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Zusammenfassung

Das Amundsen See Embayment und das Marie Byrd Land inklusive des vorge-

lagerten Wrigley Golf sind Teil des westantarktischen Kontinentalrandes. Beide

Gebiete liegen zwischen dem Ross Meer und der Antarktischen Halbinsel. Die

gesamte Region entstand während des Abbrechens und der darauf folgenden Tren-

nung der Westantarktis von Neuseeland in der Kreidezeit. Das Gebiet spielt eine

zentrale Rolle bei der tektonischen Rekonstruktion des westantarktischen Konti-

nentalrandes sowie des gesamten Südpazifiks.

Fundierte Kenntnisse der tektono-magmatischen Entwicklung dieser Region und

der daraus resultierenden Architektur der Lithosphäre sind zudem unverzichtbare

Parameter bei der Berechnung und Interpretation detaillierter Modelle der Dy-

namik des westantarktischen Eisschildes. Es gilt als erwiesen, dass jener Teil des

westantarktischen Eisschildes, welcher in die Amundsen See mündet, der mit Ab-

stand am schnellsten abschmelzende Eisschild der gesamten Antarktis ist.

Das Amundsen See Embayment überdeckt eine Fläche von ca. 320000 km2

und ist von gedehnter kontinentaler Kruste unterlagert. Geophysikalische Un-

tersuchungen angrenzender Regionen wie des Pine Island Rifts, des westlich

der Amundsen See gelegenen Marie Byrd Landes oder des Ross Meeres zeigen

Krustenmächtigkeiten von 21-24 km bzw. 25-28 km. Die Krustenmächtigkeit des

Amundsen See Embayment ist mit 24-28 km entlang eines 2D Profiles nur sehr

ungenau bekannt. Das kontinentale Hinterland der Amundsen See befindet sich

mehr oder weniger auf Meeresniveau. Einflüsse des westantarktischen Riftsys-

tems sowohl auf die Entwicklung dieses Hinterlandes als auch des Amundsen See

Embayment selbst werden zwar vermutet, konnten aber noch nicht verbindlich

geklärt werden.
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Weiterhin sind sowohl die Krustenstruktur als auch die Entstehung des Wrigley

Golfs und des hinterlandigen Marie Byrd Landes ebenfalls nur sehr punktuell

bekannt. Eine singuläre Receiver Funktion, welche südwestlich des Marie Byrd

Land Domes gemessen wurde, liefert eine Krustenmächtigkeit von 21-24 km. Im

Gegensatz zum Hinterland des Amundsen See Embayment liegt das Hinterland

des Wrigley Golf auf einer Höhe von maximal 3 km über Meeresniveau. Diese

Erhöhung steht in Zusammenhang mit dem Marie Byrd Land Dome. Als Ursache

hierfür wird ein rezenter Mantel Plume vermutet, welcher grosse Teile des Marie

Byrd Landes unterlagert.

Kontrovers diskutiert wird in diesem Zusammenhang, ob dieser Plume bereits

zum Zeitpunkt des Abspaltens Neuseelands von diesem Teil der Antarktis in der

Kreidezeit existierte. Damit direkt verbunden ist die These, ob sich die Region

zum Zeitpunkt des Aufbruches bereits auf erhötem Niveau befunden hat oder

nicht. Ein Indiz dafür, dass dies nicht der Fall ist, liefert die Tatsache, dass sich

der konjugierende Kontinentalrand auf Meeresniveau befindet.

In den Jahren 2006 und 2010 wurden auf zwei Schiffsexpeditionen des Forschungs-

schiffes Polarstern in die Amundsen See und den Wrigley Golf geophysikalische

Daten erhoben um die Lithosphären- und Sedimentstruktur sowie die tektono-

magmatische Entwicklung beider Regionen zu erforschen.

In meiner Arbeit präsentiere ich basierend auf diesem Datensatz unter anderem

P-Wellen Geschwindigkeitsmodelle entlang zweier Profile, welche in der Amund-

sen See gemessen wurden. Darauf basierend präsentiere ich ein ca. 540 km langes

2D Dichtemodell entlang eines Profiles, welches von der Tiefsee auf den mittleren

Schelf der Amundsen See verläuft. Des weiteren zeige ich Ergebnisse einer Tiefen-

abschätzung durch Spektralanalyse von Gravimetrie und Magnetikdaten.
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Das 2D Dichtemodel wird durch ein 3D Dichte- und ein 3D Magnetikmodel der

Amundsen See erweitert. Beide Modelle werden durch Reflexionsseismik unter-

stützt. Abgerundet werden die Ergebnisse durch die Berechnung der lithosphär-

ischen Rigidität (Biegefestigkeit) der Amundsen See.

Meine Krustenmodelle der Amundsen See bestätigen und erweitern frühere Ar-

beiten, nach denen die Kruste von gedehnter kontinentaler Natur ist. Die Kruste

ist unter dem Kontinentalrand 10-14 km dick und bis zu 29 km unter dem Schelf.

