbers in the GDGTs seem to be responsive solely to the 

growth temperature, and are not influenced by salinity and nutrient availability [Wuchter et 

al., 2004], sediment maturity [Schouten et al., 2004], or grazing [Huguet et al., 2006a]. It was 

also found that the isoprenoid GDGTs are less susceptible to long distance lateral transport 

relative to alkenones used for the more established organic SST proxy [Mollenhauer et al., 

2008; Mollenhauer et al., 2007; Shah et al., 2008]. In addition, the fact that the GDGTs are 

found at all latitudes of the global ocean, including the polar regions that are often devoid of 

alkenones, and hence preclude the application of the well established organic SST proxy 'K
37U  

[Kim et al., 2010], suggest a potential advantage of the TEX86 paleothermometer in this 

region.  

However, there are some uncertainties and caveats associated with the GDGT-based 

proxy. For instance, the GDGTs have been found throughout the water column and in the 

sediments [Lipp and Hinrichs, 2009], sometimes even more abundant at subsurface than 

surface waters [Huguet et al., 2007; Sinninghe Damsté et al., 2002a; Wuchter et al., 2005] and 

may reflect subsurface water temperature in some settings [Huguet et al., 2007; Lee et al., 
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2008]. Moreover, a lack of understanding on the ecology, metabolic pathways and energy 

sources of the Thaumarchaeota, and the processes that control the sedimentary deposition of 

GDGTs, makes it difficult to constrain the water depth where the sedimentary GDGTs might 

have originated, thus complicating the interpretation of TEX86 values as SST estimates.  

 Initially, TEX86 has been defined by Schouten et al. [2002] based on a global core-top 

study (n = 44) as: 

 

]'Cren[]3GDGT[]2GDGT[]1GDGT[

]'Cren[]3GDGT[]2GDGT[
TEX86 


  

 

where GDGT-1, GDGT-2, GDGT-3 denote GDGTs containing 1, 2 and 3 cyclopentane 

moieties respectively; and Cren’ the crenarchaeol regioisomer. Recently, based on the 

comparison of the correlation of all the possible combinations of GDGTs with SST, 

performed on a more extensive core-top data set (n = 396), a modified version of TEX86, 

known as , was proposed [Kim et al., 2010]: 

 














]3GDGT[]2GDGT[]1GDGT[

]2GDGT[
logTEXL

86  

 

The differences between these two indices are twofold. Firstly, the L
86TEX  does not include 

the crenarchaeol regioisomer, which could be difficult to quantify especially in subpolar 

regions where its abundance is usually low, rendering possibly better applicability of the 

modified equation in this realm. On the other hand, the logarithmic function of the L
86TEX  

indeed affords a better linearity to the regression line by amplifying the variability in the low 

temperature range, but at the same time also magnifying its uncertainty.  

The TEX86 values could be converted to SST by means of the empirical linear 

regressions based on global sediment core-tops [Kim et al., 2008; Kim et al., 2010; Schouten 

et al., 2002]. There have been some successful paleo SST reconstruction in the subtropical 

L

86TEX
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area such as in the Arabian Sea [Huguet et al., 2006b], the Mediterrenean Sea [Castañeda et 

al., 2010; Huguet et al., 2011] and the Agulhas current system [Caley et al., 2011]. However, 

the applicability of the global core-tops calibration of TEX86 and  in the subpolar and 

polar regions is more uncertain. Thus far there are few reported successful studies. In some 

cases modified TEX86 indices and calibrations are proposed, such as demonstrated by Sluijs et 

al. [2006] in the Arctic and Shevenell et al. [2011] at the Antarctic Peninsula. Furthermore, 

the substantial scatter in the TEX86 – SST correlation [Kim et al., 2010] especially in the 

lower temperature range of the calibration, suggests the possibility of additional factors that 

might influence the TEX86 indices in these regions.  

Therefore, this study was carried out to assess the applicability of the TEX86 and 

 indices in low-temperature environments. In light of the important role played by the 

polar regions in the global climate, the emphasis of this study is focused on the mid and high 

latitudes where the annual mean surface water temperatures are in the range of -2 to 17 °C. In 

addition, this study also aims at providing more TEX86 core-top data from the Southern Ocean 

and the Pacific, the two regions that still suffer from a lack of geographical coverage in the 

present global core-top data set.   

 

2.2. Materials and Methods 

2.2.1. Sediment Extraction 

 The 160 marine sediment core-tops (0-1cm) analyzed in this study were obtained via 

multicoring during several Alfred Wegener Institute (AWI) and German-Russian scientific 

expeditions on various research vessels (R/Vs Polarstern, Sonne, Ivan Kireyev and Akademik 

Boris Petrov) in the Southern Ocean, the North Pacific, the Fram Strait and the Arctic Ocean 

(Figure 2.1).  

All core-top sediments were freeze-fried and homogenized. The GDGT extraction of 

the core-tops from the Southern Ocean (ANT-XXIII/9) and the Arctic (ARK-IX/4, ARK-

XI/1, Transdrift-1 and SIRRO 1997 - 2000) was done according to Müller et al. [1998]. 

Briefly, the sediments were subjected to 3 times of ultrasonication using UP200H sonic 

disruptor probes in successively less polar solvent mixtures (dichloromethane/methanol). 

From the North Pacific samples (SO202), the GDGTs were extracted using an DIONEX™ 

accelerated solvent extractor (DIONEX ASE 350), according to the NIOZ protocol [Schouten 

L

86TEX

L

86TEX
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et al., 2002]: heating for 5 minutes at 100°C, static time of 5 minutes, 3 cycles and solvent 

mixture of dichloromethane/methanol in the ratio of 9:1, v/v. After extraction, the total lipid 

extracts were fractionated by column chromatography (SiO cartridges, Varian Bond-Elut) 

using dichloromethane/methanol. 

The core-tops from the central Arctic (ARK-XXII/2), the Fram Strait (ARK-XXI/1) 

and the Southern Ocean core-tops other than those from ANT-XXIII/9, were subjected to 

microwave assisted extraction as described by Fietz et al. [2011] by using a mixture of 

dichloromethane:methanol (3/1, v/v). The extracts were then injected manually onto a Thermo 

Surveyor HPLC system equipped with a Lichrosphere Silicon dioxide column (4.6 x 250 mm, 

5 μm; Teknokroma) and a stainless steel inline filter (2 μm pore size). Compound class 

fractionation was achieved running sequentially n-hexane, dichloromethane, and acetone. 

 

Figure 2.1: Location of study sites in the global ocean. Black circles denote sites in this study, while previously 
published data are marked by different symbols: black crosses - Kim et al. [2008] and Kim et al. [2010]; black 
asterisks - Ho et al. [2011]; open triangles – Shevenell et al. [2011]; diagonal crosses – Leider et al. [2010]. Blue 
and red lines illustrate the monthly sea ice extent (in March and September) incorporated in the ODV software 
[Schlitzer, 2011] based on data from Walsh [1978] and Zwally et al. [1983]. Color bar indicates the altitude and 
the depth of seafloor. 

 

2.2.2. GDGTs Analysis 

 The GDGTs in samples from expeditions ANT-XXIII/9, SO202, ARK-XI/1, ARK-

IX/4, Transdrift-1 and SIRRO 1997 - 2001 were quantified using liquid chromatography with 

a method derived from Hopmans et al. [2000]. The polar fractions were pre-filtered through a 

4 m diameter PTFE filter (0.45 µm pore size) to prevent clogging in the column. Filtered 
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samples were then dissolved in hexane:isopropanol (99:1; v/v) and were injected onto a high 

performance liquid chromatography system (Agilent 1200 series HPLC system) coupled to an 

Agilent 6120 MSD mass spectrometer, operating with atmospheric pressure chemical 

ionization (APCI). The injection volume was 20 µL. A Prevail Cyano 3µm column (Grace, 

150mm x 2.1mm) maintained at 30°C was used to separate the GDGTs. The injected samples 

were eluted with a mixture of solvents, i.e., solvent A = hexane and solvent B = 5% 

isopropanol in hexane. The mixture of solvents (solvents A:B in the ratio of 80:20 v/v) was 

eluted isocratically for 5 min, then the volume of solvent B was increased linearly to 36% in 

40 min. The column was back-flushed with 100% solvent B for 8 min after each analysis to 

eliminate any compound that remains in the column. The spray chamber of the APCI-MS was 

set in the following conditions: drying gas flow 5 l/min and temperature 350°C, nebulizer 

pressure 60 psi, vaporizer gas temperature 450°C, capillary voltage -3 kV and corona current 

+4 µA. The detection of the GDGTs was achieved by Selected Ion Monitoring (SIM) of the 

[M+H]+ ions (dwell time 67 ms) in the m/z range of 1022 – 1302. 

Meanwhile, the remaining core-tops (ANT-X/5, ANT-XI/2, ANT-XII/4, ANT-XX, 

ANT-XXVI/2, ARK-XXI/1 and ARK-XXII/2) were analyzed as described by Fietz et al. 

[2011]. The dry polar fractions were re-dissolved in hexane/n-propanol (99/1, v/v) and filtered 

through 0.50 μm PTFE filters (Advantec). A Dionex P680 HPLC system coupled to a Thermo 

Finnigan TSQ Quantum Discovery Max quadrupole mass spectrometer with an APCI 

interface was used. The target compounds were separated with a Tracer Excel CN column 

(0.4 x 20 cm, 3 μm; Teknokroma) equipped with a precolumn filter and a guard column. The 

solvent program was modified from Schouten et al. [2007] and Escala et al. [2007]. Samples 

were eluted with hexane/n-propanol at 0.6 mL / min. The amount of n-propanol was held at 

1.5 % for 4 min, increased gradually to 5.0 % during 11 min, then increased to 10 % during 1 

min and held at 10 % for 4 min, then decreased to 1.5 % during 1 min and held at 1.5 % for 9 

min until the end of the run. The parameters of the APCI were set as follows to generate 

positive ion spectra: corona discharge 3 μA, vaporizer temperature 400ºC, sheath gas pressure 

49 mTorr, auxiliary gas (N2) pressure 5 mTorr and capillary temperature 200ºC. GDGTs were 

monitored in SIM mode. 

The samples preparation and GDGT analysis were carried out at the University of 

Bremen, the Autonomous University of Barcelona and the Alfred Wegener Institute. We 

contend that the results obtained from different laboratories using different analytical methods 

should result in comparable data since it was reported that the TEX86 measurement is not 
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significantly biased by extraction techniques or HPLC/APCI-MS set-ups [Schouten et al., 

2007].  

 

2.2.3. TEX86 calculation and SST estimations 

 The values for TEX86 and  are calculated following the equations as reported by 

Schouten et al. [2002] and Kim et al. [2010], respectively. These values are converted to SST 

estimates using the latest global core-top TEX86 / - SST calibrations proposed by Kim et 

al. [2010]. Additionally, we calculated the Branched and Isoprenoid Tetraether Index (BIT) 

according to Hopmans et al. [2004], which was proposed as a qualitative indicator for fluvial 

terrigenous GDGTs input (cutoff value suggested to be 0.3 by Weijers et al. [2006]). 

 

2.2.4. Environmental data 

 The objectively analyzed climatological data utilized in this study, i.e., water 

temperature at different depths, are extracted from the World Ocean Atlas 2009 (WOA09) 

[Locarnini et al., 2010]. The WOA09 dataset is preferred (over the NSIPP AVHRR 

Pathfinder and Erosion Global 9 km SST Climatology dataset used in Kim et al. [2010] which 

does not include subsurface water temperature data, see Figure 1.11) in this study on the 

grounds that all the environmental data used to discuss our TEX86 values should be from a 

consistent source.  

 For comparison of our index data with seasonal mean SST, we used seasons as defined 

by the WOA09 (i.e., Northern/Southern hemisphere spring/autumn: AMJ, summer/winter: 

JAS, autumn/spring: OND, winter/summer: JFM) [Locarnini et al., 2010]. The water 

temperatures at various depths (e.g., base of thermocline) are determined manually from the 

temperature-depth profile at each study site using the ODV software [Schlitzer, 2011]. Instead 

of a fixed depth, we opt to compare TEX86 values with water temperatures at a particular 

physical or chemical hydrographic boundary. This is because our study sites vary 

considerably in terms of water depths (20m to 5500m), hence a fixed depth (e.g., 200m) could 

correlate to very different hydrographic features, potentially introducing more scatter in the 

correlation of the water temperature with the TEX86 values. In fact, if there is indeed a 

significant subsurface GDGTs export, it is more likely to occur at a hydrographic boundary, 

L

86TEX

L

86TEX
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physical or chemical, rather than a fixed depth, due to specific biological niche development 

or physical factors such as preferential detention of lipids at the interface of water masses with 

large density difference. Therefore, three water depths are chosen, i.e., the base of 

thermocline, the base of oxycline, and the bottom waters close to the water-sediment interface 

(defined for the purpose of our study as the deepest temperature datum available for a given 

site in WOA09).  

 

2.3. Results 

2.3.1. Relationship between individual GDGTs 

 

Figure 2.2: Principal component analysis on the individual GDGTs in the compilation of the data in this study 
and the published core-top data by Kim et al. [2008], Kim et al. [2010] and Ho et al. [2011].  

 

The PCA on the compilation of our data, the global core-top data set from Kim et al. 

[2008; 2010] and the Pacific data set from Ho et al. [2011] spanning a large temperature range 

(-2 to 30°C), shows that in general the relative relationship between individual GDGTs at our 

core sites are not different from that of the global ocean. The exceptions are five North Pacific 

samples (Cluster 1, Figure 2.2) and the Red Sea data set (previously discussed in Kim et al. 
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[2008]) that form separate clusters. The first two principal components explain approximately 

92% of the variance (PC1: 70 % and PC2: 22 %), similar to the values reported in the global 

core-top study [Kim et al., 2010]. On the Component 1 axis, all the GDGTs included in the 

TEX86 indices are positively correlated, while GDGT-1 and GDGT-2 are negatively 

correlated with GDGT-3 and crenarchaeol regioisomer on the Component 2 axis. This pattern 

of GDGTs distribution is essentially the same as reported in the latest global core-top study 

[Kim et al., 2010]. 

 

2.3.2. Fractional abundance of GDGTs 

 In a broad sense, the fractional abundance of GDGTs increases with the WOA09 

annual mean SST, except the GDGT-0, which exhibits an opposite trend (see Figure 2.3). 

Some of the Arctic marginal sea data reveal a different relationship with SST compared to the 

Southern Ocean and the North Pacific data set, especially evident in terms of the relative 

fractional abundance of GDGT-3 (Laptev Sea and Kara Sea), crenarchaeol (Laptev Sea and 

Kara Sea) and crenarchaeol regioisomer (Fram Strait and Central Arctic). Meanwhile, the 

distribution of GDGTs from Cluster 1 displays a completely different behavior relative to the 

rest of the data set. The fractional abundances of GDGT-0, -1 and -2 are remarkably high 

while those of crenarchaeol and crenarchaeol regioisomer are substantially lower than in the 

rest of the data set.  

 

2.3.3. TEX86 and TEX86
L values  

 For a broader geographical coverage in the appraisal of the applicability of TEX86 and 
L

86TEX thermometries in the subpolar and polar regions, we include also previously published 

data [Ho et al., 2011; Kim et al., 2008; Kim et al., 2010; Shevenell et al., 2011] from regions 

that are comparable in terms of SST (<17°C) and latitudes (>37°N/S) with those presented in 

this study.  
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Figure 2.3: Relationship between the fractional abundance of individual GDGTs and the WOA09 annual mean 
SSTs, i.e., (a) GDGT-0, (b) GDGT-1, (c) GDGT-2, (d) GDGT-3, (e) Crenarchaeol, (f) Cren’ (abbreviation for 
crenarchaeol regioisomer).  Oceanic regions are marked by different symbols in different colors as explained in 
the legends. 
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Figure 2.4: Correlation plots of TEX86 and TEX86
L values with annual mean sea surface temperature derived 

from World Ocean Atlas 2009 (WOA09). Oceanic provinces are indicated by different symbols in different 
colors as explained in the legends. Filled symbols indicate data from this study, open symbols indicate published 
data, grey-filled symbols indicate data with BIT >0.3. Abbreviations: SSI – summer sea ice; WSI – winter sea 
ice, I – Indian, P – Pacific; A – Atlantic. 

 

2.3.3.1. Correlation to temperature at various water depths 

Overall, compared to its counterpart TEX86, the  displays better correlation with 

the SST (Figure 2.4). There is considerable scatter in the TEX86 data, especially those from 

the Laptev Sea, the Fram Strait and the central Arctic, which form a separate cluster with 

relatively high TEX86 values at low temperatures. On the other hand, the most pronounced 

scatter in the data set is attributable mainly to the data from the Laptev Sea with BIT 

values > 0.3 and two anomalous data from the Antarctic Peninsula. It is also notable that both 

the TEX86 and  values in the Barents Sea are invariant in spite of the large SST range 

(0 – 7 °C) encompassed by these sites.  

In addition to the sea surface (0 m), we also examine the correlation of TEX86 and 

 values with the temperature at 3 different water depths (Figure 2.5), namely the base 

of the seasonal thermocline, the base of the oxycline (where the oxygen level is the lowest in 
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the water column), and the bottom waters (deepest datum available for a given site in the 

WOA data set). There is no strong linear relationship (low r2 values below 0.05) between both 

the TEX86 and  values with the temperature of bottom waters and the base of the 

oxycline. On the contrary, a better correlation, comparable to that of the SST, is found for the 

temperature at the base of the seasonal thermocline. 

 

2.3.3.2. Correlation to SST of various seasons 

There is no difference between the correlation of TEX86 values with the annual mean 

SST (Figure 2.4) and that of the seasonal SSTs (Figure 2.6a – 2.6d). The same is true for the 

 data set (Figure 2.6e – 2.6h), with the exception of the correlation with the summer 

SST, which is slightly poorer than those of the other seasons and the annual mean.  

 

2.3.4. Residuals of SST estimates 

 The residual of SST estimate is defined here as the difference between the estimated 

SST and the atlas SST. The residuals vary depending on the calibration used. Here we assess 

how the SST estimates derived from the global core-top calibrations compare to the 

climatological SSTs. The standard errors of estimates for the latest global core-top 

calibrations for TEX86 and  (Kim et al. [2010], n = 396) are 5.2°C and 4°C, 

respectively.  

