

Christian Katlein, Marcel Nicolaus, Chris Petrich

Anisotropic radiative transfer in sea ice

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service

c Exchange Service

Why Light?

- Energy fluxes:
 - Sea ice \rightarrow mass balance
 - Ocean \rightarrow warming
- Light availability:
 - →biota
 - →geochemical processes
- Radiative transfer in sea ice

Basic Research

Field work

Cruises with RV Polarstern in 2011 & 2012

More than 10 000 data points on 17 ice stations

Meaning of C-ratio

C-ratio is necessary to convert radiance into irradiance values:

- measurement with radiance sensors (AUV, old data)
- 2D or 3D modeling of light-regime

C-ratio illustrates the error made by the isotropic assumption:

$$C = 2 \rightarrow C = 3.14$$

 \rightarrow overestimation of irradiance by **50%!!**

6

HELMHOLTZ | GEMEINSCHAFT

Anisotropic scattering in the ice

Theory of radiative transfer random and homogenous distribution of scatterers

Sea ice

lamellar crystal structure and elongated brine channels

Investigating the radiance distribution

- Direct measurements by rolling the ROV
- Monte-Carlo ray-tracing model using anisotropic scattering coefficient
- Laboratory experiments

The radiance distribution

Parameterization: $C(\gamma)$

Fitted parameterization:

 \rightarrow correct conversion of radiance data into irradiance values possible, when anisotropy is known

Summary

- The light field in and under sea ice is anisotropic
- this anisotropy results from the sea ice microstructure (optical properties) and the boundary effect
- assuming isotropic conditions introduces large errors in analyses of measurements or modeling approaches

Thank you!

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

- Polarstern crews & captains IceArc2012 and TransArc 2011
- DAAD
- IGS
- AWI sea ice physics

Katlein, C., M. Nicolaus, and C. Petrich (2014) The anisotropic scattering coefficient of sea ice, JGR