Eine Schicht erhöhter Dichte und variabler Mächtigkeit bis max. 10 km unter-

lagert die gesamte untere Kruste der Amundsen See. Diese Schicht impliziert

überregionale magmatische Aktivitäten, welche ich mit einem beobachteten kon-

tinentalen Magmaflusses in Richtung der Marie Byrd Unterseevulkane korreliere.

Ein Vergleich der Resultate der 3D Schweremodellierung mit der 3D Magnetik-

modellierung zeigt zudem im östlichen Amundsen See Embayment eine höhere

Korrelation zwischen Intrusionen erhöhter Dichte und magnetischen Störkörpern

als im westlichen Embayment. Ich interpretiere diese Beobachtung als Indiz für

eine vermehrte Intrusion mafischen Gesteins im östlichen Embayment, welche ich

wiederum mit einem prominenten mafischen Intrusionskörper, dem Dorrel Rock

Intrusions Komplex, unter dem östlichen Marie Byrd Land korreliere.

In Kombination mit tektonischen Lineamenten, welche aus Potentialfeldanaly-

sen abgeleitet wurden, sowie Ergebnissen einer Berechnung der Biegefestigkeit

der Lithosphäre, postuliere ich ein dominierendes tektono-magmatisches Ereignis

im Oligozän, welches durch mehrstufige tektonische Prozesse überlagert wurde.

Diese tektonischen Prozesse wiederum interpretiere ich als Resultat einer Ausweitung

des West Antarktischen Riftsystemes in die Amundsen See.
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Des weiteren präsentiere ich vier verschiedene Schweremodelle entlang eines ca.

280 km langen Profiles von der Tiefsee auf den kontinentalen Schelf des Wrigley

Golf. Basierend darauf diskutiere ich die Existenz und den Einfluss eines möglichen

Mantelplumes auf die Lithosphäre des Marie Byrd Landes. Unter Zuhilfenahme

von Reflexionsseismik entlang des Schweremodels diskutiere ich den Zeitpunkt

der Anhebung des Marie Byrd Landes sowie die klimatischen Veränderungen

seid dem Aufbruch.

Mein finales Model zeigt Pratt kompensierte gedehnte kontinentale Kruste, welche

einen anomalen Mantel überdeckt. Die Kruste ist 10-12 km dick am Kontinental-

hang und 27 km unter dem kontinentalen Schelf. Die Mantelanomalie korreliere

ich mit einer bekannten Niedergeschwindigkeitszone unter der Region, welche

durch mein Model bestätigt wird.

Die hochkompakten Sedimente des inneren Schelfes des Wrigley Golf neigen sich

mit ca. 4◦. Dies ist durchschnittlich 2◦ steiler als an anderen antarktischen

Schelfen. Eine wechselende Reflektivität der Sedimentgesteine auf dem Konti-

nentalhang impliziert einen Wechsel des Klimas zwischen kälteren und wärmeren

Phasen während der Sedimentation. In Kombination mit einem oberen Mantel

niedriger Dichte und der Abwesenheit sogenannter Flutbasalte interpretiere ich

diese Ergebnisse als Beleg dafür, dass das zentrale Marie Byrd Land durch einen

anomalen Mantel nach der Trennung von Neuseeland angehoben wurde.
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Summary

The Amundsen Sea Embayment and the Marie Byrd Land including Wrigley

Gulf off Hobbs Coast are part of the West Antarctic continental margin. The

area is bounded in the East by the Antarctic Peninsula and by the Ross Sea

in the West. The whole region was created during Cretaceous breakup and the

corresponding separation between greater New Zealand and West Antarctica and

plays a major role in plate tectonic reconstructions of the entire South Pacific

and the West Antarctic continental margin.

Knowledge of the tectono-magmatic development and the resulting architecture

of the lithosphere of the continental margin of West Antarctica are also indis-

pensable for detailed modelling of the dynamics of the West Antarctic Ice Sheed.

It is evident that the part of the West Antarctic Ice Sheed which flows into the

Amundsen Sea, melts with the highest rates observed in entire Antarctica.

However, the Amundsen Sea Embayment covers an area of about 320000 km2

and is underlain by stretched continental curst. Geophysical investigations of

adjacent areas such as the Pine Island Rift, the Marie Byrd Land or the Ross

Sea reveal crustal thicknesses of about 21-24 or 25-28 km. Crustal thickness of

the Amundsen Sea Embayment itself is with 24-28 km only imprecisely known

along a single profile. An influence of the West Antarctic Rift System on the

development of the Amundsen Sea Embayment and its hinterland, which is more

or less around mean sea-level, has been discussed but remains speculative.
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Additionally, the crustal structure and the development of Wrigely Gulf and the

Marie Byrd Land are also less known. A single receiver function, determined

southwest of the Marie Byrd Land dome, reveals a crustal thickness of 21-24 km.

Contrary to the hinterland of the Amundsen Sea Embayment, Marie Byrd Land

is elevated by around 3 km above mean sea-level. This elevation is the so-called

Marie Byrd Land dome. Reason for this elevation is a recent mantle plume which

is suspected to underlie great parts of central Marie Byrd Land.

Controversially discussed in this context is the question whether this plume ex-

isted already at breakup of greater New Zealand from this part of Antarctica

in the Cretaceous. Closely related to this discussion is the issue of whether the

region was elevated in breakup times or not. An indication for a non-elevated

breakup is that the conjugated New Zealand continental margin is near sea-level.