The standard deviation of the TEX86 derived SST estimates (relative to annual mean 

SST) is 6.1°C (Figure 2.7a). Although the residuals seem to become increasingly negative as 

SST increases, a large majority of the SST estimates are within the standard error of 

estimates. At the low temperature end, a separate cluster with deviant positive residuals 

ranging between ~5 to 30°C is apparent, consisting mostly of data from the Arctic regions and 

the Antarctic Peninsula. The global TEX86 calibration underestimates the SST at some 

marginal seas such as the Sea of Japan, the North Sea, and the Irish Sea, resulting in negative 

residuals. 
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Figure 2.5: Correlation plots of TEX86 and TEX86
L

 
values with water temperatures derived from World Ocean Atlas 2009 (WOA09) at various depths. The water depths used in 

the plots are as follows: Thermocline – the base of seasonal thermocline, Oxycline – the base of the oxycline , Bottom – the deepest water depth datum available for the site. 
Oceanic provinces are indicated by different symbols in different colors as explained in the legends. Filled symbols indicate data from this study, open symbols indicate published 
data, grey-filled symbols indicate data with BIT >0.3. Abbreviations: SSI – summer sea ice; WSI – winter sea ice, I – Indian, P – Pacific; A – Atlantic.
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Figure 2.6: Correlation plots of TEX86 and TEX86
L values with mean seasonal sea surface temperature derived 

from World Ocean Atlas 2009 (WOA09). Grey lines illustrate the latest global core-top calibrations [Kim et al., 
2010]. Oceanic provinces are indicated by different symbols in different colors as explained in the legends. 
Filled symbols indicate data from this study, open symbols indicate published data, grey-filled symbols indicate 
data with BIT >0.3. Abbreviations: SSI – summer sea ice; WSI – winter sea ice, I – Indian, P – Pacific; A – 
Atlantic. 
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Figure 2.7: The residuals of temperature estimates derived from the latest global core-top calibrations for TEX86 and TEX86
L [Kim et al., 2010]. SST residuals are defined as the 

subtraction of World Ocean Atlas 2009 (WOA09) annual mean/summer/winter SST from the estimated SST. The grey lines represent the standard error of estimates for the 
calibrations. Oceanic provinces are indicated by different symbols in different colours as explained in the legends. Filled symbols indicate data from this study, open symbols 
indicate published data, grey-filled symbols indicate data with BIT >0.3. Abbreviations: SSI – summer sea ice; WSI – winter sea ice, I – Indian, P – Pacific; A – Atlantic. 
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On the other hand, the residuals of the  inferred SST estimates (relative to the 

annual mean SST) have a standard deviation of 6.5°C (Figure 2.7b). Some data from the 

Arctic form a separate cluster with large positive residuals, albeit to a smaller extent 

compared to the TEX86 temperature residuals. Two of the SST estimates at the Antarctic 

Peninsula are unrealistically low, with underestimation down to -60°C. Most of the SST 

estimates from the open ocean settings are overestimated beyond the standard error of 

estimates, including those from the Southern Ocean, the North Pacific and the Bering Sea. 

Meanwhile, underestimation mostly occurs in the marginal seas such as the Irish Sea, the 

Black Sea and the North Sea.  

To detect any potential seasonal bias in the SST estimates, we also assess the residuals 

of the SST estimates relative to the summer and winter SST (Figure 7c to 7f). The standard 

deviation of residuals relative to the winter SST are comparable to those of the annual mean, 

and are smaller than those of the summer SST. In general, the residuals of seasonal SST 

estimates display a similar data distribution as those of the annual mean SSTs, with 

amplification in the extent of underestimation, especially in the temperature range of 15 – 

23°C.  

 

2.4. Discussion 

2.4.1. GDGT contribution from methanogenic archaea  

 The PCA on individual GDGTs reveals that 5 samples from the North Pacific 

(Subarctic Front and Alaska Gyre) and the Bering Sea have a distinctive GDGT signature 

(Figure 2.2). On a closer inspection, these samples contain elevated abundance of GDGT-0, 

and to a lesser extent also of the GDGT-1 and 2 (Figure 2.3), relative to crenarchaeol, the 

hallmark GDGT for marine Thaumarchaeota [Sinninghe Damsté et al., 2002b]. The atypical 

GDGT distribution in these samples suggests a contribution from an archaeal community 

other than the pelagic Thaumarchaeota. Soil derived and fresh water related GDGTs are 

unlikely to be the cause, since these sites are far from the coast, hence receive insignificant 

riverine input of terrigenous GDGTs and are not in the vicinity of sea ice margin where fresh 

water could be generated via ice melting. The abundance ratio of GDGT-0/crenarchaeol at 

these sites ranges between 8 and 12, which are remarkably high compared to the values 

observed in typical marine sediment (0.2 – 2, Schouten et al. [2002]).  It has been proposed 

that a ratio GDGT-0/crenarchaeol > 2 is indicative of significant methanogen archaeal input in 
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lake sediments [Blaga et al., 2009], based on the assumption that the main contributors of 

GDGT-0 and crenarchaeol are the methanogens and the Thaumarchaeota, respectively. 

Therefore, the atypical GDGTs distribution observed at Cluster 1 sites in the North Pacific 

and the Bering Sea might be attributable to major contribution from the methanogens. 

Nevertheless, some of the SST estimates are within the standard error of estimates (three out 

of five for TEX86 and one out of five for ). At those sites with anomalously large 

residuals, there is an opposite trend in the TEX86 and  derived SST estimates, i.e., the 

TEX86 inferred estimates are warm-biased while those inferred from the index are cold-

biased. The warm-biased TEX86 derived estimates are in agreement with the finding of a 

study in Lake Challa where the methanogenic archaeal GDGTs biased TEX86 values were 

anomalously high [Sinninghe Damsté et al., 2009]. Nonetheless, we exclude the Cluster 1 data 

from further discussion to avoid undue bias.  

 

2.4.2. Correlation of TEX86 / TEX86
L indices to subsurface temperature  

Since the GDGTs are found throughout the water column [e.g., Karner et al., 2001], it 

is tempting to speculate that the lack of correlation with SST could be due to a substantial 

input of GDGTs from deeper waters, interfering with the surface water GDGT signals. 

However, we do not observe much improved correlations at deeper water depths, such as at 

the base of oxycline and the bottom waters at the site (Figure 2.5). The correlations with the 

seasonal thermocline (10-200 m), on the other hand, seem to be better than those with the 

SST, especially evident for the TEX86 index (Figure 2.5a and Figure 2.5d). However, this 

observation probably arises as an artifact of the reduced data set for the TEX86 – thermocline 

correlation, which does not include most of the deviant data from the Arctic shelf (due to the 

difficulty in identifying this hydrographic barrier in the poorly resolved WOA09 data set for 

shelf regions). Indeed, if the same reduced data set would be considered for the correlation of 

the GDGT indices with both the seasonal thermocline and SST, comparable or better r2 values 

would be obtained for the SST (0.22 and 0.33 compared to 0.24 and 0.25 for the TEX86 and 

, respectively). This finding attests to the fundamental principle of the TEX86 

paleothermometry, i.e., the GDGTs that end up in the sediment are mainly those of the near-

surface dwelling archaea, in spite of the fact that the archaea thrive throughout the water 

column. This assumption is based on several lines of evidence. For example, Sinninghe 

Damsté et al. [2002a] and Wuchter et al. [2005] found that the sedimentary TEX86 values 
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reflect the SST in spite of higher GDGT abundance in mid water depths owing to a more 

efficient export of GDGTs from the surface waters presumably via an active food web 

[Wakeham et al., 2003]. In addition, Huguet et al. [2006a] reported that the TEX86 derived 

SST estimates in the gut of decapods, one group of zooplankton, are in good agreement with 

the SSTs, suggesting that the zooplanktons graze upon the archaea or on the particles the 

archaea are associated with in the surface waters. Furthermore, the archaeal cells are less than 

1µm in size and are neutrally buoyant [Könneke et al., 2005; Margot et al., 2002] which 

prevents them from sinking efficiently on their own [Wakeham et al., 2003].  

 

2.4.3. Deviant SST estimates in the Arctic  

 

Figure 2.8: Close-up of the residuals of (a) TEX86 and (b) TEX86
L derived SST estimates relative to World 

Ocean Atlas 2009 (WOA09) summer SST in the Arctic. The blue and red lines denote the maximum and 
minimum monthly sea ice extent respectively, incorporated in the ODV software [Schlitzer, 2011] based on data 
from Walsh [1978] and Zwally et al. [1983]. Color bar illustrates the residuals in blue-red color scheme: red 
indicates overestimation while blue indicates underestimation. 

 

 The TEX86 derived SST estimates for the Arctic are largely overestimated, to the 

extent of 28°C warmer than the summer SST at the sites (Figure 2.7 and Figure 2.8). Some 

of the warm biased SST estimates near the coast, e.g., off Svalbard and off Siberia, are 

probably the consequence of a significant input of terrigenous GDGTs via river runoff, 

interfering with the marine signals. However, in the Arctic marginal seas especially the 

Laptev Sea, there is a seaward increase in the magnitude of the SST overestimation, peaking 

in the vicinity of the sea ice margin (Figure 2.8). This warm bias near the sea ice margin does 
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not occur in the Barents Sea, even though there is indeed a seaward increase in the 

temperature residuals. Interestingly, the extreme warm bias is also observed in the  

derived SST estimates. In general, the warm TEX86/  SST estimates are associated with 

high fractional abundance of GDGT-3 or crenarchaeol regioisomer (Figure 2.3). Co-

incidentally, a previous reconstruction work in the central Arctic during the PETM has also 

found anomalously high GDGT-3 [Sluijs et al., 2006] that resulted in high TEX86 values. The 

authors interpreted the deviant GDGT-3 as terrestrially originated, and discarded them from 

the TEX86 calculation. Nevertheless, since the warm bias in our core-top TEX86 inferred SST 

estimates is more pronounced near the sea ice margin than near the river mouth, we are more 

inclined to attribute the warm bias to the occurrence of the sea ice. It is plausibly due to a 

substantial input of GDGTs from sea-ice related archaeal communities with a different 

temperature adaptation mechanism in the lipids, which might have skewed the TEX86 values 

at the offshore Arctic sites. These archaea probably produce lipids with additional GDGT-3 

(Figure 2.3d), resulting in anomalously high TEX86 values. Potential candidates for these 

archaeal communities may be associated with the Marine Group 1 Crenarchaeota in the Arctic 

[Alonso-Sáez et al., 2008; Bano et al., 2004], unspecified archaea in the sea ice [Junge et al., 

2004], or polar-specific Crenarchaeota dominant in the upper halocline of the Arctic waters 

[Kalanetra et al., 2009]. Given that we do not observe such deviously warm SST estimates at 

the sea ice edges in the Southern Ocean and the coast off the Antarctica (Figure 2.7), it is 

possible that these sea ice archaea are limited to the Arctic. At this stage, however, it is 

impossible to unambiguously identify the group of archaea that contributes to the spuriously 

high TEX86 inferred SST estimates at our sites without further genomic work. Nevertheless, 

our results suggest that extreme caution should be used when interpreting TEX86 data in areas 

potentially influenced by sea ice. 

 

2.4.4. Effect of sedimentation setting and/or seasonality 

In addition to the spuriously warm Arctic SST estimates, there is also considerable 

scatter in the subpolar TEX86 / data sets. A closer inspection of the scatter plots of 

TEX86 /  vs. SST (Figure 2.4) reveals two groups, congregating above and below the 

global calibration of Kim et al. [2010] respectively. In general, the data in the group above are 

mostly from the deep open ocean setting (depth > 2000 m), while the group below consists of 

mostly data from the marginal seas and/or continental shelves. The same trend could also be 
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observed in the TEX86 temperature residuals plots (Figure 2.7). Most of the warm-biased 

estimates (e.g., summer residuals within the standard error of estimates) are consisted of data 

from the open oceans, while the cold-biased estimates (e.g., winter residuals within the 

standard error of estimates) occur at the marginal seas and the continental shelves such as the 

Black Sea and the Gulf of St. Lawrence. The contrasting bias (warm bias vs. cold bias) in the 

SST estimates at open ocean and marginal seas might be the reason why we do not observe 

substantial difference in the correlation with seasonal SSTs (Figure 2.6), as the contradicting 

estimates might have canceled out the correlation to warm or cold seasons.  

A combination of factors, including archaeal ecology, sedimentation regime and 

seasonality, might have contributed to the diverging TEX86 / - SST relationship in 

different settings. The microbial communities are known to differ between coastal and open 

ocean regions, with latitude, and in regions where there is upwelling of mesopelagic waters to 

the surface [Giovannoni and Vergin, 2012]. For instance, the cold-biased TEX86 / - 

derived SST estimates in marginal seas might arise as a consequence of higher archaeal cell / 

lipid abundances in winter, as reported for the North Sea [Wuchter et al., 2005; Wuchter et al., 

2006] and the Antarctic coastal waters [Church et al., 2003; Murray et al., 1998]. On the 

other hand, the GDGT flux to the seafloor in open ocean setting (e.g., the Southern Ocean, the 

North Pacific) might be more tightly linked to the primary production export, which is heavily 

biased towards the warm seasons [Honda et al., 2002; Honjo et al., 2000] due to more 

availability of light, hence result in warm biased SST estimates. Similar findings, albeit on a 

regional scale, were observed previously in a seaward transect study in the Mediterranean 

[Leider et al., 2010], in which the authors found that the TEX86-derived SSTs were 

increasingly overestimated seaward. The authors invoked seasonality in the production of 

planktic archaea, the nutrient conditions and particle loading in surface waters to explain their 

findings. These mechanisms might be in play as well in the marginal seas and the open oceans 

in the subpolar and polar regions, causing the scatter in the low and mid temperature range in 

the data set. Furthermore, some of the underestimation at the continental margins may also be 

attributable to lateral transport, such as in the Argentine Basin, where previous studies 

suggested that the cold-biased alkenone-derived SSTs observed are due to the advection of 

allochthonous alkenones by vigorous surface currents [Benthien and Müller, 2000; Conte et 

al., 2006; Mollenhauer et al., 2006; Rühlemann and Butzin, 2006]. Nevertheless, it is beyond 

the scope of this study to reconcile the discrepancy in different sedimentation settings, hence 
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the confirmation of our hypotheses awaits future work, e.g., water column studies across 

different sedimentation settings.   

 

2.4.5. Implications for global core-top calibrations 

The compilation of our new data set, together with the global data set of Kim et al. 

[2010] (Red Sea data not included) and some recently published regional core-top data sets 

such as those from the Pacific [Ho et al., 2011], the Antarctic Peninsula [Shevenell et al., 

2011] and the Mediterranean Sea [Leider et al., 2010] results in an impressive data set of 630 

data points (Figure 2.9). However, the linear regression through this data set yield mediocre 

r2 values of 0.67 and 0.68 for TEX86 and , respectively, which are inferior compared to 

those of the previously published global calibrations (0.77 and 0.86 for TEX86 and ). 

The poorer correlation in this compilation might be attributable to the large scatter in the low 

and mid temperature range. As discussed in Section 2.4.2, the SST estimates in the Arctic 

regions are spuriously warm, hence the addition of these data might potentially jeopardize the 

linear correlation of these index values with SST (Figure 2.9). Indeed, once all the data from 

the Arctic region (Central Arctic, Laptev Sea, Kara Sea, Fram Strait, Barents Sea, off 

Svalbard) are removed, the correlation of TEX86 with SST improves considerably, resulting in 

r2 value of 0.8, which is slightly better than the r2 value of the Kim et al. [2010] TEX86 

calibration (0.77). The standard error of estimate for this calibration is 4.8°C, slightly smaller 

than that reported for Kim et al. [2010] TEX86 calibration (5.2°C). Interestingly, the scatter in 

the mid temperature range (~7 – 17°C) seem to be larger than that at the lower end of the 

temperature range (excluding the Arctic data), probably attributable to different sedimentation 

setting (open ocean vs. marginal sea / continental shelf, see Section 2.4.4). On the other hand, 

the removal of the Arctic data does not affect the correlation of with SST. Even if the 

apparent outliers (see Figure 2.9b; two data from the Antarctic Peninsula with anomalously 

low  values) are removed, the r2 value of  – SST correlation is only marginally 

improved to 0.73, compared to 0.86 of the Kim et al. [2010] calibration. The 

deterioration in the - SST correlation results in a larger standard error of estimates 

(5.6°C compared to 4°C reported for Kim et al. [2010] calibration). 
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Figure 2.9: Compilation of the (a) TEX86 and (b) TEX86
L data from this study and the published data set of Kim 

et al. [2010], Kim et al. [2008], Leider et al. [2010], Ho et al. [2011] and Shevenell et al. [2011], as a function of 
World Ocean Atlas 2009 (WOA09) annual mean SST. Oceanic provinces are indicated by different symbols in 
different colours as explained in the legends. Filled symbols indicate data from this study, open symbols indicate 
published data, grey-filled symbols indicate data with BIT>0.3. Published calibrations are marked by dashed 
lines while the calibrations derived from our compiled data set are marked by solid lines. Abbreviations: SSI – 
summer sea ice; WSI – winter sea ice, I – Indian, P – Pacific; A – Atlantic; Eq. – Equatorial; WPWP – West 
Pacific warm pool; AP – Antarctic Peninsula. 
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2.4.6. Applicability in (sub)polar regions and conclusions 

Since its first proposal [Schouten et al., 2002], the TEX86 paleothermometry has been 

applied in several paleo reconstructions in the polar regions, such as in the Arctic during the 

PETM [Sluijs et al., 2006] and in the Antarctic Peninsula during the Holocene [Shevenell et 

al., 2011]. However, these studies employed modified versions of TEX86 calibrations due to 

the unsuitability of the global core-top calibrations at these sites. To shed more light on the 

validity of TEX86 thermometry in these regions, here we analyzed an extensive set of core-top 

samples to investigate the correlation of the TEX86 and L
86TEX  values to the SST and the 

predictive power of the presently available calibrations. 