In the years 2006 and 2010 during two expeditions with the research vessel Po-

larstern in the Amundsen Sea and Wrigley Gulf off Hobbs Coast, geophysical data

were collected to investigate the lithospheric and sedimentary structure including

the tectono-magmatic development of both regions.

In my dissertation, I present P-wave velocity models along two profiles in the

Amundsen Sea. Based on this, I present two 540 km long 2D density-depth mod-

els along a continental-rise to shelf profile in the Amundsen Sea. Furthermore, I

show results of a depth estimation based on a spectrum analysis of gravity and

magnetic data.
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I build on my 2D density-depth model to generate a 3D density-depth and a 3D

susceptibility-depths model of the Amundsen Sea. Both models are supported by

seismic reflection measurements. The results are complemented by a calculation

of the lithospheric rigidity of the Amundsen Sea.

My crustal models confirm and extend earlier studies of the Amundsen Sea which

show stretched crust of continental nature. The crust of the continental rise is

10-14 km thick at the continental rise and up to 29 km under the shelf. A high-

density layer of variable thickness up to max. 10 km underlies the whole crust

of the Amundsen Sea. This layer implies a supra-regional mamgmatic process

which I correlate with a postulated continental insulation flow towards the Marie

Byrd submarine volcanoes.

A comparison of the 3D density-depth modelling results with a 3D magnetic

model shows a stronger correlation between high-density intrusions and magnetic

source bodies in the eastern than in the western embayment. I interpret this as

an indication of more intrusions of mafic rocks in the eastern embayment which I

correlate with the presence of a prominent mafic intrusive body, the Dorrel Rock

intrusive complex, under the eastern Marie Byrd Land.

In combination with tectonic lineaments interpreted from potential field data

and an estimation of the lithospheric rigidity, I postulate a dominating tectono-

magmatic event which occured simultaneously with several minor tectonic pro-

cesss during Oligocene. I interpret these processes as results of the propagation

or relocation of the West Antarctic Rift System into the Amdunsen Sea.
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Furthermore, I present four distinct gravity models along a 280 km long conti-

nental rise to shelf profile in the Wrigley Gulf. Based on this models, I discuss

the existence and influence of a possible mantle plume to the lithosphere of the

Marie Byrd Land. Including a coincident 2D seismic reflection profile along the

gravity model, I discuss the uplift of Marie Byrd Land and the variations of cli-

mate conditions during and since break up.

My final model shows Pratt-type compensated stretched continental crust above

an anomalously warm/low-density upper mantle. Further, the model shows 10-12

km thick crust at the continental rise and 27 km under the continental shelf. The

mantle anomaly confirms the presence of a low-velocity area known from earlier

works.

Wrigley Gulf sediments dip with around 4◦ towards the shelf edge which is around

2◦ steeper than observed at other Antarctic shelf regions. Changing reflectivity

of the continental rise sediments implies changes of the climate conditions during

sedimentation. In combination with a low-density upper mantle and the absence

of flood basalts, I interpret the previous results as indication for an uplift of Marie

Byrd Land after break up from New Zealand.
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Introduction and Motivation

1 Introduction and Motivation

Geoscientists all around the world deal with one fundamental question: Which

factors control the climate system of our planet? In 2014, the Intergovern-

mental Panel on Climate Change (IPCC) published the 5th Assessment Report

representing the latest view of scientific knowledge relevant to climate changes

(http://www.ipcc.ch/). The essence of this report is: The anthropogenic induced

climate change can no longer seriously be denied.

However, beside the investigation of identified human induced influences on the

environment such as the accumulation of climate forcing gases like CO2, a legiti-

mate interest in the distribution of landmasses including its responsible tectonic

processes and the circulation of oceanic currents exists as their behavior is indi-

rectly and directly related to climate (e.g. Hay, 1996). For example, the horizon-

tal displacement of landmasses has a direct connection to climate through chang-

ing the latitudial distribution of continental blocks. Moreover, the closing and

opening of gateways between oceanic basins influence the flowpathes of global

oceanic circulation patterns and hence the transport of thermal energy from the

equator to the polar regions.

Of greater interest in this context is the reconstruction of tectonically and geo-

dynamically induced changes of the architecture of the polar regions including

their basins and gateways. This in turn is indispensable to understand the Ceno-

zoic and Mesozoic climate evolution of the Earth from greenhouse to a bipolar

icehouse. However, the contribution of oceanic currents to the mean poleward

heat transport is small (e.g. Trenberth and Caron, 2001; Czaja and Marshall,

2006; Fasullo and Trenberth, 2008) but its influence to the global heat balance is

important as they may trigger global climate transitions for example from green-

house to icehouse.
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Figure 1: Topographic map of Antarctica showing the continental setting derived from

BEDMAP2 (Fretwell et al., 2013). WA: West Antarctica, EA: East Antarctica, ASE:

Amundsen Sea Embayment, TM: Transantarctic Mountains, MBL: Marie Byrd Land,

WS: Weddel Sea, WL: Wilkens Land, EL: Ellsworth Land, DML: Dronning Maud Land,

AP: Antarctic Peninsula.
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The continent Antarctica (Fig. 1) was the center point from which all other con-

tinental plates like South America or Africa moved northwards after continental

break-up of the ancient Southern Hemisphere supercontinent Gondwana in Early

Jurassic (e.g. Storey, 1991). Hence, Antarctica plays a fundamental role in global

plate tectonic reconstructions from break-up of the supercontinent Gondwana to

Present. The opening of the Drake Passage and the corresponding deepening of

the Tasmanian Gateway in the Cenozoic led to the onset of the modern Antarctic

Circumpolar Current (ACC) (e.g. Stickley, 2004; Barker et al., 2007 a, b; Liver-

more et al., 2007). This in turn has been interpreted to be the cause for glaciation

of Antarctica as the ACC works as natural boundary or isolator between warm

equatorial water and coastal Antarctica.

But the ACC is not the only suggested reason for the build-up of the Antarc-

tic Ice Sheed. The paleo onshore topography of West Antarctica seems to be

also a prominent factore leading to the onset and the preservation of ice sheeds

as most of onshore West Antarctica was above sea-level in Oligocene and hence

seperates large ice sheeds from warm oceanic water (Wilson et al., 2013).

To accurately reconstruct West Antarcticas paleotopography, a detailed picture

of the present day architecture is indispensable. Latest tectonic reconstructions

of several regions of West Antarctica, for example of the Amundsen Sea Embay-

ment, suffer from the lack of knowledge of the lithosphere in this region (e.g.

Eagles et al., 2004a; Wobbe et al., 2012). Moreover, recent climate simulations

and paleo ice shield models often take only the present day topography of West

Antarctica into account.

20



Introduction and Motivation

Current knowledge of the lithospheric structure and the tectonic development in

West Antarctica is based mostly on geophysical studies in the Ross Sea (Cooper et

al., 1991; Trey et al., 1999; Luyendyk et al., 2001, Luyendyk et al., 2003), Marie

Byrd Land (LeMasurier and Landis, 1996; Winberry and Anandakrishnan, 2004;

LeMasurier, 2008) and the Pine Island Glacier region (Jordan et al., 2010) (Fig 2).

Figure 2: Topographic map of West Antarctica showing the regional setting derived

from BEDMAP2 (Fretwell et al., 2013). Tectonic blocks (Dalziel and Elliot, 1982) are

marked by yellow-dotted areas: WA: West Antarctica, EA: East Antarctica, EWM:

Ellsworth-Whitmore Mountains, TI: Thurston Island, AP: Antarctic Peninsula, MBL:

Marie Byrd Land, ASE: Amundsen Sea Embayment and PIB: Pine Island Bay. Rift

structures such as the West Antarctic Rift System, Ferrigno Rift (FR) and George IV

Sound (GIVS) are indicated with blue lines.
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The Amundsen Sea Embayment:

In this context, the Amundsen Sea Embayment of West Antarctica (Fig. 2) is a

key region as it provides critical boundary conditions for tectonic reconstructions

of the pacific margin of West Antarctica. Furthermore, a sufficient reconstruction

of the region is indispensable for a better understanding of the present as well

as the past dynamic behavior of the West Antarctic Ice Sheet (WAIS), which is

currently undergoing rapid ice loss in the Amundsen Sea sector (e.g. Rignot et

al., 2008; Pritchard et al., 2009). This melting, thinning and retreating of the ice

is one of the largest present-day changes documented in the Antarctic ice sheet

(e.g. Rignot et al., 2011).

The dynamic behavior of the WAIS was subject of several studies in the past

(e.g. Pollard and DeConto, 2009, Rignot et al., 2011). In this context it is inter-

esting that beside serious scientific studies, the change of the WAIS arouses, in

contrast to other scientific analysed areas, the interest of the public community.

For example, the The New Yorker in May 2014 featured an article entitled: The

West Antarctic Ice Sheet Melt: Defending the Drama. The Guardian in 2014 em-

phasised that: Western Antarctic ice sheet collapse has already begun, scientists

warn - loss of ice sheet is inevitable.

However, in the last decade an intensely debated hypotheses asks whether the

Amundsen Sea Embayment has been conditioned in its ice drainage role by the

West Antarctic Rift System (WARS) (Fig. 2), one of the largest rift systems

in the world and the dominating tectonic feature in West Antarctica (e.g. Gohl

et al., 2013). The WARS itself encompasses the Ross Sea, the area under the

Ross Ice Shelf and a part of West Antarctica (Fig. 2) but its influence to the

Amundsen Sea Embayment is unclear.

22



Introduction and Motivation

Marie Byrd Land:

Eastward of the Amundsen Sea Embayment the Marie Byrd Land dome rises up

(Fig. 2). This dome is an elevated portion of the WARS and covers an area of

1200 km x 500 km and was affected by volcanism in Oligocene times (Rocchi et al,

2006). This volcanism, as part of a Pacific Diffuse Alkaline Magmatic Province,

has been related to the presence of an anomalous underlying mantle (Finn et al.,

2005). The spatial distribution and temporal development of this mantle anomaly

and its influence on the geomorphological development of the West Antarctic con-

tinental margin and the entire South Pacific have been subject of vigorous debate

(e.g. LeMasurier and Landis, 1996; LeMasurier, 2008; Sutherland et al., 2010).