With regards to the global calibrations reported by Kim et al. [2010], the TEX86 

calibration appears to be a better choice for the SST reconstruction in subpolar and polar 

regions. It yields better SST estimates (relative to WOA09 SST), especially in the Southern 

Ocean and the North Pacific, compared to the recommended proxy for sites with SST < 15°C 

[Kim et al., 2010], i.e., the calibration, which results in estimates that are warmer than 

the WOA09 summer SST in these regions (Figure 2.7). Moreover, the application of the 

calibration on a sediment core in the Antarctic Peninsula resulted in large temperature 

variations during the Holocene [Shevenell et al., 2011 Supplementary information], with SSTs 

below freezing point (~-20°C) which are probably unrealistic for the site. Taken together, 

these findings argue against the applicability of the  paleothermometry in these regions.  

We observed some regional differences in the TEX86 / - SST relationships in 

the subpolar and polar regions. For instance, regardless of the indices or calibrations used, the 

SST estimates are cold- / warm-biased at some marginal seas (e.g., Irish Sea, North Sea) / 

most of the Arctic sites especially in the vicinity of the sea ice margin. Caution should thus be 

exercised in interpreting the TEX86 / - derived SST estimates in these regions. In spite 

of these differences, the compilation of our data (excluding the Arctic data) with other 

published data sets (n = 482) resulted in linear regressions with reasonably good fit (r2 values 

> 0.7). The addition of data yields contrasting consequences to the global calibrations, i.e., 

improving the TEX86 (r
2 = 0.8 and standard error = 4.8°C, compared to 0.77 and 5.2°C for 

Kim et al. [2010]) while worsening the  (r2 = 0.73 and standard error = 5.6°C, 

compared to 0.86 and 4°C for Kim et al. [2010]). The contradictory findings in the TEX86 and 

 core-top data complicate the effort to disentangle the underlying causes contributing 
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to the scatter in the data set in subpolar and polar regions. Nevertheless, better TEX86-SST 

correlation, together with smaller TEX86-derived temperature residuals in the subpolar and 

polar regions, lead us to conclude that TEX86 is a better SST proxy for application in these 

regions.  
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(In press in Paleoceanography) 

3.0. Abstract 

In spite of the important role played by the Southern Ocean in global climate, the few 

existing paleoceanographic records in the east Pacific sector do not extend beyond one 

glacial-interglacial cycle, hindering circumpolar comparison of past sea surface temperature 

(SST) evolution in the Southern Ocean. Here we present 3 alkenone-based Pleistocene SST 

records from the subantarctic and subtropical Pacific. We use a regional core-top calibration 

data set to constrain the choice of calibrations for paleo SST estimation. Our core-top data 

confirm that the alkenone-based UK
37 and UK’

37 values correlate linearly with the SST, in a 

similar fashion as the most commonly used laboratory culture-based calibrations even at low 

temperatures (down to ~1°C), rendering these calibrations appropriate for application in the 

subantarctic Pacific. However, these alkenone indices yield diverging temporal trends in the 

Pleistocene SST records. Based on the better agreement with 18O records and other SST 

records in the subantarctic Southern Ocean, we propose that the UK
37 is a better index for SST 

reconstruction in this region than the more commonly used UK’
37 index. The UK

37-derived 

SST records suggest glacial cooling of ~8°C and ~4°C in the subantarctic and subtropical 
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Pacific, respectively. Such extent of subantarctic glacial cooling is comparable to that in other 

sectors of the Southern Ocean, indicating a uniform circumpolar cooling during the 

Pleistocene. Furthermore, our SST records also imply massive equatorward migrations of the 

Antarctic Circumpolar Current (ACC) frontal systems and an enhanced transport of ACC 

water to lower latitudes during glacials by the Peru-Chile Current. 

 

3.1. Introduction 

The Southern Ocean plays a key role in global climate via its influence in the 

meridional overturning circulation [Marshall and Speer, 2012] and the global carbon cycle 

[Fischer et al., 2010]. Knowledge of past changes in this ocean is therefore essential for a 

better understanding of its mechanistic link to the global climate, and ultimately contributes to 

improving the prediction of future climate change via modeling efforts. In this regard, sea 

surface temperature (SST), as the interface between the ocean and the atmosphere, is an 

indispensable boundary parameter in driving global climate models. Our present 

understanding of Pleistocene SST evolution in the Southern Ocean is mostly derived from 

sediment records in the Atlantic sector [Martínez-Garcia et al., 2009; Schneider-Mor et al., 

2008], the Indian sector [Howard and Prell, 1992] and the Southwest Pacific [Pahnke et al., 

2003; Schaefer et al., 2005]. The eastern Pacific sector of the Southern Ocean, on the other 

hand, is a less studied region. The few existing high-resolution marine archives spanning one 

glacial cycle off Chile at ODP Site 1233 (41°S) indicate a dramatic equatorward shift (7-10°) 

of the Southern Ocean current systems [Verleye and Louwye, 2010] and substantial glacial 

cooling of 5 to 7°C based on a coccolithophorid transfer function and alkenones [Kaiser et al., 

2005; Lamy et al., 2004; Saavedra-Pellitero et al., 2011]. Further south at 53°S, an alkenone-

based SST record off the Strait of Magellan [Caniupán et al., 2011] displays glacial cooling 

of up to ~8°C. Meanwhile, a time-slice study of the LGM at the East Pacific Rise using a 

foraminiferal transfer function indicates a smaller amplitude of glacial-interglacial SST 

changes of 2 to 5°C between 48°S and 57°S [Luz, 1977]. The few South Pacific data in a 

circumpolar compilation from the subantarctic and the Antarctic zones of the Southern Ocean 

based on siliceous microfossil records [Gersonde et al., 2005] suggest less severe glacial 

cooling (~1.5°C) in the Pacific compared to the other sectors during the Last Glacial 

Maximum (LGM). Notably, all these records do not extend beyond the last two glacial-

interglacial cycles, hindering the comparison of temperature evolution in different sectors of 
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the Southern Ocean and Antarctica on orbital time-scales. The lack of paleo SST records in 

the subantarctic Pacific also precludes the examination of the SST gradients between low and 

high latitudes, from which the latitudinal migration of the oceanic frontal systems and the 

advection of the vigorous eastern boundary current, i.e., the Peru-Chile Current (PCC), could 

be inferred. The transport of subantarctic cold water by the PCC to the tropics could influence 

the SST in the cold tongue especially during glacial periods, as demonstrated by foraminiferal 

census data and a simple heat model [Feldberg and Mix, 2002, 2003].  

For the evaluation of the SST gradient, it would be ideal if the individual SST records 

were derived from the same proxy and calibration in order to minimize the discrepancy that 

might arise from dissimilar habitat depth and/or sensitivity of biological proxies to 

environmental changes. In this work, we employ the most commonly applied organic 

geochemical SST proxy, i.e., the alkenone paleothermometry. It is based on the relative 

distribution of di-, tri- and tetra-unsaturated long-chain alkenones consisting of 37 carbon 

atoms, generally known as C37:2, C37:3 and C37:4, respectively. The degree of alkenone 

unsaturation is a function of growth temperature of the precursor, i.e., haptophyte algae. An 

index known as UK
37 (= [C37:2 – C37:4] / [C37:2 + C37:3 + C37:4]) has been proposed to quantify 

the degree of unsaturation [Brassell et al., 1986], and it was later simplified to UK’
37 (= [C37:2] 

/ [C37:2 + C37:3]) since the C37:4 alkenones are often absent in open ocean sediments where 

overlaying SSTs are higher than 12°C [Prahl and Wakeham, 1987]. Over the years, work has 

been mainly focused on the simplified UK’
37 index, which is applicable to most parts of the 

global ocean. However, alkenone-derived glacial SSTs that are warmer than those of the 

interglacial have been observed in the Sea of Okhotsk [Harada et al., 2006] and the Northeast 

Atlantic [de Vernal et al., 2006; Rosell-Melé and Comes, 1999], raising doubts about the 

applicability of alkenone paleothermometry at high latitudes. Another potential caveat, i.e., 

the non-linearity of the relationship of UK’
37 index and SST at low temperatures (<6°C), has 

also been suggested [Conte et al., 2006; Rosell-Melé, 1998; Rosell-Melé et al., 1994; Sikes 

and Volkman, 1993]. It is still debatable whether UK
37 or UK’

37 is the more appropriate SST 

proxy at high latitudes due to the lack of data in this region, especially in the Southern Ocean.  

 In this study we revisit the alkenone paleothermometry at the lower end of the 

temperature range and assess the applicability of the alkenone indices by using regional 

surface sediments. We present three SST records to investigate the temporal pattern and the 

amplitude of the paleo SST evolution in the South Pacific along the latitudinal range of the 

PCC spanning both subtropical and subantarctic oceanic zones. Based on our SST 
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reconstruction, we infer the latitudinal migration of the oceanic fronts and discuss their 

paleoclimatic implications. 

 

3.2. Oceanographic setting 

 

 
 

Figure 3.1: Location of sites and major oceanic currents discussed in this work. For the purpose of this study, 
the subantarctic region is defined as the waters between the Subtropical Front and the Subantarctic Front. Blue 
circles denote the sites of the core-top data in the regional alkenone unsaturation calibration, while blue open 
diamonds denote the sites where alkenones were below detection limit. Black triangles denote the sites of SST 
records used for discussion. In addition to the newly presented records (GeoB 3388-1, GeoB 3327-5 and 
PS75/034-2), we also include several previously published SST records from the tropics (HY04 [Horikawa et 
al., 2010] and the Southern Ocean (DSDP 594 [Schaefer et al., 2005], E47-018 [Howard and Prell, 1992], 
PS2489-ODP Site 1090 [Martínez-Garcia et al., 2009] and ODP Site 1093 [Schneider-Mor et al., 2008]), in 
addition to the Antarctic temperature record at EPICA Dome C [Jouzel et al., 2007]. Thin black lines indicate the 
annual mean isotherms in degree Celsius (°C) derived from the World Ocean Atlas 2009 (WOA09). Orange 
arrows indicate major surface currents, and colored lines illustrate the oceanic frontal system [after Orsi et al., 
1995]. Abbreviations: WSI = winter sea ice extent; APF = Antarctic Polar Front; SAF = Subantarctic Front; STF 
= Subtropical Front; PCC = Peru-Chile Current; ACC = Antarctic Circumpolar Current; CHC = Cape Horn 
Current. 

 

The Peru-Chile Current (PCC; also known as Peru Current, Chile-Peru Current, and 

Humboldt Current) and the Antarctic Circumpolar Current (ACC) are the main features of the 

surface circulation in the Southeast Pacific (Figure 3.1). The eastward flowing ACC is driven 
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by the intense mid-latitude Southern hemisphere westerly winds (Westerlies). Thus, its 

latitudinal migration is closely related to the wind forcing [Orsi et al., 1995]. The circumpolar 

transport of the ACC is approximately 107 Sv, with most of the transport occurring in the 

Subantarctic Front (SAF) and the Antarctic Polar Front (APF) [Cunningham et al., 2003]. The 

impingement of the northern part of the ACC onto the South American continent leads to a 

bifurcation around 43°S, yielding a vigorous equatorward branch (PCC) and a weaker 

poleward branch (Cape Horn Current, CHC) [Strub et al., 1998]. The PCC flows northward 

along South America and is deflected away from the coast at around 5°S, feeding the cold 

PCC water into the South Equatorial Current which flows westward as the equatorial cold 

tongue between 10°S and 4°N [Wyrtki, 1965]. Meanwhile, the CHC moves along the coastal 

region of southernmost Chile, mixing the subantarctic water with low salinity regional water 

and transporting this modified ACC water to the Atlantic Ocean via the Drake Passage 

[Chaigneau and Pizarro, 2005]. The Westerlies shift northward in the winter as a result of 

seasonal fluctuations of sea ice around Antarctica [Kidston et al., 2011]. Modern day austral 

winter is also marked by more vigorous advection of cold water towards the tropics and a 

larger temperature gradient between low and high latitudes.  

 Our South Pacific core-top sites are located between the Subtropical Front (STF) and 

the APF, where the modern day annual mean temperatures of the overlaying surface waters 

are in the range of ~1 to ~12°C. Our long piston core sites are well suited for studying the 

open ocean PCC, as they are beyond the direct influence of the intense coastal upwelling that 

is confined within 50-60 km of the shoreline [Strub et al., 1998]. Sites GeoB 3327-5 and 

PS75/034-2 are located at the northern extent of the ACC, in sensitive regions where the 

latitudinal movement of the ACC is expected to be registered. The southernmost site 

PS75/034-2 is located ~7° and ~9° north of the modern day mean location of the SAF and the 

APF, respectively. Site GeoB 3388-1 lies within the flowpath of the PCC, thus the SST 

changes here reflect the extent of the cold water advection by the PCC. 

 

3.3. Materials and Methods 

3.3.1. Materials 

We analyzed 34 core-top samples (Figure 3.1) recovered by multicorer from the 

Pacific sector of the Southern Ocean between the STF and the APF, but alkenones were 
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detected at only 13 sites (see Table 3.1 for coordinates). Two piston cores in the subantarctic 

Pacific sector of the Southern Ocean and one piston core from the subtropical South Pacific 

were analyzed in this study (Figure 3.1). Core GeoB 3327-5 (43°14’S, 79°59’W, 3534 m 

water depth, 900 cm length) and core GeoB 3388-1 (25°13’S, 75°31’W, 3558 m water depth, 

710 cm length) were retrieved during the R/V Sonne cruise 102 [Hebbeln et al., 1995], while 

core PS75/034-2 (54°22’S, 80°05’W, 4425 m water depth, 1808 cm length) was collected 

during the Alfred Wegener Institute expedition ANT XXVI/2 with R/V Polarstern [Gersonde, 

2011]. The sediments of core GeoB 3327-5 alternate between clayey foraminifera and clayey 

foraminifera nannofossil ooze, while core GeoB 3388-1 consists of mainly nannofossil ooze. 

Core PS75/034-2, on the other hand, due to its location below the carbonate compensation 

depth, consists of mainly siliceous clay and is barren of foraminifera. The sampling intervals 

for core GeoB 3327-5 and GeoB 3388-1 were 5 cm throughout the core. Core PS75/034-2 

was sampled every 10 cm throughout the core and every 5 cm in the section between 200 cm 

and 310 cm. 

 

Table 3.1: Site information and alkenone index values of the Southern Ocean core-top samples retrieved via 
multicoring.  

Site Longitude Latitude WOA09 Annual mean SST (°C) UK
37 UK’

37 

PS75/034-1 80.09 °W 54.37 °S 6.71 0.213 0.256 

PS75/104-2 174.53 °E 44.77 °S 11.74 0.371 0.411 

PS75/099-1 177.27 °E 48.26 °S 9.24 0.294 0.294 

PS75/072-3 151.22 °W 57.56 °S 1.89 0.007 0.086 

PS75/082-2 158.36 °W 59.04 °S 1.52 -0.012 0.081 

PS75/098-6 179.01 °W 52.97 °S 7.47 0.217 0.275 

PS75/105-1 174.62 °E 44.41 °S 11.74 0.486 0.486 

PS75/095-6 174.43 °W 57.02 °S 4.95 0.178 0.214 

PS75/101-2 175.88 °E 45.81 °S 11.12 0.296 0.324 

PS75/080-2 157.64 °W 58.18 °S 2.08 -0.021 0.084 

PS75/053-1 115.98 °W 60.77 °S 3.01 0.016 0.085 

PS75/076-1 156.14 °W 55.53 °S 4.68 0.089 0.219 

PS75/063-2 135.62 °W 58.90 °S 2.18 -0.007 0.093 

 

 

3.3.2. 18O measurement on foraminifera  

A Finnigan MAT 251 mass spectrometer coupled with a Kiel device inlet system was 

used to measure the 18O composition of planktic Neogloboquadrina pachyderma (dextral 

coiling) from the >150 µm size-fraction and benthic Cibicides spp. from the >212 µm size-

fraction for core GeoB 3327-5. The measurements were performed on approximately 5-10 
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individual tests. For all stable isotope measurements a working standard was used, which was 

calibrated against VPDB (Vienna Pee Dee Belemnite) by using the NBS 19 standard. 

Consequently, all isotopic data are relative to the PDB standard. Long-term analytical 

standard deviation is ± 0.07 ‰ (Isotope Laboratory, Faculty of Geosciences, University of 

Bremen). 

 

3.3.3. Alkenone analysis 

Sample preparation and alkenone analysis of cores GeoB 3327-5 and GeoB 3388-1 

were carried out according to the procedure described by Müller et al [1998]. About 3 – 14 g 

of freeze-dried and ground sediment samples were subjected to three times of sonication in 

mixtures of methanol and dichloromethane with decreasing polarity. The supernatant was 

then rinsed with deionized water and sodium sulfate, before being concentrated and passed 

through a short bed of silica (Bond-Elut silica cartridge, Varian) to purify the fraction that 

contained the alkenones. The fraction was then saponified to remove esters. The 

quantification of alkenones was achieved using gas chromatography on an HP 5890, equipped 

with a 60 m fused silica capillary column (DB-5 MS, Agilent) and a flame ionization detector. 

The oven temperature was programmed to rise from 50 to 250°C at a rate of 25°C/min, then 

to 290°C at a rate of 1°C/min, followed by 26 min of isothermal period, before being ramped 

up to 310°C at a rate of 30°C/min and held constant for 10 min. Replicate analyses of 

laboratory internal reference sediment suggest analytical errors of ~0.5°C for both alkenone 

indices (UK
37 and UK’

37). 

 Piston core PS75/034-2 was analyzed at the Alfred Wegener Institute (Bremerhaven). 

The extraction of organic compounds was accomplished using a Dionex ASE-200 pressurized 

solvent extractor, with a mixture of methanol and dichloromethane in the ratio of 1:9. Similar 

to the treatment for the GeoB cores, the total extract was separated into 3 fractions via silica 

gel fractionation using hexane, DCM and methanol, respectively. The fraction (eluted with 

DCM) containing the alkenones was then concentrated and analyzed by gas chromatography 

on an HP 6890 fitted with a flame ionization detector and a 60 m DB-1 MS column (Agilent). 

The initial temperature in the oven was set to 60°C. After the injection of samples, the 

temperature in the oven was ramped up to 150°C at a rate of 20°C/min, followed by a reduced 

rate of heating at 6°C/min until the final temperature of 320°C was achieved and held 

constant for 40 min. The alkenone fraction of this sediment core was pure enough for 
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quantification without saponification. We did not observe any systematic differences in the 

alkenone index values between saponified and untreated extracts in the six samples we tested. 

They agreed within ±0.015 units and ±0.012 units for UK
37 and UK’

37, respectively, 

corresponding to ±0.47°C and ±0.37°C using the culture calibrations of Prahl et al. [1998]. 

Reproducibility of the instrument is estimated to be 0.17°C based on replicate analysis of 

alaboratory E. huxleyi culture extract. 

 South Pacific core-top samples were subjected to microwave-assisted extraction, 

followed by compound class fractionation using a Thermo Surveyor HPLC system equipped 

with a Lichrosphere Silicon dioxide column, according to the methods described by Fietz et 

al. [2011]. The fraction containing alkenones (eluted with DCM) was saponified to remove 

co-eluting esters, prior to analysis by gas chromatography (same GC system used for the 

alkenone analysis of piston core PS75/034-2 described above). 

 The concentrations of sediment extracts were adjusted such that the amounts of 

alkenones injected for each measurement were above threshold values (>5-10 ng) to avoid 

unjust bias due to low concentrations. The threshold values were previously suggested by 

Rosell-Melé et al. [1995], Sonzogni et al. [1997] and Villanueva and Grimalt [1996]. 

 

3.3.4. Alkenone-based indices and calibrations 

 The identification of alkenones was achieved by comparing chromatographic retention 

times of the samples with those of standards. The alkenone-based index (UK
37 and UK’

37) 

values were calculated according to the previously proposed equations given in Section 3.1. 

In order to compare these two alkenone indices in downcore reconstructions and to compare 

SST records spanning the tropics and the subantarctic Pacific, we need UK
37 and UK’

37 

calibrations that are based on a common data set and covering the largest possible temperature 

range. For this purpose, we opted to convert the index values into sea surface temperature 

using the widely used E. huxleyi culture-based calibrations proposed by Prahl et al. [1988], 

i.e., UK
37 = 0.04 T – 0.104 (r2 = 0.98) and UK’

37 = 0.034 T + 0.039 (r2 = 0.99), the latter being 

statistically identical to those based on global core-top compilations [Conte et al., 2006; 

Müller et al., 1998]. 
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3.3.5. SST gradient calculation 

We calculated the SST gradient along the latitudinal range of the PCC using alkenone-

derived SSTs. We preferred the UK
37 index over the commonly used simplified version that 

excludes the C37:4 alkenone, i.e., UK’
37 (see justification in Section 3.5.1). Considering the 

complexity of the hydrography in the eastern equatorial Pacific (EEP), we selected an open-

ocean site HY04 (4°02’N 95°03’W, Horikawa et al. [2010]) that is beyond the influence of 

the east Pacific cold tongue and the Peru coastal upwelling to examine the equator-to-pole 

SST gradients. A recent core-top calibration study of Kienast et al. [2012] suggests that the 

alkenone unsaturation in the open ocean EEP conforms to the established global core-top 

calibrations. For the sake of consistency in the comparison, we recalculated the UK’
37-derived 

SST estimates at site HY04 using the laboratory culture-based calibration of Prahl et al. 

[1988], assuming that C37:4 alkenones are absent here. This results in similar UK
37 and UK’

37 

values. The assumption is justified by the fact that C37:4 alkenones are numerically significant 

at growth temperatures below 15°C [Prahl et al., 1988], and that the difference between UK
37 

and UK’
37 is only significant at ~10°C [Rosell-Melé, 1998]. Indeed, the recalculated SST 

estimates based on the UK
37 index are within ±0.5°C of the original UK’

37-derived SST record 

reported in the literature (Figure 3.6) with exactly the same temporal trends. The SST records 

were re-sampled every 2 kyr for the calculation of the gradients between sites. 

 

3.4. Results 

3.4.1. Stratigraphy 

In order to obtain a consistent stratigraphic framework for all records in the SST 

gradients calculation, we tuned all available benthic 18O records to the global benthic 18O 

stack LR04 [Lisiecki and Raymo, 2005] using the software package AnalySeries 2.0 [Paillard 

et al., 1996]. For this purpose, we revised the published age model of GeoB 3388-1 [Mohtadi 

et al., 2006] which was previously aligned to the orbitally-tuned ODP Site 677 [Shackleton et 

al., 1990]. Overall, the differences between the revised and the original age models are 

minimal, with one exception during the time interval between 400 kyr and 500 kyr, especially 

at the termination of MIS 12. The linear sedimentation rates (LSR) at site GeoB 3388-1 

fluctuate between 2.2 and 0.3 cm kyr-1, with an average of less than 1 cm kyr-1 over the past 

700 kyr (Figure 3.2). 
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The age model of core GeoB 3327-5 was similarly generated via graphical tuning of 

the Cibicides spp. benthic 18O record to the LR04 global benthic stack. According to the age 

model, the record extends back to 513 kyr and spans the past five glacial-interglacial cycles 

(Figure 3.2). Average sedimentation rate is 2.6 cm kyr-1 and the values range between 0.7 cm 

kyr-1 and 4.4 cm kyr-1 without any drastic fluctuation. The only exception is a brief interval 

during MIS 7, where sedimentation rates reach about 10 cm kyr-1, which may suggest 

redeposition. However, there is no lithological indication for, e.g., turbidites during this 

interval. A lack of chronological tie points for MIS 9 and part of MIS 8 arises as a result of 

poor carbonate preservation.  

In core PS75/034-2 carbonate preservation is poor, thus a benthic foraminifera-based 

18O record could not be obtained. The attempt to use radiolarian biofluctuation for 

chronological control [Hays et al., 1976] has also failed due to low abundance of 

Cycladophora davisiana (0 – 2.5% throughout the core) [Cortese, unpublished data]. There 

are no well-dated marine records in the subantarctic Pacific that would provide a reference 

chronology for graphical tuning of the downcore oscillations in the physical properties (e.g., 

lightness, major elements, magnetic susceptibility). In the absence of other alternatives, we 

graphically tuned the PS75/034-2 UK
37 record to the temperature evolution registered in the 

EPICA ice core at Dome C, Antarctica [Jouzel et al., 2007], based on the updated chronology 

EDC3 [Parrenin et al., 2007]. Justification for the preference of the UK
37 index over the UK’

37 

index is outlined in Section 3.5.2. The EPICA T record was adjusted by a 15-point moving 

average smoothing prior to the graphical alignment to accommodate the much lower temporal 

resolution in core PS75/034-2. Our EDC3-derived age model is supported by the shipboard 

biostratigraphy based on diatom zonation (Thalassiosira lentiginosa) [Zielinski and Gersonde, 

2002], i.e., ~178 kyr and ~350 kyr in our EDC3-based chronology correspond to the 

boundaries of MIS 6/7 and 9/10 as indicated by the biostratigraphy. The fairly uniform linear 

sedimentation rate throughout the core (1.4 – 3.5 cm kyr-1) (Figure 3.2) and the resemblance 

in the general patterns between core PS75/034-2 and other Southern Ocean records (Figure 

3.5) provide additional confidence in the stratigraphic framework. We adopted the original 

age model of core HY04 [Horikawa et al., 2010], which is based on visual alignment of the 

benthic foraminiferal 18O to the orbitally-tuned ODP Site 677 [Shackleton et al., 1990] for 

the upper 420 kyr, and the lower part of the record to the LR04 global stack. There is no 

significant temporal offset between the upper 420 kyr of this 18O record (on current time 

scale) and the LR04 benthic stack. 
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Figure 3.2: Age models and linear sedimentation rates at core sites GeoB 3388-1, GeoB 3327-5 and PS75/034-2. 
Shaded bars indicate glacial intervals, and the black numbers in the bars represent the marine isotope stages. 
Black triangles illustrate the stratigraphic tie points while the black diamonds mark the shipboard 
biostratigraphic points based on diatom zonation. (a) Stratigraphic framework for core GeoB 3388-1 was revised 
by graphical tuning of the benthic foraminiferal 18O record (red curve) to the benthic 18O stack LR04 (grey 
curve) [Lisiecki and Raymo, 2005]. The previously published age model [Mohtadi et al., 2006] is represented by 
the blue curve. (b) Linear sedimentation rate at site GeoB 3388-1 derived using the stratigraphic tie points based 
on the benthic 18O record. (c) Stratigraphic framework for core GeoB 3327-5 was established by graphical 
tuning of the benthic foraminiferal (Cibicides spp.) 18O record (red curve) to the benthic 18O stack LR04 (gray 
curve) [Lisiecki and Raymo, 2005]. (d) Linear sedimentation rate at site GeoB 3327-5 based on the tuned benthic 
18O record. (e) Stratigraphic framework for core PS75/034-2 was established by graphical tuning of the UK

37 
record (red curve) to the smoothed (15-points running average) EPICA T record at Dome C, Antarctica [Jouzel 
et al., 2007; Parrenin et al., 2007] (gray curve). (f) Linear sedimentation rate at site PS75/034-2 based on tuning 
to the EPICA T record. 
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3.4.2. South Pacific core-top alkenone calibrations 

As shown in Figure 3.3, both UK
37 and UK’

37 indices correlate linearly to annual mean 

WOA09 SST (with r2 values of 0.94 and 0.93, respectively) for the temperature range of 1.5 

to 11.7°C. These regressions are identical within estimation error to the extrapolated Prahl et 

al. [1988] calibrations below 8°C. 

 

 
Figure 3.3: Correlations of alkenone indices (a) UK’

37 and (b) UK
37 with temperature. The sediment core-top data 

were calibrated against the WOA09 annual mean SST, while the E. huxleyi culture data of Prahl et al. [1988] 
plotted against the growth temperature as reported in the original publication. Blue line illustrates the linear 
regressions proposed by Prahl et al. [1988], with extrapolation for temperatures below 8°C. Red line denotes our 
South Pacific core-top calibration (through the black circles). 

 

3.4.3. Downcore SST estimates and planktic 18O values 

3.4.3.1. Core GeoB 3388-1 

At subtropical site GeoB 3388-1, the UK’
37-derived SSTs for the past 700 kyr range 

between 15°C and 21°C (Figure 3.4a). The index suggests that SST during MIS 12 is slightly 

colder (~2°C) than the average glacial SST, while MIS 13 is the coolest interglacial. 

Meanwhile, the UK
37-inferred SSTs at site GeoB 3388-1 are in the range of 16°C to 22°C. The 

amplitudes of glacial/interglacial SST variations in both UK
37- and UK’

37-derived records are 

~6°C. 

 

3.4.3.2. Core GeoB 3327-5 

The UK’
37-SST estimates are between ~5°C and ~14°C over the past 513 kyr at site 
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GeoB 3327-5 (Figure 3.4c). While there is not much difference in the warmth of interglacials, 

the UK’
37-inferred estimates suggest strong variability in the severity of glacials, with SSTs 

from ~5°C during MIS 10 to ~10°C during MIS 6. On the other hand, the UK
37-derived 

glacial-interglacial SST oscillations at site GeoB 3327-5 range between ~8°C  and ~16°C, 

without any substantial long-term trend in glacial cooling and interglacial warming. 

Alkenones in the top of a multicore at this site register UK
37- and UK’

37-inferred SST estimates 

of 15.4°C and 13.9°C, respectively.  

The 18O values of planktic dextral-coiling N. pachyderma range between 1.1 to 3.1‰ 

(Figure 3.4b). There is a data gap between MIS 8 and MIS 10 because of carbonate 

dissolution. The 18O values during MIS 11 are more enriched than those in other 

interglacials. Some abrupt shifts towards more depleted values are recorded during MIS 11 

and 12. 

 

3.4.3.3. Core PS75/034-2 

The overall SST variability suggested by the UK’
37 index at site PS75/034-2 is between 

~1ºC and ~8ºC, resulting in a glacial-interglacial amplitude of up to ~7°C (Figure 3.4d). The 

UK’
37 index indicates that MIS 10 is the coldest glacial, while MIS 5 is the warmest 

interglacial. During the interval between MIS 16 and MIS 12, the UK’
37-inferred glacial-

interglacial cycles are not pronounced due to substantially smaller amplitude of SST 

oscillations (~2°C compared to ~7°C after MIS 12). The UK’
37-derived SST estimates for 

these glacial intervals (especially MIS 16) are as warm as the SST estimates for the 

subsequent interglacial intervals. The UK’
37 index suggests a pervasive long-term trend in the 

glacial cooling, i.e., the glacial SSTs decrease from MIS 16 to MIS 10, and increase thereafter 

to MIS 6, followed by a colder MIS 2. On the other hand, the UK
37-derived SSTs at site 

PS75/034-2 range between ~1°C and ~10°C over the past 700 kyr (Figure 3.4d). According 

to the UK
37-derived SST estimates, the severity of glacial SSTs does not vary substantially at 

site PS75/034-2. MIS 10 is slightly warmer (~2°C) than the other glacial periods, while MIS 5 

and MIS 13 stand out as the warmest and coolest interglacials, respectively. The SST 

estimates inferred from the UK’
37 and the UK

37 indices for the top of a multicore at this site are 

6.4°C and 7.9°C, respectively. 
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Figure 3.4: Planktic 18O and alkenone-based SST records. Shaded bars indicate glacial intervals and the black 
numbers in the bars represent the marine isotope stages. Gray bars denote modern day maximum and minimum 
SSTs derived from WOA09. (a) SST records derived from alkenone based indices, i.e., UK

37 (blue) and UK’
37 

(red) at site GeoB 3388-1. (b) Planktic 18O of dextral-coiling N. pachyderma at site GeoB 3327-5. Poor 
carbonate preservation result in a data gap from MIS 8 to MIS 9. (c) SST records derived from alkenone based 
indices, i.e., UK

37 (blue) and UK’
37 (red) at site GeoB 3327-5. Filled circles indicate core-top data at the same site. 

(d) SST records derived from alkenone based indices, i.e., UK
37 (blue) and UK’

37 (red) at site PS75/034-2. Filled 
circles indicate core-top data at the same site. 
 

3.5. Discussion 

3.5.1. Alkenone-based calibrations for application in the subantarctic Pacific 

Here we use the E. huxleyi culture-based alkenone calibrations from Prahl et al. 

[1988] for SST reconstruction. While the UK’
37-SST relationship of this calibration has been 

confirmed by global core-top calibrations [Conte et al., 2006; Müller et al., 1998] with 
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extensive data sets encompassing diverse biogeographic provinces and a wide temperature 

range, the UK
37-SST correlation has not been calibrated globally. Thus, the UK

37-SST 

relationship outside the calibration range (T<8°C) is unknown except for the North Atlantic 

and the Nordic Sea [Bendle and Rosell-Melé, 2004; Bendle et al., 2005; Rosell-Melé et al., 

1994; Rosell-Melé et al., 1995]. Considering the low modern SST at our southern site 

PS75/034-2 (WOA09 annual mean SST of 6.7°C), the paleo SST here, especially during 

glacials, are likely to be well below the calibrated temperature range of the culture calibration 

(8-25°C). To better constrain our choice of calibrations, we examine the alkenone index 

values in the South Pacific surface sediments and find that firstly, the linearity of both UK
37- 

and UK’
37-SST correlations holds even at low temperatures in the South Pacific, indicating 

that both indices faithfully record modern SSTs in this temperature range. Secondly, the 

sedimentary alkenone unsaturation-SST relationships in the South Pacific are comparable to 

those observed in the E. huxleyi culture of Prahl et al. [1988], rendering these culture 

calibrations suitable for application in this region. Indeed, the UK
37 and the UK’

37 calibrations 

resulted in core-top SST estimates (8°C and 6°C at PS75/034-2; 15°C and 14°C at GeoB 

3327-5) that are within the range of modern seasonal SSTs (see grey bars in Figure 3.4; 5 – 

9°C at PS75/034-2 and 10 – 15°C at GeoB 3327-5). We refrain from using our own core-top 

calibrations for downcore reconstruction because of their limited calibration range (~1-12°C) 

which makes them inappropriate for the application in the subtropics for calculating the 

meridional SST gradients.  

We note that our finding is in contrast to that of the Southern Ocean core-top 

calibration study of Sikes et al. [1997]. The better correlation in the UK’
37-SST relationship (r2 

value of 0.92 compared to r2 value of 0.76 for UK
37-SST) led the authors to suggest that the 

UK’
37 is the better index for paleo SST reconstruction in the Southern Ocean. Application of 

their calibrations at our sites yields core-top SST estimates (UK
37 and UK’

37: 14°C and 9°C at 

PS75/034-2; 21°C and 16°C at GeoB 3327-5) that are warmer than those inferred from the 

Prahl et al. [1988] calibrations. The warm bias is especially pronounced in the UK
37-derived 

estimates, which are substantially warmer than the modern day warmest month SST in 

WOA09 (see grey bars in Figure 3.4; ~9°C at PS75/034-2; ~15°C at GeoB 3327-5). These 

anomalously warm estimates produced by the core-top calibrations of Sikes et al. [1997], in 

addition to a good match between our South Pacific core-top calibrations and the Prahl et al. 