The Marie Byrd Land itself is with an area of 1610000 km2 by far the largest

single unclaimed territory on Earth.

Two opposite theories embrace the geomorphology of Marie Byrd Land and con-

jugate greater New Zealand during continental break-up in Cretaceous times

(Eagles et al., 2004; Wobbe et al., 2012). One hypothesis suggests that the con-

jugate margins were near sea-level during break-up, and then Marie Byrd Land

uplifted thereafter (LeMasurier and Landis, 1996; Rocchi et al., 2006). The other

hypothesis postulates that Marie Byrd Land was already elevated during conti-

nental break-up as a result of the presence of a mantle anomaly. (Luyendyk et

al., 2001; Sutherland et al., 2010).
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1.1 Research Questions

Several studies of the tectono-magmatic history of the Amundsen Sea Embay-

ment and Wrigley Gulf off Hobbs Coast (Fig 2) (e.g. LeMasurier and Landis,

1996; Luyendyk et al., 2001; Larter et al., 2004; Rocchi et al., 2006, Sutherland

et al., 2010 and Wobbe et al., 2012) have been presented in the last two decades.

All these studies unfortunately provide an incomplete view due to an insufficient

knowledge of the lithospheric and sedimentary architecture of the region between

the Ross Sea and the Antarctic Peninsula (Fig. 1). In the next two chapters, I

briefly summarize the most important results to set the major research questions

of my dissertation into a broader context.

1.1.1 Tectonic development of the West Antarctic Continental margin

and the Amundsen Sea Embayment

The tectonic blocks of West Antarctica (Dalziel and Elliot, 1982) are sepa-

rated from the tectonically different and stable East Antarctic craton by the

Transantarctic Mountains and the West Antarctic Rift System, which is one of

the largest continental rift systems in the world (Fig. 1). The structural com-

position of the West Antarctic Rift System is comparable to other major conti-

nental rift zones such as the East African Rift or the Basin and Range Province

(Behrendt et al., 1991; Tessensohn and Wörner, 1991; LeMasurier and Landis,

1996; LeMasurier, 2008).

The Amundsen Sea Embayment was formed as a consequence of the break-up

of the former Gondwana supercontinent blocks of West Antarctica and greater

New Zealand (e.g. Eagles et al., 2004a; Wobbe et al., 2012). The evolution

of the Pacific margin of West Antarctica since the Late Cretaceous break-up

included several distinct tectonic phases. South-westward propagation of rifting

and break-up started with the separation of Chatham Rise from the eastern Marie
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Byrd Land margin as early as 90 Ma and continued to around 83 Ma with the

break-up of Campbell Plateau from central Marie Byrd Land (e.g. Mayes et al.

1990; Bradshaw et al., 1991; Larter et al., 2001; Eagles et al., 2004a, Wobbe et

al., 2012).

From about 80-79 Ma, the Bellingshausen Plate began acting as an indepen-

dent tectonic plate, and continued to do so until about 61 Ma (e.g. Larter et al.,

2002; Eagles et al., 2004a,b). Its incorporation into the Antarctic Plate at this

time occurred as part of a major plate reorganisation in the South Pacific (Cande

et al., 2000). Kipf et al. (2014) postulated that at about 65-56 Ma the Marie

Byrd Seamounts were formed from magmatic material that was transported from

beneath the West Antarctic continental crust by a continental insulation flow.

The eastern shelf of the ASE has been suggested as the site of a Paleozoic-

Mesozoic crustal boundary between the Thurston Island crustal block in the

east and the MBL block in the west, whose apparent paleomagnetic polar wan-

der paths differ significantly (Dalziel and Elliot, 1982; Storey, 1991; Grunow et

al., 1991). Müller et al. (2007) considered that the WARS east of the Ross Sea

started acting in dextral strike-slip or extensional motion east of the ASE between

chrons 21 and 8 (48-26 Ma.). They postulated that this motion was connected

to a Pacific-Phoenix-East Antarctica triple junction at the southwestern Belling-

shausen Sea margin via the Bentley Subglacial Trench (Fretwell et al., 2013) and

the Byrd Subglacial Basin.

Moho depth estimates under the Byrd Subglacial Basin and the Pine Island

Rift reveals thin crust of only 19 km thickness (Jordan et al., 2010). The same

authores estimated the elastic thickness of the lithosphere is around 5 km in the

same area (Jordan et al., 2010). These results infer continental rifting in this part

of West Antarctica which they interpreted as a distributed Cretaceous rifting
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followed by Cenozoic narrow-mode rifting (Jordan et al., 2010). Latest analysis

of geophysical data from the Amundsen Sea Embayment shelf shows that sedi-

mentary sub-basins and tectonic lineaments cross the shelf, of which some can

be related to an eastern branch of the West Antarctic Rift System (Gohl et al.,

2013a,b). Wobbe et al., (2012) suggest the crust of the Embayment is highly

stretched crust of continental affinity.