[1988] culture calibrations, led us to choose the latter calibrations to estimate paleo SSTs at 

our study sites in the subantarctic Pacific. 
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3.5.2. Assessing contrasting temporal trends in UK
37- and UK’

37-derived SST records  

In alkenone-based SST records, the temporal trend is governed by the definition of the 

index, while the amplitude of downcore variation and the absolute value are determined by 

the calibration employed. In the subtropics (GeoB 3388-1), the SST patterns inferred from 

both UK
37 and UK’

37 indices are similar, and their values are in agreement within 1.5°C. As 

discussed in section 3.5.1, the strong linear relationship between both the UK
37 and the UK’

37 

indices in the subantarctic surface sediments with the overlaying SSTs (i.e., comparable r2 

values) imply that both indices may be used to obtain paleo SST estimates in the region 

(Figure 3.3). However, downcore reconstructions yield a different picture, i.e., the indices 

result in contrasting subantarctic SST patterns for cores GeoB 3327-5 and PS75/034-2 

(Figure 3.4). For the past two glacial-interglacial cycles, the UK’
37–derived SSTs display a so-

called Type 1 [Schneider et al., 1999] alkenone SST record which is typical for the tropics 

and the monsoon-influenced region, characterized by a relatively warm MIS 6 and the 

occurrence of the coldest glacial SST in the middle or the inception of glacials. There is also a 

warming trend of glacials from MIS 10 to MIS 6 in these subantarctic UK’
37 records. On the 

other hand, the UK
37-derived SST records suggest little fluctuation in the severity of glacial 

intervals and the MIS 6 is as cold as other glacial intervals (a Type 3 alkenone SST record 

according to the definition of Schneider et al. [1999]), which shows more resemblance to the 

global ice volume oscillations documented in the benthic 18O record. The differences in 

temporal trends are especially clear for the time interval MIS 16 – 12 at our southernmost site 

PS75/034-2, during which the UK’
37-derived SSTs exhibit a reduced amplitude of glacial-

interglacial SST variations due to relatively warm glacials, especially MIS 16 which is as 

warm as interglacial MIS 11. However, the UK
37 index record suggests that the glacial SSTs 

during this time interval are consistent with those from other glacial intervals. Interestingly, 

such observations are not limited to the South Pacific. As shown in Figure 3.5c, dissimilar 

amplitudes of glacial-interglacial SST oscillations during MIS 12 – 16 are also evident in the 

alkenone-derived SST records at PS2489-2/ODP Site 1090 in the mid-latitudes of the South 

Atlantic [Martínez-Garcia et al., 2009; Martínez-Garcia et al., 2010], suggesting that this 

divergene can be found throughout the Southern Ocean south of the Subtropical Front. To 

determine which pattern is more realistic, we further compare our alkenone records with the 

planktic 18O record at the same site, and with other subantarctic SST records from other 

sectors of the Southern Ocean (Figure 3.5). Since the most outstanding divergence in the two 
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different alkenone SST patterns is in the long-term trend of the glacial severity (interglacial 

warmth is consistent), we focus our discussion on the cold intervals.  

Contrary to the UK’
37–based SST records, the planktic 18O records in the South 

Pacific (GeoB 3327-5) and the South Atlantic (PS2489-2 / ODP Site 1090, see Venz and 

Hodell [2002]) suggest minor oscillations in glacial severity. Apart from global ice volume 

and SST, the planktic 18O records are also influenced by changes in sea surface salinity 

(SSS). However, given the lack of any major freshwater sources in the vicinity of sites GeoB 

3327-5 and PS2489-2 / ODP Site 1090, large perturbations to the SSS at these sites over the 

past 700 kyr are unlikely. SSS here might be driven by an enhanced influence of low SST and 

low SSS polar water mass during glacials. However, in such a scenario, the SSS variations 

would be accompanied by concurrent changes in SST. Therefore we believe that SSS 

variations are not the reason for the diverging trends between the planktic 18O and the UK’
37 

records.  

In addition to a warming trend in glacial severity from MIS 10 to MIS 6, the UK’
37 

SST estimates for MIS 12, 14 and 16 are relatively warm at sites PS75/034-2 and PS2489 / 

ODP Site 1090, even though MIS 12 and MIS 16 are known to be among the most severe 

glacial stages during the Pleistocene [Lang and Wolff, 2011; Shackleton, 1987]. We note that 

varying Pleistocene glacial severity is not physically impossible. Indeed, a SST record in the 

subtropical Agulhas region suggested its occurrence [Bard and Rickaby, 2009]. Here, MIS 10 

and 12 are substantially colder than other glacials in the past 800 kyr; but the glacial-

interglacial cycles before MIS 12 are well-defined – unlike in the subantarctic UK’
37 records. 

Furthermore, the Agulhas core site is located north of the Subtropical Front, under the 

influence of a completely different hydrographic setting (e.g., warm Agulhas current and 

associated eddies) from that of the subantarctic Southern Ocean. These differences suggest 

that the varying glacial severity trends in Bard and Rickaby [2009]’s Agulhas SST record and 

the subantarctic UK’
37 SST records are unrelated.  

On the other hand, the glacial severity trends in UK
37-derived SST records are in 

agreement with the planktic 18O records at site GeoB 3327-5 and PS2489-2 / ODP Site 1090. 

At the latter site, a summer SST record inferred from foraminiferal assemblages further 

supports this pattern [Becquey and Gersonde, 2002, 2003] (Figure 3.5d). Similar patterns in 

glacial severity over the past 700 kyr has been observed elsewhere in the subantarctic 

Southern Ocean and Antarctica, such as ODP Site 1093 and ODP Site 1094 in the South 
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Atlantic [Schneider-Mor et al., 2008], DSDP Site 594 off New Zealand [Schaefer et al., 

2005], South Indian [Howard and Prell, 1992] and Antarctic atmospheric temperature records 

at EPICA Dome C [Jouzel et al., 2007] and Dome Vostok [Petit et al., 1999] (Figure 3.5e – 

3.5h). These temperature records suggest that unvarying glacial severity is a pervasive 

Pleistocene climatic feature in the Southern Ocean.  

The better agreement of the temporal trend of the UK
37 than the UK’

37 SST records with 

other surface proxy records in the same oceanic region suggests that the UK
37-derived SSTs 

are plausibly more realistic than the UK’
37 estimates at these sites, even though the core-top 

values of both indices correlate equally well with modern SSTs. Our findings agree with a 

multi-proxy comparison study off the Iberian margin [Bard, 2001]. The author found that the 

UK
37-derived glacial coolings were more comparable with those derived from other proxies, 

even though the core-top SST estimates inferred from both UK
37 and UK’

37 indices were 

comparable with the observed annual average SST. These findings demonstrate that different 

alkenone indices could result in diverging paleo SST patterns during the cold intervals even if 

the core-top SST estimates suggested by both indices agree with the modern day SST. The 

discrepancy in paleo SST patterns stems from the higher relative abundance of the C37:4 

alkenones during the cold intervals. Having established that the UK
37 index is a more suitable 

SST proxy in the subantarctic Pacific (south of the Subtropical Front at ~30°S), we base our 

stratigraphic framework of PS75/034-2 and the following discussion on the SST variations 

and the meridional gradients on the UK
37- derived SST records. 

 

3.5.3. Southern Ocean SST evolution: circum-Antarctic comparison 

 High-resolution alkenone SST records off Chile (e.g., ODP Site 1233 and MD07-

3128) suggest that the SST in the mid-latitude Southeast Pacific evolved in synchrony with 

the atmospheric temperature at Antarctica on millennial time-scales over the past 70 kyr 

[Caniupán et al., 2011; Kaiser et al., 2005; Lamy et al., 2004]. Due to the coarser temporal 

resolution in our Pleistocene SST records, it is impossible to assess these millennial-scale 

patterns. Instead, our SST records, especially the southern site, share first-order patterns on 

glacial-interglacial timescale with the EPICA Dome C temperature record of Jouzel et al. 

[2007]. There are, however, some minor differences compared to the Antarctic temperature 

record, such as the absence of a luke-warm interglacial MIS 15 at site PS75/034-2, and a 

cooling during MIS 3 at site GeoB 3327-5. Besides, unlike in the Antarctic temperature 
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record, the Mid-Brunhes Event (~430 kyr) shift is not well expressed in our SST records from 

the Southeast Pacific (Figure 3.5). This suggests an overprint of regional climate in our 

subantarctic SST records on the background of glacial-interglacial climatic changes closely 

linked to Antarctica. Meanwhile, other features such as the coolest MIS 13 and the warmest 

MIS 5 in the past 700 kyr, and the smallest amplitude of termination during the MIS 14 – MIS 

13 transition observed in our records are common in many marine and terrestrial records 

[Lang and Wolff, 2011]. With the exception of a warmer-than-today MIS 5 and a colder-than-

today MIS13, the maximum SST estimates for other interglacials at sites GeoB 3327-5 and 

PS75/034-2 are similar to modern day summer SST (Figure 3.4). 

The intensity of Pleistocene glacial cooling (~8°C) at our subantarctic Pacific sites is 

within the range of other subantarctic SST records derived from various proxies (Figure 3.5), 

i.e., ~5°C in the South Indian [Howard and Prell, 1992], ~7 to 10°C in the Southwest Pacific 

[Pahnke et al., 2003; Schaefer et al., 2005], and ~7 to 11°C in the South Atlantic [Becquey 

and Gersonde, 2003; Martínez-Garcia et al., 2009], indicating that the Pleistocene glacial 

cooling in the Southeast Pacific is comparable, if not stronger, than in other sectors of the 

Southern Ocean. This is in contrast to the findings of Gersonde et al. [2005] in a circum-

Antarctic LGM SST study using siliceous microfossil transfer functions. The authors reported 

a non-uniform glacial cooling in the Southern Ocean, with less cooling (~1°C) in the Pacific 

compared to the Atlantic and Indian sectors (4-5°C). The discrepancy between this study and 

our compilation may be due to the more climatically sensitive sites of the long Pleistocene 

records (i.e., DSDP 594, GeoB 3327-5, PS75/034-2, MD97-2021). Alternatively, it could also 

be due to the different sensitivity of proxies (siliceous microfossils vs. 

geochemical/carbonaceous microfossils) or the fact that the South Pacific is under-represented 

in their calibration database. Indeed, foraminiferal assemblage-based LGM time slice studies 

suggest cooling of ~5°C in the subantarctic Southeast Pacific (111-123°W) [Luz, 1977] and 

up to ~8°C in the Southwest Pacific [Barrows and Juggins, 2005], in better agreement with 

our alkenone-based estimates than those derived from the siliceous microfossil transfer 

functions. 

If true, the substantial Pleistocene glacial cooling in the subantarctic Southeast Pacific 

suggested by the alkenone paleothermometry is plausibly due to an extensive equatorward 

migration of the Westerlies and the Southern Ocean frontal systems embedded within the 
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Figure 3.5: Comparison of temperature records from the Southern Ocean and Antarctica based on different 
proxies. Shaded bars indicate glacial intervals and the black numbers in the bars represent the marine isotope 
stages. (a) Alkenone UK

37-derived sea surface temperature record at site GeoB 3327-5 in the Southeast Pacific. 
(b) Alkenone UK

37-derived at site PS75/034-2 in the Southeast Pacific. (c) Alkenone-derived sea surface 
temperature records based on the UK’

37 index (light purple curve) and the UK
37 index (dark purple curve) 

[Martínez-Garcia et al., 2010; Martínez-Garcia et al., 2009] at site PS2489-2 / ODP Site 1090 in the South 
Atlantic. (d) Foraminiferal transfer function-derived summer SST record [Becquey and Gersonde, 2002; 2003] at 
site PS2489/ ODP Site 1090. The authors regarded the estimates for MIS 11 as an overestimation due to 
preferential dissolution of cold-water species. (e) Diatom transfer function-derived summer sea surface 
temperature record [Schneider-Mor et al., 2008] at ODP Site 1093 in the South Atlantic. (f) Foraminiferal 
transfer function-derived winter SST record [Schaefer et al., 2005] at site DSDP 594 in the Southwest Pacific. 
(g) Foraminiferal transfer function-derived winter SST record [Howard and Prell, 1992] at site E49-018 in the 
South Indian. (h) Atmospheric temperature record registered in the EPICA ice core at Dome C, Antarctica 
[Jouzel et al., 2007]. 
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ACC, superimposed on the generally colder climate during glacials. Such equatorward shift of 

the oceanic systems might have occurred as a consequence of a massive northward sea ice 

expansion by 5° to 10°, as suggested previously by various faunal-based sea-ice and IRD 

records in the Southern Ocean [Becquey and Gersonde, 2002, 2003; Crosta et al., 2004; 

Gersonde et al., 2005]. By using the present as an analogue for the past and assuming that the 

SST ranges associated with the oceanic fronts during glacial intervals would remain the same 

as modern day (~5°C in the SAF and ~2°C in the APF as in Figure 3.1), the average glacial 

SST estimates for sites PS75/034-2 (~1°C) and GeoB 3327-5 (~9°C) imply that both the SAF 

and the APF were located between 43°S and 54°S in the Southeast Pacific during glacials. 

This suggests that these oceanic fronts underwent substantial equatorward migration of ~7° 

(SAF) and ~9° (APF) during glacials and resided northward of site PS75/034-2. Such frontal 

migrations are conceivable, considering that no shallow bathymetric feature stands between 

site PS75/034-2 and the modern average latitudes of these oceanic fronts. Thus, no 

topographic obstacle restricts the equatorward movement. In fact, frontal shifts (SAF and 

APF) of such magnitude during the Pleistocene have previously been proposed for the 

subantarctic Atlantic [Becquey and Gersonde, 2003] and the Southwest Pacific [Schaefer et 

al., 2005; Wells and Okada, 1997].  

Such massive equatorward shifts of the ACC and its associated fronts in the Southeast 

Pacific may have important implications for the water transport through the Drake Passage. If, 

for instance, the SAF and the APF, which transport the bulk of the water in the ACC system, 

would be deflected equatorward within the PCC instead of flowing through the Drake Passage 

as they do today, the transport to the South Atlantic would have been markedly reduced 

during glacials. In fact, such a scenario was invoked by Gersonde et al. [2003] to explain the 

intense cooling east of the Argentine basin during the LGM. The authors further hypothesized 

that such changes in the transport through the Drake Passage, which is one of the “Cold Water 

Routes” of the global thermohaline circulation, would have major implications for the global 

climate development. Our records corroborate their hypothesis and further suggest that the 

same mechanism might have occurred during all glacials prior to the LGM over the past 700 

kyr. 
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3.5.4. Meridional SST gradients: equatorward cold water transport 

Considering the large latitudinal range covered by the study sites, the alkenone-

inferred SST records might be affected by different biogeographic patterns or seasonality. For 

instance, if the abundances of the alkenones or the source organisms (e.g., E. huxleyi) are 

skewed towards the warm / cold season at high / low latitudes [Schneider et al., 2010], the 

resulting SST gradient would be artificially reduced. Thus, our estimation of meridional SST 

gradients is conservative and might be underestimated. 

 

 

Figure 3.6: Meridional gradients of alkenone-inferred SSTs and mean annual insolation along the Southeast 
Pacific and SST evolution in the tropical Pacific. Shaded bars indicate glacial intervals, and the black numbers in 
the bars represent the marine isotope stages. The meridional SST gradients (a) between the tropics (HY04) and 
the subantarctic (PS75/034-2) (b) between the subtropics (GeoB 3388-1) and the subantartic (PS75/034-2) (c) 
between the tropics (HY04) and the subtropics (GeoB 3388-1) are derived from UK

37 SST estimates calculated 
using the E. huxleyi culture calibration of Prahl et al. [1988]. (d) Meridional mean annual insolation gradient 
between 4°N and 54°S [Laskar, 1990] (e) Alkenone-based SST records at site HY04 [Horikawa et al., 2010]. 
For the SST gradient reconstruction, we recalculated the published SST using the UK

37 calibration of Prahl et al. 
[1988] (black curve) so that it is consistent with other SST records. The gray curve depicts the originally 
published SST record by Horikawa et al. [2010].  
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Our results show that in contrast to the pronounced glacial cooling in the subantarctic 

Pacific (~8°C), the amplitudes of glacial cooling decrease to ~4°C and ~1.5°C in the 

subtropics (GeoB 3388-1) and the tropics (HY04) (Figure 3.6), respectively. The glacial SST 

estimates in the subtropics (GeoB 3388-1) are 1-2°C colder than the modern SST associated 

with the STF in the Southeast Pacific (~19°C), suggesting that the STF might have also 

shifted equatorward along with the SAF and the APF, albeit to a smaller extent, and resided 

slightly northward of our study site. The SST gradients between low and high latitudes (4°N 

at HY04 and 54°S at PS75/034-2) are steeper during glacials than interglacials, and the 

overall pattern resembles a mirror image of the high latitude SST record (see Figure 3.6). The 

pattern holds even if other EEP SST records such as the ODP 846 (cold-tongue) and ODP 

1239 (coastal upwelling) are used for gradient calculation. The more substantial glacial 

cooling at the higher latitudes leads to steeper SST gradients between the subantarctic and the 

subtropics, than those between the subtropics and the tropics. Notably, the smaller tropical-

subantarctic SST gradient during MIS 4 is of the same magnitude as those of MIS 8, 10, 12, 

14 and 16, while the SST gradients are larger during MIS 2 and MIS 6. The finding of steeper 

SST gradients between the tropics and mid-latitudes during glacials is consistent with the 

observation of Kaiser et al. [2005] over the past 70 kyr in the Southeast Pacific. However, 

their reconstruction suggested a slightly larger gradient (~1°C) during MIS 4 than during 

LGM, in contrast to ours. The discrepancy stems from the less intense cooling during MIS 4 

at site GeoB 3388-1 relative to other glacials. Alternatively, it might also be due to a 

combination of other factors, including the lower temporal resolution in our records, records 

derived from different proxies (foraminiferal census count and Mg/Ca ratio) used in the 

gradient calculation of Kaiser et al. [2005], or different SST calibrations employed (UK’
37 vs. 

UK
37). Notwithstanding, our records indicate that steeper meridional SST gradients during 

glacials are a recurring feature in the Southeast Pacific over the past 700 kyr. 

Several factors may contribute to the steeper high-to-low latitude gradients, including 

the insolation gradient and local hydrographic dynamics. The temporal resolution of our SST 

records is insufficient for determining the contribution of the local insolation gradient in 

shaping the meridional SST gradient, based on the wiggle-matching of the SST gradients to 

the insolation gradients (Figure 3.6). Besides, the subtropical site GeoB3388-1 might also be 

influenced by filaments advected from the coastal upwelling off Chile, if the upwelling was 

stronger in the past. This notion, however, cannot be rigorously tested by our SST records and 

awaits future work based on more conservative water mass tracers. Alternatively, the steeper 
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high-to-low latitude gradients during glacials might be linked to the vigor of the PCC. As 

readily observable in the modern day SST contour map (Figure 3.1), site GeoB 3388-1 is 

characterized by the advection of cold water from the south. It is conceivable that the steeper 

gradients between this site and the tropics (site HY 04 is beyond the influence of the east 

Pacific cold tongue) during the glacial periods are a result of enhanced cold water transport 

via an intensified PCC. Increased influence of ACC-sourced water in the subtropical 

Southeast Pacific has been inferred from enhanced glacial paleoproductivity, assuming that 

the main nutrient source was supplied from the south via the PCC [Mohtadi and Hebbeln, 

2004; Romero et al., 2006]. Increased transport by the PCC during glacials was invoked to 

explain the higher abundance of ACC cold-water coccolithophorid and dinoflagellate species 

at the mid-latitudes Southeast Pacific [Saavedra-Pellitero et al., 2011; Verleye and Louwye, 

2010] and the increased cold-water foraminiferal abundance in the equatorial Pacific 

[Feldberg and Mix, 2002; 2003]. In addition, it has also been proposed on the basis of a 

steeper glacial meridional SST gradient at the equator, which suggested a northward shift of 

the Equator Front - Intertropical Convergence Zone (ITCZ) during glacial periods [Rincón-

Martínez et al., 2010]. Stronger cooling and intensification in the PCC transport (an eastern 

boundary current) during the glacial periods might have resulted from enhanced Ekman 

pumping from the subantarctic zone, as a response to an increase in wind strength and/or 

northward migration of the Westerlies. Such changes in the southern Westerlies have been 

inferred from some marine records [e.g., Mohtadi and Hebbeln, 2004; Stuut and Lamy, 2004]. 

Indeed, based on the conservation of energy, a stronger zonal circulation north of the 

subantarctic zone could be deduced from steeper meridional gradients and an equatorward 

contraction of the subtropical realm. Moreover, as mentioned in Section 3.5.3, an 

equatorward deflection of the major ACC fronts (the SAF and the APF) would also contribute 

to increased cold water transport via the PCC.   

 

3.6. Conclusions 

The empirical relationship of UK
37- and UK’

37 with SST in our South Pacific regional 

core-top data set is similar to the commonly used calibrations derived from the laboratory E. 

huxleyi culture of Prahl et al. [1988]. These linear relationships hold even at low temperatures 

(down to ~1°C), suggesting that the temperature dependence of the alkenone indices is not 

lost at low temperatures in the Southern Ocean. This finding indicates that both alkenone 



Chapter 3 

 

 

71 
 

indices are suitable for reconstructing SST at our cold subantarctic sites. However, these 

indices result in dissimilar SST patterns over the past 700 kyr in the subantarctic Pacific. The 

UK’
37-derived SST records display varying glacial severity, as opposed to the more uniform 

relative glacial/interglacial change in the UK
37-inferred SST records. Based on the better 

agreement of the glacial severity patterns of the UK
37 records with that of the planktic 18O at 

the same sites and other subantarctic SST records, we conclude that the UK
37 is a more 

suitable index for paleo SST reconstruction in the subantarctic Pacific. The UK
37-derived SST 

records suggest pronounced glacial cooling of ~8°C and ~4°C in the subantarctic and the 

subtropical regions, respectively. The magnitude of subantarctic glacial cooling is comparable 

to that reported for other sectors of the Southern Ocean. The SST estimates also suggest that 

the ACC and its associated fronts migrated equatorward by 7° to 9° during glacials over the 

past 700 kyr, which might have reduced the water transport through the Drake Passage to the 

South Atlantic. Conversely, the deflection of more ACC waters equatorward during glacials 

probably enhanced the cold water advection via the PCC, resulting in colder subtropical SSTs 

and, thus, larger meridional SST gradients between the tropics and the subtropics. 
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4.0. Abstract 

 Multi-proxy approach is essential for constraining sea surface temperature (SST) 

reconstruction. Organic SST proxies based on the alkenones (of haptophyte) and the archaeal 

glycerol dialkyl glycerol tetraether (GDGT) are useful in this regard. Here we present a new 

GDGT-inferred SST record and compare it to a previously published alkenone-derived SST 

record from the same site. The comparison reveals different temporal patterns and values in 

both records. The GDGT-based SST estimates are generally colder. To explain the differences 

between these proxies, we assess both seasonality and habitat depth of the source organisms, 

and conclude that the latter is a more likely reason. Based on previous findings of maximum 

archaeal abundance at the oxycline in this region, we hypothesize that the colder GDGT-

inferred estimates reflect the water temperature at this hydrographic boundary instead of the 

sea surface, as in the alkenone record. The only exception to this pattern occurs during MIS 

11 and 13, when the GDGT-based temperatures are considerably warmer than other 

interglacials, leading to a convergence of temperature values inferred from both proxies. This 

phenomenon is probably attributable to variability in the water column structure in the 

Southeast Pacific. One plausible mechanism is a more drastic deepening in the thermocline 

relative to the oxycline. In this scenario, the oxycline corresponds to the warmer upper part of 

the thermocline instead of the base of thermocline as observed in the modern day 

climatological data. 
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4.1. Introduction 

 Given the importance of the ocean in climate system, knowledge of past variability in 

sea surface temperature (SST) is essential for understanding the mechanism involved in 

climate changes and for validating the numerical models that are widely used for projection of 

future climate. A large array of proxies have been developed to reconstruct past SST changes, 

such as the foraminiferal 18O and Mg/Ca, the alkenone unsaturation index and the transfer 

functions of various microfossils. Very often these proxies result in dissimilar reconstructed 

SST patterns, due to differences in the sensitivity of their response to environmental change, 

the habitat depth and the production seasonality of the source organisms, or other secondary 

non-thermal effects. Therefore, it is important to constrain SST reconstructions with multiple 

proxies. In this regard, organic geochemical proxies based on alkenones and glycerol dialkyl 

glycerol tetraethers (GDGT) are good options for carrying out a multi-proxy approach, since 

they can be extracted simultaneously from marine sediments, rendering this approach less 

labor intensive than comparing organic-inorganic proxies. The alkenones unsaturation index, 

i.e., the UK
37 is based on the lipids of haptophyte algae, including the cosmopolitan 

coccolithophores Emiliania huxleyi [Brassell et al., 1986; Prahl and Wakeham, 1987]. The 

GDGT-based proxy, termed TetraEther index with 86 carbon atoms (abbreviated as TEX86) 

[Schouten et al., 2002], is based on the membrane lipids of mesophilic marine archaea from 

group Thaumarchaeota (formerly known as Marine Group 1 Crenarchaeota). Recent 

development has seen increasing numbers of publications based on this organic multi-proxy 

approach, including studies in the Arabian Sea [Huguet et al., 2006b], the Mediterranean 

[Castañeda et al., 2010; Huguet et al., 2011], the equatorial Atlantic [Lopes dos Santos et al., 

2010], the Gulf of California [McClymont et al., 2012] and the Agulhas system [Caley et al., 

2011]. While some of these studies showed similar SST patterns derived from both proxies 

[e.g., Castañeda et al., 2010], others not [Huguet et al., 2006b; Lopes dos Santos et al., 2010]. 

These authors attributed the differences between alkenone and GDGT proxies to several 

possibilities, e.g., the GDGTs record subsurface temperature instead of SST [e.g., Lopes dos 

Santos et al., 2010; McClymont et al., 2012], or these lipids are produced in different seasons, 

thus are not controlled by the same climatic systems [Huguet et al., 2006b]. Given that the 

isoprenoid GDGTs used in TEX86 are also found in soil, it is important to assess whether the 

GDGT-derived SST estimates are biased by terrestrial input. Hopmans et al. [2004] proposed 

an index known as Branched and Isoprenoid Tetraether (BIT) index as a qualitative parameter 

to gauge the influence of terrestrial end-member on the sedimentary GDGT pool. A threshold 
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value of 0.3 (above which the SST estimates might be biased) was suggested by Weijers et al. 

[2006]. However, recent studies [e.g., Fietz et al., 2011; Smith et al., 2012] questioned its 

usefulness in tracing the changes in fluvial input as the ratio could be overwhelmed by the 

marine end member. 

Here we present a GDGT-inferred SST record over the past 700 kyr in the relatively 

under-studied Southeast Pacific, and compare it with a previously published alkenone SST 

record at the same study site [Ho et al., in press]. We use BIT values and the concentration of 

GDGTs to evaluate potential bias introduced by terrestrial GDGTs on the GDGT-inferred 

SST estimates, before discussing the patterns in both SST records.  

 

4.2. Study site 

Core GeoB 3388-1 (25°13’S 75°31’W, 3558 m water depth) was retrieved from the 

Iquique Ridge approximately 500 km off Chilean coast during the R/V Sonne cruise 102 

[Hebbeln et al., 1995]. The site lies underneath a vigorous eastern boundary current, i.e., the 

oceanic Peru-Chile Current (PCC, also known as the Humboldt Current). The PCC carries 

cold, nutrient-rich water originates from the Antarctic Circumpolar Current (ACC) 

equatorward, feeding into the South Equatorial Current (SEC). The nutrients upwelled in the 

coastal PCC zone result in high productivity, which in turn leads to high consumption of 

dissolved oxygen for organic matter decomposition. This high oxygen demand, along with 

sluggish ventilation in the region, produce a subsurface oxygen minimum zone (OMZ; <0.5 

mL/L oxygen concentration) [Helly and Levin, 2004] as thick as 500 m [Fuenzalida et al., 

2009]. The upper boundary of the OMZ deepens and the intensity diminishes further offshore 

(Figure 4.1). The thickness, the position and the intensity of the OMZ could be influenced by 

the El Niño Southern Oscillation (ENSO) [Morales et al., 1999; reference therein]. The depth 

of the upper boundary of the OMZ (referred to as the oxycline in the text), is generally deeper 

than the thermocline (see also Figure 4.6), and both deepen considerably during the warm 

ENSO phase, i.e., the El Niño. The coastal OMZ water is advected poleward by the Peru-

Chile Undercurrent (PUC, also known as the Poleward Undercurrent and the Gunther 

Current). The PUC is the poleward branch formed after the bifurcation of the Equatorial 

Undercurrent (EUC) as it approaches the Galapagos Islands[Strub et al., 1998]. 



Chapter 4 

 

 

75 
 

Figure 4.1: Core locations of GeoB 3388-1 and TG7 [Calvo et al., 2001], and major hydrographic features in the 
Southeast Pacific. Black full line denotes surface currents while black dashed line denotes subsurface currents. 
Right panel illustrate the oxygen concentration along a section at 25°S between the Chilean coast and subtropical 
gyre (illustrated by the blue dotted line in the left panel). Abbreviations: ACC – Antarctic Circumpolar Current; 
PCC- Peru-Chile Current; SEC – South Equatorial Current; EUC – Equatorial Undercurrent Current; PUC – 
Peru-Chile Undercurrent. 

 

4.3. Materials and methods 

Piston core GeoB 3388-1 was previously described by Mohtadi et al. [2006] and Ho et 

al. [in press]. Here we opt for the age model revised by Ho et al. [in press], which is based on 

the visual tuning of the benthic 18O record to the global benthic 18O stack of Lisiecki and 

Raymo [2005]. According to this age model, the average sedimentation rate at the site is 0.7 

cm/kyr. Lipids were extracted from freeze-dried, homogenized sediments, via sonication with 

successively less polar solvent mixture (dichloromethane and methanol), as described by 

Müller et al. [1997]. Total lipid extracts were separated into two fractions (alkenones and 

GDGTs) using column chromatography (silica cartridge) prior to analysis of individual 

compounds. GDGTs were eluted using methanol and passed through PTFE filters before they 

were analyzed using a High Performance Liquid Chromatography system coupled to a mass 

spectrometer with an atmospheric pressure chemical ionization interface (HPLC-APCI-MS). 

The setting of the instrumental condition was modified from the method of Hopmans et al. 



Chapter 4 

 

 

76 
 

[2000] as reported previously by Ho et al. [submitted to GCA]. GDGTs were quantified using 

internal standard, i.e., C46 GDGT.  

SST estimates were calculated using a modified version of the TEX86, known as 

TEX86
H, following Kim et al. [2010]: 

TEX86
H ൌLogሺ

ൣGDGT‐2GDGT‐3Cren'൧
ሾGDGT‐1GDGT‐2GDGT‐3Cren'ሿ

 

SSTൌ68.4 ൈ TEX86
H 46.9 

where Cren’ denotes crenarchaeol regio-isomer.  

We also calculated the BIT index values to assess the relative abundance of marine to soil 

GDGTs, as proposed by Hopmans et al. [2004]: 

BITൌ
ሾGDGT െ I  GDGT െ II  GDGT െ IIIሿ

 ሾGDGT െ I  GDGT െ II  GDGT െ III  Crenarchaeolሿ
 

Figure 4.2: Molecular structures of glycerol dialkyl glycerol tetraethers (GDGTs) used for the calculation of the 
TEX86

H and BIT indices [Castañeda et al., 2010].  
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4.4. Results and discussion  

 

Figure 4.3: Glycerol dialkyl glycerol tetraether (GDGT) parameters and benthic 18O record of core GeoB 3388-
1. Blue shaded bars represent glacial intervals while the black numbers on top denote the marine isotope stages 
(a) TEX86

H-derived SST estimates computed using the global core-top calibration of Kim et al. [2010]. The blue 
and red circles denote the present day WOA09 coldest and warmest months, respectively. (b) Concentration of 
branched GDGTs and creanarchaeol used in the calculation of the BIT values. (c) Branched and Isoprenoid 
Tetraether (BIT) index values. (d) Benthic 18O values of Cibicidoides wuellerstorfi previously published by 
Mohtadi et al. [2006]. 

 

The TEX86
H-derived SST record displays glacial-interglacial (G-IG) fluctuations with 

values ranging between 22°C and 10°C over the past 700 kyr at site GeoB 3388-1. The record 

is rather noisy with some drastic jumps especially at the lower part of the record. There also 

seems to be some G-IG temporal offsets between the TEX86
H record with the foraminiferal 

benthic 18O values, where warm peaks appear in glacial intervals, e.g., MIS 6 and MIS 14. 
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TEX86
H suggests Holocene warmth (~9 kyr) of around 20.7°C (the top of the piston core) that 

is comparable to modern day warmest month SST (20.2°C from WOA09). The average 

glacial SST values are colder than the present day winter SST. 

 

4.4.1. High BIT values: potential terrestrial bias on TEX86
H SST? 

Before making any climatic interpretation of the TEX86
H-derived record, it is 

necessary to assess whether the record has been compromised by terrestrial GDGTs, in light 

of the high BIT values (>0.3) at our study site for most part of the past 700 kyr. The BIT 

index was initially proposed as a proxy to monitor the fluvial input to marine sediment. 

Weijers et al. [2006] found that soil GDGTs caused an artificial warming in TEX86-derived 

SSTs and suggested a cut-off value of 0.3, above which the temperature estimates might 

become unreliable. The BIT values at our site are in the range of 0 and 0.8, with a decreasing 

trend towards the Holocene. The trend in the BIT record is clearly governed by the variations 

in the crenarchaeol concentrations, as the concentrations of branched GDGTs are invariant 

throughout the record (Figure 4.3). Given the considerable distance from land (~500km) and 

the absence of major rivers on land around the latitude of our core site, substantial fluvial 

input of branched GDGTs to site GeoB 3388-1 is unlikely. Furthermore, the little fluvial 

sediments that end up in the ocean are probably caught in the Peru-Chile Trench, which lies 

between the coast and our study site. Previous sedimentological evidences suggest that the 

terrigenous components west of the trench are eolian-derived [Lamy et al., 1998; Saukel et al., 

2011]. To-date it is still unclear whether the GDGTs could be transported by winds. However, 

if indeed such massive amount of dust-entrained GDGTs are blown to our study site and 

interfere with the marine GDGT signal, one would expect to see an overall “warm” TEX86
H-

derived SST throughout the record consistent with the invariant concentration of branched 

GDGTs. Warm bias on TEX86-derived temperature estimates by terrestrial GDGTs is 

suggested by Weijers et al. [2006] and the TEX86
H-inferred temperature values (approx. 29°C) 

in three soil samples from the Atacama Desert at subtropical latitudes (see Section 4.7). Since 

the interglacial TEX86
H SSTs at site GeoB 3388-1 are comparable with modern day SSTs and 

not anomalously warm, it is likely that a terrigenous overprint on this record is negligible. 

Furthermore, there is no apparent correlation between the BIT index values and the SST 

estimates (Figure 4.4). The branched GDGTs in our sediment record are probably produced 

in situ, e.g., in the water column or the sediment by bacteria, as previously invoked by Peterse 
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et al. [2009] and Zhu et al. [2011] to explain the occurrence of branched GDGTs in the 

marine sediments off Svalbard and the South China Sea, respectively. High relative 

abundances of branched GDGTs (hence BIT values) have also been observed in marine 

sediments from the Southern Ocean [Fietz et al., 2011] and the equatorial Atlantic [Fietz et 

al., 2012] far from any apparent fluvial sources (e.g., major rivers), further support the 

plausibility of in-situ production of branched GDGTs in open ocean settings. Since the 

branched GDGTs-producing bacteria are not known to produce isoprenoid GDGTs, we 

contend that high BIT values do not compromise the validity of the TEX86
H-inferred SST 

estimates at our study site.  

 

Figure 4.4: Correlation between the Branched and Isoprenoid Tetraether (BIT) index values and the TEX86
H-

derived SST estimates calculated with the global core-top calibration of Kim et al. [2010]. 

 

4.4.2. Comparison with alkenone-derived SSTs  

In spite of lower temporal resolutions, the alkenone-inferred SST record at site GeoB 

3388-1 resembles the subtropical TG7 alkenone SST record [Calvo et al., 2001] which lies a 

few degrees northward (see Figure 4.1 for location), suggesting that both records likely 

reflect the regional SST pattern. Comparison of the alkenone-derived and the smoothed 

TEX86
H-derived SST records suggests that for most part of the past 700 kyr, the G-IG 

amplitude of SST oscillation is ~4°C. The only exception was during MIS 11 and 13, where 

the TEX86
H suggests larger amplitudes of up to 8°C. In general, the alkenone-derived SST 

estimates are warmer by approximately 5°C than those inferred from the TEX86
H, except for 

MIS 11 and 13 where the estimates inferred from both proxies converge. While there is no 
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clear G-IG trends in the differences between the alkenone SST and the TEX86
H SST (termed 

SST), the SST during MIS 11 and 13 are evidently reduced compared to other time 

intervals. This begs the questions – what causes the differences between the alkenone- and the 

TEX86
H-derived SSTs? Why do they converge during MIS 11 and 13?  