Recent Apatite-He age trends derived from rock samples of the eastern Pine Is-

land Bay infer rift-related block faulting (Lindow et al., 2011). It seems likely that

the topographic depression of the present glacially formed Pine Island Trough on

the eastern Embayment shelf may be a product of pre-glacial tectonic activity

which can be correlated to tectonic processes related to the West Antarctic Rift

System. West of Pine Island Bay, thermochronological analysis show different

signatures of the Mt. Murphy block compared to its neighbouring areas. This

can be interpreted as an indication for a major fault system in this part of Marie

Byrd Land, which was active during or after the Oligocene (Lindow et al., 2011).

Although the lithoshere of the Amundsen Sea Embayment was identi-

fied as highly stretched continental crust, but what is the thickness of

the crust in Amundsen Sea Embayment? Was there magmatic under-

plating related to a proposed continental insulation flow or synbreak-up

magmatism? What were the timing and character of the rifting pro-

cesses leading to the present day architecture of the embayment? Are

there indications for WARS activity in the embayment?
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1.1.2 Lithospheric structure and sedimentary architecture in Wrigley

Gulf and uplift of Marie Byrd Land

Marie Byrd Land is part of the West Antarctic continental margin and bounded

by the West Antarctic Rift System in the south and an elevated, dome-like struc-

ture in the north which has been attributed to plume-related tectonic uplift

(LeMasurier and Landis, 1996; LeMasurier, 2008) (Fig. 2). This so-called Marie

Byrd Land dome and its volcanic products seem to be similar in petrologic

character, geologic history and size to the Kenyan and Ethiopian domes (LeMa-

surier, 2008).

In contrast to the mantle plume hypothesis, other studies of the Marie Byrd

Land propose that the elevated surface is the result of a warm Pacific mantle

rising beneath it following the end of subduction at the Marie Byrd Land conti-

nental margin. Further, its volcanoes are suggested to be part of a much larger

SW Pacific Diffuse Alkaline Magmatic Province (Finn et al., 2005). Other stud-

ies propose two hot mantle anomalies of which the larger one is centred on the

Ross Sea sector, resulting in up to 1 km of dynamic topography (Spasojevic et

al., 2010). Sutherland et al. (2010) illustrated this topography in the seafloor

off West Antarctica, which is elevated by 0.5 to 1.2 km above the level of its

conjugate area south of New Zealand and predictions using the lithospheric age-

subsidence relationship (e.g. Stein and Stein, 1992).

It is widely accepted, that beneath the continents mantle upwelling can lead

to tectonic uplift and widespread magmatism (Cox, 1989) such as observed in

the Afar region of the East African Rift System (e.g. Marty et al., 1993; Marty

et al., 1996) or the western cordillera in the United States (Parsons et al., 1994).

LeMasurier and Landis (1996) or Sieminski et al. (2003) suggested that a mantle

plume led to uplift of central Marie Byrd Land, beginning as early as 30 to 28
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Ma and coinciding with the inception of alkaline volcanism in the region (Hole

and LeMasurier, 1994).

However, two different hypotheses can explain the geomorphology of Marie Byrd

Land and greater New Zealand during their Cretaceous continental break-up.

One hypothesis suggests that the conjugate margins were at or near sea-level dur-

ing break-up, and than MBL uplifted thereafter (LeMasurier and Landis, 1996;

Rocchi et al., 2006). A contrary hypothesis postulates that the region was al-

ready elevated during continental break-up because of the presence of a mantle

anomaly which causes uplift (Luyendyk et al., 2001; Sutherland et al., 2010).

Both the timing and the source of the Marie Byrd Land uplift are

debated. First order questions in this context are: What is the crustal

architecture of Wrigley Gulf off Hobbs Coast? Can the sedimentary

architecture solve the question of timing of uplift of the central Marie

Byrd Land? Was Marie Byrd Land already elevated during break-up

in Cretaceous?
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2 Dataset, Methods and Processing

In the following chapter, I present the scientific methods which I used for data

acquisition, data processing and modelling. At first, I give a brief introduction

into each used geophysical method. Afterwards, I show data examples and dis-

cuss the credibilities and the difficulties of each method. The final results and

interpretation of the data are then shown in three scientific contributions pre-

sented in chapters 4, 5 and 6.

The geophysical data I evaluate in this study were acquired during the research

cruise legs of RV Polarstern ANT-XXIII/4 in 2006 to the Bellingshausen and

Amundsen seas (Gohl et al., 2007) and during ANT-XXVI/3 in 2010 into the

Amundsen Sea Embayment including the Pine Island Bay (Gohl et al., 2010) (Fig.

2). Additionally, sediment echosounding and multibeam bathymetry data were

recorded during both cruises continuously. At several locations in the Amundsen

Sea Embayment, the geothermal heat flux was measured during ANT-XXII/4

but will not be evaluated in this study. The cruise in 2006 was a cooperation

between the Alfred Wegener Insitute (AWI), the TU Dresden, the British Antarc-

tic Survey (BAS) and the Vernadsky Institute for Geochemistry (Moskow). The

partners of the AWI for the 2010 cruise were the University of Bremen, BAS and

the Institute of Geological and Nuclear Sciences (GNS Science) (New Zealand).