 

Figure 4.5: Temperature records at site GeoB 3388-1. Black lines denote records smoothed by a running average 
method. Blue shaded bars represent glacial intervals while the black numbers on top denote the marine isotope 
stages. (a) Alkenone-derived sea surface temperature records at site GeoB 3388-1 (blue) and TG7 (red) [Calvo et 
al., 2001], and TEX86

H-derived water temperature record (green) at site GeoB 3388-1. The blue and red circles 
denote the present day WOA09 coldest and warmest months, respectively, at site GeoB 3388-1. (b) The 
difference between alkenone-derived and TEX86

H-derived temperature estimates at site GeoB 3388-1. 

 

Firstly, we explore the plausible reasons for the differences between the two proxies. 

Taking the SST estimates at face value and assuming that the condition of previous 

interglacials are comparable to that of present day, one might speculate that the alkenones and 

the GDGTs are produced during summer and winter, respectively, judging by their agreement 

with the respective WOA09 seasonal SSTs (see Figure 4.5). Nonetheless, this idea cannot be 

better constrained in the absence of recent sediment sample at the study site (the top of core 

GeoB 3388-1 is estimated to be 9000 year-old) and sediment trap time series data in this 

region. A regional core-top alkenone study in the Southeast Pacific indeed suggests that the 
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sedimentary alkenones in this region register annual mean SST [Prahl et al., 2006], as 

opposed to our summer-biased alkenone-inferred interglacial SSTs  

To the best of our knowledge, there is no reported work on the abundance and 

seasonal variability of GDGTs in the water column or surface sediment in the vicinity of our 

study site. Meanwhile, time series data on the prokaryote in the PCC system reveal no 

seasonal patterns in the abundance of marine archaea (precursors of GDGTs) [Quiñones et al., 

2009]. We note that studies from other regions suggested that the Thaumarchaeota thrive 

during winter in the coastal North Sea [Wuchter et al., 2005]) and the Antarctic coastal waters 

[Church et al., 2003; Murray et al., 1998]. However, we refrain from extrapolating these 

findings obtained from studies on shallow coastal waters to our open ocean site, which is 

situated in a completely different hydrographic and sedimentation setting. This is in light of a 

recent finding by Leider et al. [2010] in a core-top study in the Mediterranean Sea. They 

attributed the dissimilar TEX86
H-SST relationships observed at coastal sites and oceanic sites 

to differences in the seasonality and/or sedimentation setting. Furthermore, Giovannoni and 

Vergin [2012] also proposed that the microbial communities differ between coastal and open 

ocean regions, and with latitude.  

Alternatively, dissimilar SST values can also arise if the alkenones and the GDGTs 

record water temperatures at different depths. Unlike the photosynthetic precursor of the 

alkenones (i.e., haptophyte algae) which are found in the upper photic zone, the 

chemoautotrophic archaea thrive throughout the water column [e.g., Karner et al., 2001] since 

their habitat depth is not restricted by light. Off northern Chile, maximum absolute abundance 

of Thaumarchaeotal cell numbers were found at the oxycline (water depths of ~50 – 200m) 

above the core of the OMZ [Belmar et al., 2011]. If indeed the GDGTs in the sediment 

originate from this water depth which coincides with the base of thermocline, they should 

record water temperatures about 6°C lower than the SST (Figure 4.6), in agreement with the 

SST observed in the alkenone- and TEX86
H records. GDGT-based proxies reflecting 

subsurface temperatures have been reported previously, such as for the Gulf of California 

[McClymont et al., 2012], the eastern tropical Atlantic [Lopes dos Santos et al., 2010] and the 

Benguela upwelling system [Lee et al., 2008]. We find this notion more plausible that the 

seasonality bias, thus adopt it as our working hypothesis for further discussion.  
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4.4.3. Paleoceanographic implications  

Assuming that the alkenones and the GDGTs record water temperatures at the sea 

surface and the oxycline, respectively, these proxy data suggest that the water column 

condition is anomalous during MIS 11 and 13, where the oxycline temperatures warm up 

twice as much as the other time intervals and are almost as warm as the SST. The warming is 

likely to be restricted to the subsurface since the alkenone-derived MIS 11 and 13 SSTs are 

not anomalously warm compared to other interglacials. If the archaeal preferred habitat depth 

remains the same during these intervals, i.e., at the oxycline, significant subsurface warming 

during MIS 11 and 13 suggests an enhanced influence of warm waters at the oxycline. At 

present, the oxycline at site GeoB 3388-1 corresponds to the base of the thermocline. As the 

temperatures at the base of thermocline do not vary much with depth variation (Note: the 

thermocline is theoretically the boundary between two water masses with specific physical 

properties), same magnitude of depth shifts in both the oxycline and the thermocline will not 

lead to large changes in the TEX86
H-derived oxycline temperature and in turn the SST. 

Conversely, substantial oxycline temperature change requires a mismatch in the magnitude of 

shoaling / deepening of both these hydrographic boundaries.  

The variability of the oxycline depth, i.e., the upper boundary of the OMZ, in the 

subtropical Southeast Pacific is closely linked to the changes in thermocline depth and 

upwelling intensity [Fuenzalida et al., 2009], which are in turn closely associated with the 

ENSO variability. During warm El Niño events, large parcel of warm waters accumulates in 

the eastern Pacific and the upwelling of cold, nutrient rich water at the coastal area is reduced. 

The depths of both thermocline and oxycline deepen; and the opposite are true for La Niña 

condition. Morales et al. [1999] reported that during an El Niño event offhore Antofagasta 

(23°S), the thermocline deepened more than did the oxycline. Consequently, the oxycline 

corresponds to the upper part of the thermocline, unlike during “normal” conditions when the 

oxycline corresponds to the base of the thermocline. Considering that it is warmer at the upper 

part of the thermocline than at the base of it, such an El Niño-like reorganization of water 

column structure would result in smaller temperature difference between the sea surface and 

the oxycline (Figure 4.6). Due to the thicker upper warm water mass, the upwelled water will 

be warmer than usual, further contribute to decrease the surface-subsurface temperature 

difference. Putting our temperature reconstruction in this context and assuming that the signal 
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depths of alkenone and GDGTs are constant through time, smaller SSTs suggest a change in 

the water column structure analogous to that occurring during the El Niño events.  

El Niño-like MIS 11 and 13 in the Southeast Pacific has been previously proposed by 

Mohtadi et al. [2006] based on an independent proxy on core GeoB 3388-1, i.e., foraminiferal 

13C values. The authors invoked a reorganization of the PCC circulation pattern in the 

Southeast Pacific to explain the diverging planktonic 13C values in the tropical and the 

subtropical Southeast Pacific during MIS 11 and 13, i.e., the weakened PCC turned westward 

at a much southerly position than usual leading to this divergence. As argued by the authors, 

such a shift in the circulation system resembles the El Niño conditions, where weakened 

Hadley Cell and Walker Circulation lead to a weak gyre circulation and a decreased influence 

of the ACC (via the PCC) in the equatorial East Pacific. Our water column temperature 

reconstruction further suggests that during these time intervals, the thermocline deepened 

more than the oxycline compared to other time intervals over the past 700 kyr.  

 

 

Figure 4.6: Upper water column structure at site GeoB 3388-1 in terms of oxygen concentration and temperature 
based on the annual mean climatological data of WOA09 (green curves). The red curves are the schematic of the 
water column structure during El Niño events. The horizontal dashed lines illustrate the position of oxycline and 
its corresponding temperatures. The arrows depict the difference between the temperatures at the sea surface and 
the oxycline where the Thaumarchaeota thrive. 
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4.5. Conclusions 

 In spite of high BIT index values, it is unlikely that our TEX86
H record in the open 

ocean subtropical Southeast Pacific has been compromised by terrestrial GDGTs because the 

SST estimates are not anomalously warm and they show no correlation with the BIT index 

values. The branched GDGTs are probably produced in-situ in the water column or the 

sediment as proposed for other oceanic regions by previous workers [Peterse et al., 2009; Zhu 

et al., 2011]. The TEX86
H-derived SST estimates are generally 5°C colder than those inferred 

from the alkenones, probably because the GDGTs record water temperature at the oxycline 

while the alkenones the surface. This notion is supported by microbial phylogenetic study in 

the region which found the highest absolute abundance of marine Thaumarchaeota at the 

oxycline above the oxygen minimum zone [Belmar et al., 2011]. This pattern breaks down 

during MIS 11 and 13, during which SST estimates derived from both proxies converge. We 

invoke a drastically deepened thermocline (relative to the oxycline) to explain the substantial 

warming recorded by the TEX86
H during these time intervals. Such a shift resembles the 

changes in the water column during the El Niño events in modern day. El Niño-like MIS 11 

and MIS 13 was previously suggested by Mohtadi et al. [2006] based on the foraminiferal 

13C data measured on the same core. 
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Site Longitude Latitude Altitude BIT TEX86
H T 

 (°W) (°S) (m)  (°C) 

L01 67.72 23.50 4480 0.85 28.3 

L11 67.85 23.32 3570 0.61 27.3 

L16 67.92 23.31 3070 0.72 30.7 

 



Chapter 5 

 

 

86 
 

Chapter 5: Conclusions and Outlook 

 

5.1. Summary and conclusions 

This thesis contributes to a better understanding of organic sea surface temperature 

(SST) proxies derived from alkenones and archaeal glycerol dialkyl glycerol tetraethers 

(GDGTs) in three aspects, i.e., the spatial distribution of these lipids, the calibrations and the 

indices of the proxies, and the resulting paleoclimatic implications.  

 

5.1.1. Lipids occurrence: Where the proxies may be applied 

Alkenones are found between the Subtropical Front and the Antarctic Polar Front 

(APF) in the South Pacific (Figure 3.1), with highest abundances found in the shallow waters 

off New Zealand. Application of alkenone paleothermometry in the cold waters south of the 

APF and further south in the Antarctic zone would therefore require large amounts of 

sediment samples to have alkenones in quantifiable abundance. The GDGTs are found in 

subpolar and polar regions, including all sectors of the Southern Ocean, the North Pacific, the 

Bering Sea, the Arctic Ocean and the Fram Strait (Figure 2.1). The presence of GDGTs at 

high latitudes renders them promising for SST reconstruction at sites where the absence of the 

alkenones precludes the application of the better established SST indices e.g., the alkenone-

based UK’
37.  

 

5.1.2. Proxy indices and calibrations: Diverging views from core-top calibration and 

downcore application 

 The correlations between the two alkenone unsaturation indices (UK
37 and UK’

37) in the 

South Pacific surface sediments and the annual mean World Ocean Atlas 2009 (WOA09) 

climatological SSTs (1°C - 12°C) are identical to the commonly used laboratory E. huxleyi 

culture-based calibrations of Prahl et al. [1988] (8°C – 25°C) (Figure 3.3). The South Pacific 

alkenone indices – SST correlations are linear, with equally high r2 values of ~0.9 for both 

indices. These findings contradict previous studies that suggest a loss of linearity in the 

alkenone indices – SST relationships at low temperatures [Conte et al., 2006; Sikes and 



Chapter 5 

 

 

87 
 

Volkman, 1993; Sikes et al., 1997], and that the UK’
37-SST correlation (r2 = 0.9) is better than 

that of UK
37-SST (r2 = 0.7) [Sikes et al., 1997]. Although the South Pacific core-top data 

support the use of both alkenone indices for SST reconstruction in the subantarctic region, 

downcore results suggest otherwise. The two alkenone indices yield diverging Pleistocene 

SST patterns for the study sites in the subantarctic Southern Ocean (Figure 3.4). Judging 

from the better structural fit with planktonic foraminiferal 18O records at these sites and other 

subantarctic SST records derived from various proxies (Figure 3.5), it appears that the 

original UK
37 index (instead of the commonly used simplified UK’

37 index) results in more 

plausible Pleistocene SST records, hence is a more suitable alkenone SST index in the 

subantarctic Southern Ocean.  

 The 160 GDGT indices (TEX86 and TEX86
L) data presented in this work are discussed 

in combination with ~470 previously published data to obtain the largest spatial coverage to 

date (Figure 2.1). The correlations of the index values in subpolar and polar core-tops with 

WOA09 annual mean SST are poor (r2 values < 0.3) (Figure 2.4). Cross-plotting these 

indices data with seasonal WOA09 SST data sets, and water temperature at various 

hydrographic boundaries (seasonal thermocline, oxycline, deepest water temperature for each 

site) does not result in improved correlations (Figure 2.5 and Figure 2.6), suggesting that the 

scatter in the data is caused by other factors, such as differences in sedimentation setting. 

Running linear regressions through the new global compilation of core-top GDGT indices 

data (n = 630) does not yield significantly different equations compared to the previous global 

calibrations proposed by Kim et al. [2010] (Figure 2.9). The results from the new global 

compilation show that the correlation for TEX86-SST is better than that for the TEX86
L-SST, 

and the TEX86 index results in better SST estimates for subpolar and polar regions (Figure 

2.7), in contrast to the conclusions of a previous global core-top calibration study [Kim et al., 

2010]. Meanwhile, the new Arctic core-top data presented here show that both GDGT indices 

overestimate the SST here by up to 30°C (relative to the annual mean SST), especially in the 

vicinity of the sea ice margin. These Arctic data aside, the scatter at the low temperature end 

is not more pronounced than that in the mid temperature range, suggesting that the previously 

suggested loss of temperature dependence at low temperatures might not be true. Therefore, 

the newly compiled global data set does not suggest the need for different GDGT indices for 

application at opposite ends of the SST range. 
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 Although the core-top data indicate that GDGT indices correlate better with annual 

mean SST instead of seasonal SST or subsurface temperatures, a downcore TEX86
H 

(logarithmic version of the TEX86 proposed by Kim et al. [2010]) record suggests that this 

might not be the case in the subtropical South Pacific. In this 700 kyr sediment record, the 

GDGT-derived SSTs are colder than those inferred from the alkenones. The interglacial 

estimates are colder than annual mean WOA09, and more comparable with modern-day 

winter SST at the site (Figure 4.5). Considering the lack of seasonality in the archaeal 

abundance in the subtropical South Pacific [Quiñones et al., 2009], it seems that the “cold-

biased” GDGT-inferred SSTs here reflect subsurface temperature, plausibly at the oxycline 

because the source organism, i.e., the Thaumarchaeota, thrive at this hydrographic boundary 

[Belmar et al., 2011]. 

 

5.1.3. Paleo SST estimates: Pleistocene climatic implications 

 Two subantarctic and one subtropical SST records presented in this thesis shed light 

on the SST variability in the Southeast Pacific over the past 700 kyr. The subantarctic records 

are especially important in terms of the long timescale they cover, which is roughly ten times 

older than the longest SST record in the region. They afford a high-to-low latitudes SST 

patterns comparison based on records derived from the same proxy (i.e., UK
37), which is 

essential for constraining latitudinal SST gradient calculation. The UK
37 SST records show 

that in the Southeast Pacific over the past 700 kyr, the glacial cooling in the subantarctic zone 

(~8°C) is twice larger than that in the subtropics (~4°C) (Figure 3.4), resulting in larger 

latitudinal SST gradients during glacials (Figure 3.6). The extent of glacial cooling here is 

comparable, if not larger, than what observed in other sectors of the subantarctic Southern 

Ocean (Figure 3.5), in contrast to the findings of Gersonde et al. [2005] based on siliceous 

microfossil transfer functions, which suggest less intense glacial cooling in the Pacific sector. 

Although sharing a first-order pattern with the Antarctic temperature evolution registered in 

ice cores [Jouzel et al., 2007; Petit et al., 1999], the subantarctic Pacific SST records do not 

display a well-expressed Mid-Brunhes Event as in the ice core record. These UK
37-derived 

SSTs imply massive equatorward migrations (by 7 to 9 degrees latitude) of the Antarctic 

Circumpolar Current frontal systems and enhanced cold water transport to the low latitudes 

via the Peru-Chile Current (PCC) during glacials.  
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Whilst the alkenone-inferred interglacial warmth in the subtropics appears to be quite 

constant over the past 700 kyr, the GDGT-derived temperatures suggest a two-fold subsurface 

warming at the oxycline during MIS 11 and 13 (Figure 4.5). Assuming that the present-day 

lack of seasonality in the archaeal abundance holds in the past (hence ruling out a shift in 

archaeal production season), the substantial subsurface warming might be related to an 

enhanced deepening of the thermocline relative to the oxycline, causing the latter (also the 

habitat depth of the archaea) to correspond to the upper, warmer part of the thermocline 

(Figure 4.6). Such shifts in the depths of these hydrographic boundaries are analogous to the 

water column reorganization during modern-day El Niño conditions [Morales et al., 1999].  

 

5.2. Perspectives for future work 

 

“Science is always wrong: It never solves a problem without creating ten more.” 

George Bernard Shaw (1856-1950) 

 

As solemnly stated in a community White Paper [Henderson et al., 2009] prepared for 

the National Environment Research Council of the United Kingdom following a symposium 

on the earth’s climate convened by Henry Elderfield and colleagues at the University of 

Cambridge, “Despite its importance, careful calibration of a paleoproxy and assessment of its 

uncertainty can appear less exciting to a researcher or a funding panel than the application 

of this proxy to a paleoclimate question”. There is clearly room for improvement in proxy 

calibration and its application. 

As discussed thoroughly in previous chapters, choosing the “right” index and 

calibration is pivotal for reconstructing past SST changes. Indeed, it has been shown that 

different approaches in terrestrial temperature calibrations alone can result in differences of 

the same magnitude as the temperature changes in the past millennium reported in the IPCC 

report [Esper et al., 2005]. In alkenone- and GDGT-inferred SST records, the temporal trends 

are governed by the definition of the index while the values of the SST estimates depend on 

the calibration employed. It goes without saying that both the index and the calibration of SST 

proxies are of paramount importance for accurately reconstructing past SST changes. In light 
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of the findings presented in this thesis, many more scientific questions arise, which are useful 

for steering future work to further improve the quality of SST reconstruction. 