My dissertation focusses on the development of a regional crustal model of the

Amundsen Sea Embayment and Wrigley Gulf off Hobbs Coast (Fig. 2). Based on

these models, I draft a possible tectono-magmatic history of the Amundsen Sea

Embayment from the Cretaceous to Present. The used seismic profiles were set

up from the continental rise through the shelf edge and over the middle shelf of

the western Amundsen Sea Embayment which is of Cretaceous age and hyper ex-

tended (e.g. Wobbe et al., 2012). A third seismic refraction profile was used to de-
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termine sediment densities in the eastern embayment (Gohl et al., 2012). Further,

I process and interpret gravity data which comprise the satellite-derived Free-Air

anomaly from McAdoo and Laxon (1997) and ship-borne gravity data which were

collected continuously during both expeditions. The Free-Air anomaly was used

to calculate the Bouguer anomaly. Additionally, I use a magnetic anomaly grid

of the Amundsen Sea Embayment which was compiled by Gohl et al. (2013a)

from magnetic data collected during the two RV Polarstern expeditions in 2006

and 2010.

Based on this dataset, I calculate two distinct 2D continental rise-to-shelf gra-

vity models and a 3D gravity model of the Amundsen Sea Embayment between

120◦W to 104◦W and 70◦E to 74◦E. Additionally, I calculate a 3D forward mag-

netic model of the Amundsen Sea Embayment between -120◦E to -104◦E and

-70◦S to -74◦S. I interpret the lithospheric architecture, several intrusive bodies

and the responsible tectono-magmatic processes which forms the present mor-

phology of the embayment.

Finally, I interpret a 2D continental rise-to-shelf seismic reflection transect that

was collected in Wrigley Gulf off Hobbs Coast during the expedition in 2010.

Based on this dataset, I calculate a 2D forward gravity model and I discuss the

crustal architecture, the tectonic uplift of central Marie Byrd Land including

the consequences for the tectono-magmatic development of this part of the West

Antarctic continental margin.
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2.1 Seismic experiments

On both expeditions, an extensive dataset was acquired consisting of high-

resolution seismic reflection and wide-angle seismic refraction measurements. The

aim of the seismic reflection experiment was to map the sedimentary cover and

the top-of-basement morphology along the continental margin and the shelf re-

gion of the Amundsen Sea Embayment and the Wrigley Gulf off Hobbs Coast.

Additionally, seismic refraction experiments were conducted to portray the litho-

spheric architecture and the velocity-depth distribution of the sedimentary layer

and the underlying crust.

Figure 3: Airgun array used during expedition ANT-XXIII/4 in 2006.

The seismic source used during the expedition in 2006 consisted of 8 G-Guns

(68.17 liters in total) and a Bolt air gun (32 liters) mounted astern on a metal

frame (Fig. 3) (Gohl et al., 2007). The shot interval for the seismic refraction

experiments was 60 s corresponding to an average shot-spacing of 150 m. For

all seismic-reflection measurements, a shot interval of 10 s was used. Seismic

measurements carried out during the expedition in 2010 were conducted by using

3 GI-guns, fired every 10 s (Gohl et al., 2010). Along all seismic profiles, the

water depth was measured continuously by using a Hydrosweep DS-III system

from ATLAS Hydrographic which works with a sampling rate of 1 s.
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2.1.1 Seismic refraction experiment

Figure 4 illustrates an Ocean Bottom Hydrophone (OBH) which was used dur-

ing the expedition in 2006. Technical details of the OBH are listed in the cruise

report of the expedidion in 2006 (Gohl et al., 2007).

Figure 4: OBH used during ANT-XXIII/4 with components labelled

Figure 5 illustrates an Ocean Bottom Seismometer (OBS) which was used during

the expedition in 2010. Technical details of the OBS are listed in the cruise report

of the expedition in 2010 (Gohl et al., 2010).
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Figure 5: OBS used during ANT-XXVI/3 with components labelled (modified after

http://www.awi.de/typo3temp/pics/bbfac7f294.jpg)

In the following, I explain the standard procedure of a marine seismic refraction

experiment from deployment of the OBS/OBH to data extraction.

• The OBH/OBS are deployed at equal intervals along a defined profile line.

The OBH/OBS sinks down to the sea-bottom due to anchors which are

mounted under the OBH/OBS as additional weight

• Air-guns deployed behind the ship emitted seismic pulses along the defined

profiles. Hydrophones mounted on the OBH/OBS recorded seismic signals

and the data are recorded on a hard disk inside of a pressure cylinder.

• After the ship crosses the last OBH/OBS and reaches the end of the profile,

the ship returns to the first OBH/OBS location.

• To recover each OBH/OBS, an accoustic signal is transmitted into the

water to open the releaser unit, which holds the additional weight to the

OBH/OBS.
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• After disconnection from the anchor, the OBH/OBS floats up to the water-

surface and can be collected.

• After data extraction from the hard disk, the data are transfered to a PC

and saved.

Figure 6: Principle of a seismic refraction experiment

The data were derived from signals recorded continuously by a hydrophone (OBH)

or a three-component seismometer (OBS) and saved to an internal hard disk.