 

5.2.1. Refining UK
37 calibration 

Chapter 3 presents South Pacific alkenone core-top calibrations that are comparable 

with the commonly used Emiliania huxleyi culture calibrations [Prahl et al., 1988], but differ 

systematically from the Southern Ocean core-top calibrations of Sikes et al. [1997], especially 

evident for the UK
37 index (Figure 5.1). Inconsistency in instrumentation and methodology, 

including chromatogram integration and sample work-up, could be possible causative factors 

for this offset [personal communication with E. Sikes]. Notwithstanding, given the rarity of 

the Southern Ocean core-top samples, it is worthy to further examine other potential factors 

causing the offset, such as non-thermal physiological factors, differences in assemblages or 

morphotypes in alkenone-producing coccolithophores, before ruling out one of the data sets. 

This is especially true considering the difficulty in culturing coccolithophores for calibration 

at temperatures below 5°C. In addition to low growth rates (resulting in a time-consuming 

experiment), the cold water coccolithophores cultures isolated from the Southern Ocean 

waters have a small range of preferred growth temperature (~2°C) [G. Langer, personal 

communication] that is not ideal for calibrating the SST proxy. 

Furthermore, in light of the new finding presented in this thesis, i.e., the UK
37 index is 

a better SST proxy in the subantarctic region at low temperatures (Section 3.5.1 and Section 

3.5.2), there is an urgent need to appraise the index at higher temperatures to expand its 

calibration range. One possible short-term approach would be to combine the South Pacific 

core-top data with the E. huxleyi culture data of Prahl et al. [1988], yielding a calibration 

range from 1 °C to 25°C (compared to 0 °C to 28°C for the global core-top UK’
37 calibration). 

Such approach was adopted by Mashiotta et al. [1999] for their “hybrid” foraminiferal Mg/Ca 

calibration, which closely resembles the core-top calibration of Elderfield and Ganssen 

[2000]. Notwithstanding, it is not ideal in theory to combine temporally integrated signals in 

surface sediments with “snapshot” signals in laboratory cultures. Therefore, the long-term 

goal should be to generate more UK
37 data spanning the entire global temperature range, 

which will not only help to reconcile the differences in various data sets (Figure 5.1), but will 

ultimately contribute to generating a UK
37 global calibration with a comparable temperature 
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range to its counterpart UK’
37. A universal calibration for the entire temperature range would 

enable a more quantitative comparison of SST records spanning a large latitudinal range. 

 

Figure 5.1: UK
37 calibrations available in the literature. Prahl et al. [1988]’s calibration is based on the 

Emiliania huxleyi cultures. Calibrations of Rosell-Mele et al. [1995] and Sikes et al. [1997] are based on core-top 
data from the North Atlantic and the Southern Ocean, respectively.  

 

 Wide acceptance of the UK
37 index as SST proxy can be promoted by further evidence 

that within the same type of alkenone producers (coccolithophore), variations in the relative 

abundance of C37:4 alkenones (termed %C37:4 herein) in the open ocean are not caused by 

changes in salinity. %C37:4 as a salinity proxy was proposed by Rosell-Melé [1998] and 

Rosell-Melé et al. [2002] based on core-top data from the North Atlantic and the Nordic Seas. 

However, as argued by Sikes and Sicre [2002], the proposed relationship could be an artifact 

due to the strong correlation between temperature and salinity, which incidentally also holds 

in the South Pacific (Figure 5.2). Furthermore, in coastal area, fjords, brackish waters and 

sea-ice margins, the variations in %C37:4 are likely due to changes in the alkenone producer 

assemblages [Bendle et al., 2005; Marlowe et al., 1984; Schulz et al., 2000], not because of 

cellular physiological response to salinity variations. Considering the difficulty to disentangle 

the effects of these co-varying factors in the natural environments (i.e., shift in assemblages 

and strong correlation between temperature and salinity), laboratory culture experiments (e.g., 

growing coccolithophores at constant temperature while changing salinity) will provide more 

definitive insights into the effect of salinity on %C37:4 in coccolithophores. This might have 

important implications for future application of alkenones as a SST proxy and/or an indicator 

for low salinity water masses. Some studies have used the UK’
37 index in parallel with the 
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%C37:4 to infer SSTs and the presence of low salinity water, respectively. Although this 

approach is convenient and has its merits given that a salinity proxy is still elusive, it is 

lacking a biogeochemical rationale. That is, if salinity does control the alkenone unsaturation 

pattern (thereby also the %C37:4), it would violate the principle of the UK’
37 index (which is 

practically an index that quantifies the degree of unsaturation) as a SST proxy. Alternatively, 

if the correlation between %C37:4 and salinity stems from the contribution of coastal/brackish 

water/fresh water alkenone producers which have different alkenone distributions than their 

open ocean counterparts (i.e., with higher abundance of C37:4 alkenones), these alkenones will 

“contaminate” the signals of marine alkenones, rendering the SST estimates derived from 

these “mixed alkenones” using the marine core-top calibrations inaccurate. In any case, 

parallel application of alkenones as both SST and salinity proxy cannot be justified.  

 

Figure 5.2: Correlation between the sea surface salinity (SSS) and the sea surface temperature (SST) at the core-
top sites of PS75 reported in Chapter 3. Environmental data are retrieved from the WOA09.  

 

5.2.2. Refining GDGT-based SST calibrations 

Compared to the extensively studied alkenone paleothermometry, there is still plenty 

of room for improvement in GDGT-based proxies due to their more recent discovery (16 

years later than the alkenone paleothermometry) and their relatively under-studied archaeal 

precursors. It is seen in Chapter 2 that the addition of 230 data points to the global core-top 

calibration data sets [Kim et al., 2010] does not lead to very different regressions. Instead, the 

additional data result in larger scatter and hence, larger errors of estimation. This finding 

suggests that the more urgent issue for GDGT indices is to reduce these errors by 

investigating the causative factors for the scatter as speculated based on core-top data in 
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Chapter 2. Such factors  include the seasonality in the archaeal abundance and their export to 

the sediments, potential GDGT contribution from an archaeal group other than the mesophilic 

Thaumarchaeota, and the archaeal GDGTs originated from subsurface water depths instead of 

the sea surface.  

To test the various hypotheses listed above, sediment trap time series from different 

hydrographic settings have the potential to unravel regional differences, if any, in the 

seasonality and the sinking of the GDGT fluxes. To-date, most sediment trap data in the 

literature are from the tropics and/or shallow continental shelves [Fallet et al., 2011; 

Wakeham et al., 2003; Wuchter et al., 2006]. Therefore, sediment trap data from open ocean 

settings and higher latitudes may provide new insights into these issues.  

 Nonetheless, sediment trap sites worldwide are currently, and will likely be in the 

future, insufficient to match the broad spatial coverage of the global core-top data set. As an 

alternative to the sediment trap data, one can probably make use of satellite observations on 

primary productivity that have global coverage (1° x 1° grid). In addition, the export of 

primary production from the sea surface can be predicted using biogeochemical models, albeit 

with some extent of uncertainties inherent to the models. Furthermore, the temperature 

residuals of TEX86
L (Figure 5.3) display latitudinal patterns, where overestimates 

(underestimates) are observed at high (low) latitudes. These patterns resemble the seasonality 

index calculated by Schneider et al. [2010], which shows that primary productivity is 

positively (negatively) correlated to SST at high (low) latitudes. Therefore, incorporating 

biogeochemical parameters in TEX86 calibrations has the potential to improve the calibration, 

such as changing the slope of the regression (Figure 5.4). Conventionally, seasonality in 

global calibrations is examined by comparing the r2 values in the crossplots of the SST index 

values and seasonal SSTs. However, the seasonal patterns in production and export of organic 

matter are not comparable at low and high latitudes, with maxima occurring in different 

seasons. Therefore, a strong justification for correlating index values with seasonal SSTs in 

global calibrations is lacking.  

More confidence in the TEX86 paleothermometry will ensue if a better constraint on 

the original export depth of the GDGTs and more knowledge on the GDGT-producing 

archaea can be obtained. The fact that the alleged GDGT source organisms (the 

Thaumarchaeota) thrive throughout the water column casts some doubts on the validity of 

GDGTs as a SST proxy. The present assumption is that GDGTs are transported to the 
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sediment via scavenging and fecal pellet formation, thus they reflect the temperatures at upper 

water depths where an active foodweb exists. Future study is needed to further corroborate 

this assumption. In this regard, microbial phylogenetic analysis performed in tandem with 

lipid analysis on suspended matter in the water column at various depths might be useful to 

improve our understanding of the source organisms and their preferred habitat depth. Such 

combined analyses on suspended matters in the water column off Chile are currently 

underway in the laboratory of O. Ulloa, the University of Concepcion in collaboration with R. 

Summons (Massachusetts Institute of Technology) [O. Ulloa, personal communication]. In  

 

Figure 5.3: TEX86
L-derived temperature residuals (difference between estimated SST and climatological SST) 

by applying the current global calibration of Kim et al. [2010] on published data sets [Ho et al., 2011; Kim et al., 
2010; Leider et al., 2010; Shevenell et al., 2011] and data presented in Chapter 2. 

 

 

Figure 5.4: Schematic of a possible shift in the global core-top calibrations of TEX86 (currently calibrated 
against annual mean SST) after integrating production and export information, which skew towards warm (cold) 
seasons at high (low) latitudes. 
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addition, knowledge on the correlation between the abundances of the archaea and the 

GDGTs will provide some perspectives on how to translate the currently available archaeal 

abundance data into the distribution of GDGTs in the water column. Laboratory culture 

experiment would be ideal for studying GDGT-producing archaea, but culturing mesophilic 

archaea has proven to be very challenging so far, and there is yet no reported success in 

culturing the Thaumarchaeota. 

 

5.2.3. Constraining paleo SST reconstruction: Multi-proxy approach 

As summarized in Section 5.1.2, diverging views on the proxy applicability could be 

inferred from core-top data and downcore records, suggesting that the modern proxy-SST 

relationship in the core-top calibration might falter in the past. In this regard, a multi-proxy 

approach can help to better constrain SST reconstruction. When the proxies are in agreement, 

they provide additional confidence in the SST estimates. Conversely, disagreements in the 

proxies might reveal potential bias and prompt us to find the underlying processes to reconcile 

the differences.  

For instance, glacial SSTs at site PS75/034-2 are ~1°C (Figure 3.4). At present, such 

low temperatures are found south of the APF near the winter sea ice edge, where 

coccolithophores are sparse or absent [Cubillos et al., 2007; Gravalosa et al., 2008; Hasle, 

1960] and alkenones are at detection limit (note however that alkenones have been found in 

sediments where the overlying SST is ~0°C in the South Atlantic [Müller et al., 1998]). 

Notwithstanding, the alkenone abundances in core PS75/034-2 are higher during glacials than 

interglacials. This suggests that either the alkenones production / preservation is substantially 

higher during glacials, or the modern alkenone calibration underestimates the glacial SSTs in 

the past. Additional oceanographic information provided by other SST proxy and sea ice 

proxy (e.g., diatom assemblages) will be useful to determine which hypothesis is more likely. 

Multi-proxy comparison is especially crucial for advancing our understanding of the 

predictive power of the TEX86 index in estimating past temperature changes, considering the 

uncertainties associated with the depth of origin for GDGTs. In light of sediment trap studies 

that suggest a subsurface origin for GDGTs [Huguet et al., 2007; Lee et al., 2008], one can 

examine whether this is true for the past by comparing the TEX86 records with other SST 

proxies and subsurface temperature proxies (e.g., Mg/Ca on deep-dwelling foraminifera such 
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as G. inflata and G. truncatulinoides) records measured on the same sediment cores. More 

importantly, such comparison will also yield insights into whether the source depth for 

GDGTs has shifted in the past. This has implications for the assumption made (that the 

GDGT signal depth remains invariant in the past) in the hypothesis put forward in Chapter 4 

to explain the substantial warming registered in the GDGT-derived temperature record during 

MIS 11 and 13.  

 

5.2.4. Towards the “big picture” 

 As stated in Chapter 1, the ultimate goal of all branches of climate research is to have 

an accurate projection of future climate change, in order to better prepare for its consequences 

on human’s society. Since proxy data are widely used to validate numerical models, 

improvements of both proxies and models are pivotal towards achieving that ultimate goal. 

Recent development has seen heightened awareness in the scientific community regarding the 

importance of bringing together paleoclimatology and modeling. Further examination on 

proxy calibrations and the quantification of their uncertainties have the potential to contribute 

to this cause. Some studies have shown that the temperature variations simulated by climate 

models are smaller than those observed in proxy data [Braconnot et al., 2012; Lohmann et al., 

2012; Lorenz et al., 2006; Schneider et al., 2010]. As proposed in Section 5.2.2, integrating 

biogeochemical parameters such as production or export might lead to a shift in the slope of 

the global calibration, resulting in smaller amplitudes of the SST variation for the same range 

of index values. Therefore, future work shall go beyond the conventional scope of paleo 

proxy work and attempt to place proxy studies in the context of model-data comparison. The 

advantages of model-proxy comparison are analogous to those of the multi-proxy comparison, 

i.e., agreement shall bring confidence in both models and proxy data; while disagreements 

encourage the community to strive harder to understand underlying causes of the mismatch. 

Furthermore, changes in global calibrations shall have far-reaching implications for the 

calculations of climate sensitivity over glacial-interglacial cycles, which in turn affect the 

projection of future climate with a doubling of atmospheric CO2.  
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Appendix 1: Abbreviations and acronyms  

ACC  Antarctic Circumpolar Current 
AMJ  April May June 
ANN  Artificial Neural Network 
APCI  Atmospheric pressure chemical ionization 
APF  Antarctic Polar Front 
ARGO Array for Real-time Geostrophic Oceanography 
ASE  Accelerated solvent extractor 
AVHRR Advanced Very High Resolution Radiometer 
BIT  Branched and Isoprenoid Tetraether index 
CHC  Cape Horn Current 
Cren’  Crenarchaeol regioisomer 
EPICA European Project for Ice Coring in Antarctica 
EEP  Eastern Equatorial Pacific 
ENSO  El Niño – Southern Oscillation 
EUC  Equatorial Undercurrent 
FID  Flame ionization detector 
GAM  Generalized additive model 
GC  Gas chromatography 
GDGT  Glycerol dialkyl glycerol tetraether 
G-IG  Glacial - interglacial 
HMS  Her/His Majesty’s Ship 
HPLC  High performance liquid chromatography 
ICOADS International Comprehensive Atmosphere-Ocean Data Set 
IKM  Imbrie and Kipp method 
IPCC  Intergovernmental Panel on Climate Change 
IRD  Ice-rafted debris 
ITCZ  Intertropical Convergence Zone 
IUPAC International Union of Pure and Applied Chemistry 
JAS  July August September 
JFM  January February March 
LDI  Long-chain Diol Index 
LGM  Last Glacial Maximum 
LSR  Linear sedimentation rate 
MARGO Multiproxy Approach for the Reconstruction of the Glacial Ocean surface 
MAT  Modern analog technique 
MBE  Mid Brunhes Event 
MIS  Marine Isotope Stage 
MS  Mass spectrometer 
MSD Mass Selective Detector 
NBS  National Bureau of Standards 
NIOZ  Netherlands Institute for Sea Research 
NSIPP  NASA (National Aeronautics and Space Adminitration) Seasonal-To-

Interannual Prediction Project 
ODV  Ocean Data View 
OMZ  Oxygen minimum zone 
OND  October November December 
PCA  Principal component analysis 
PCC  Peru-Chile Current 
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PETM  Paleocene-Eocene Thermal Maximum 
PUC  Peru-Chile Undercurrent 
RAM  Revised analog method 
SAF  Subantarctic Front 
SCAR  Scientific Committee on Antarctic Science 
SEC  South Equatorial Current 
SIM  Selected ion monitoring 
SIMMAX Modern analog technique with a similarity index 
SSI  Summer sea ice extent 
SST  Sea surface temperature 
STF  Subtropical Front 
TEX86  TetraEther indeX with 86 carbon atoms 
TEX86

H Modified TEX86; TetraEther indeX with 86 carbon atoms for reconstructing sea 
surface temperature Higher 15°C 

TEX86
L Modified TEX86; TetraEther indeX with 86 carbon atoms for reconstructing sea 

surface temperature Lower than 15°C 
TF Transfer function 
UK

37  Unsaturation of Ketone with 37 carbon atoms (isomers with two, three and 
four double-bonds) 

UK’
37  Simplified UK

37; Unsaturation of Ketone with 37 carbon atoms (isomers with 
two and three double-bonds) 

VPDB  Vienna Pee Dee Belemnite 
WOA  World Ocean Atlas 
WOCE World Ocean Circulation Experiment 
WOD  World Ocean Data 
WSI  Winter sea-ice extent 
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Appendix 2: Units and chemical nomenclatures 
 
%  percent 
‰  per mil 
°N/S/W/E degree North/South/West/East 
°C  degree Celsius 
Ca  Calcium 
cm  centimeter (10-2 meter) 
DCM  Dichloromethane 
KOH  Potassium hydroxide 
kV  kilovolt (103 volt) 
kyr  kiloyear (103 year) 
m  meter 
Mg  Magnesium 
min  minute 
mL  milliliter (10-3 liter) 
mm  millimeter (10-3 meter) 
ms  millisecond (10-3 second) 
mTorr  millitorr 
A  microampere (10-6 ampere)
L  microliter (10-6 liter) 
m  micrometer (10-6 meter) 
N2  Nitrogen 
ng  nanogram (10-9 gram) 
PTFE  Polytetrafluoroethylene 
r2  coefficient of determination 
SiO  Silica 
Sr  Strontium 
Sv  Sverdrup 
v/v  volume / volume 
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By Ho, S.L., Naafs, B.D.A., and Lamy, F. 

 This review contains a comprehensive description of many aspects of the alkenone 
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the Pacific, given that this ocean is under-represented in the global core-top calibration 

of Kim et al. [2010]. The appraisal is based on the relative distribution of individual 
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