After data extraction, I cut the data into 60 s long traces corresponding to the

shot intervall. Afterwards, I relocalize the position of each OBS/OBH at the

sea-bottom by using direct waves. I pick the direct wave followed by a shift of

the shortest travel-time signal to zero-offset (Fig. 7). After relocalization, the

OBH/OBS data are ready to further processing, travel-time picking with the

software ZP2 and modelling.
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Figure 7: Seismic section of OBH 102. Identified phases are assigned. The data are

bandpass-filtered.

2.1.2 Seismic refraction data and P-wave modelling

In general, seismic refraction measurements are conducted for observing sub-

surface layers and crustal structures by recording the travel times of acoustic

waves propagating through the Earths interior. Because of its long offset configu-

ration (up to 200 km), seismic refraction measurements allow the recording of

wide-angle reflections and refracted waves of deep structures in the subsurface.

From a geophysical point of view, a subsurface layer boundary is an interface

of an accoustic impedance contrast. The accoustic impedance of a media is de-

fined by the product of its density and seismic velocity. In this context, seismic

refraction observations reveal velocity and density information about the litho-

sphere and sediments. The velocity is then the slope of an observed phase in

time versus offset. To derive the crustal thickness and the seismic velocity from

measured data, I use a two dimensional (2D) ray-tracing algorithm, which can be

used both for inversion and forward modelling of refracted and reflected seismic
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Figure 8: Top panel: part of seismic section from OBH 202 and 108 (lines AWI-

20060100 and AWI-20060200, both plotted with a reduction velocity of 8 km/s and a

bandpass filter of 4-20 Hz. Middle panel: Same section with modelled phases (black

lines) and picked signals (red bars with bar length representing the pick uncertainty).

Bottom panel: Ray tracing results with ray coverage in the velocity-depth model

phases (Zelt and Smith, 1992). Figure 9 shows a flow chart from data acquisition

to modelling and interpretation after a seismic refraction experiment.
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Figure 9: Flowchart of a seismic refraction experiment from data collection to inter-

pretation.
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2.1.3 Seismic reflection experiment

Seismic reflection measurements are a standard technique for geophysical ob-

servations of subsurface structures in sediments, at the top-of-basement and in

the upper crust. Compared to seismic refraction measurements, the offset con-

figuration of a seismic reflection observation is shorter. Hence, the observation

depth is shallower but due to the number of active channels of higher resolution.

Figure 10: Principle of a seismic reflection experiment
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During a seismic reflection survey, a long cable named a streamer is towed be-

hind the vessel (Fig. 10). The data were recorded continuously on a harddisk

and demultiplexed onboard afterwards. Parallel to data recording, a visual real

time control is set up to check if all registration channels are active. At the end

of a seismic survey, all data must be transfered to a PC and merged with the

ships navigation information. This step is necessary to be able to set up the right

geometry of the seismic survey. The streamer used during the expedition in 2006

was an analogue streamer with a length of 600 m and 96 active channels. The

streamer used in 2010 was a 3 km long digital streamer with 240 channels online.

Figure 11: Example of seismic reflection data. The profile is a compilation of a seismic

transect from the continental rise to the inner shelf of Wrigley Gulf off Hobbs Coast.

Gaps in the data are airgun shutdowns due to sea-mammals. CDP distance: 25m.

Figure 11 shows the three seismic reflection profiles AWI-20100111-113 collected

in Wrigley Gulf off Hobbs Coast in 2010. The profiles were combined to make a

continental rise to shelf transect. A detailed description of the processing steps

is documented in chapter 7 and in the flow-chart shown in figure 12.
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Figure 12: Flowchart of a seismic reflection experiment from data collection to inter-

pretation.
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2.2 Potential field data

Gravity and magnetic data are used to map the effects of density variations

and magnetic susceptibility contrasts in the subsurface. Hence, potential field

data are usefull to highlight rift structures, magmatic provinces and other pro-

ducts of tectono-magmatic processes. In combination with seismic measurements,

which can be used as constraints for potential field modelling, the data can be

interpreted in a regional geological context.

2.2.1 Gravity data

The recorded signal of the gravity effect of a mass anomaly in the subsurface

is superposed by a suite of effects based on the registration method and the earth

itself. Hence, a suite of corrections must be applied to the measured signal before

it can be used further such as in spectral analysis, modelling and interpretation.

In the next chapter, I briefly present these necessary correction steps.

Latitude correction:

The first correction which must be applied to the data is the latitude correction.

The Earth is a rotational ellipsoid and therefore of non-spherical shape due to

different angular velocities from the poles to the equator. The centripedal force

causing different distances from the surface to the centre of the earth and hence,

the gravity force to a body on the surface varies with the latitude on the surface

of the Earth. To correct this effect from the data, I calculate the latitude effect

by using the International Gravity Formula (IGF):

g = 978049(1 + 0.0052884sin2Φ− 0.0000059sin22Φ) (2.1)

In this formula, Φ is the latitude. After that, I subtract the result from the ship-

borne measurements.
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Eötvös correction:

The next effect which influences the measurements is the Eötvös effect. This

effect is the result of a moving platfrom (e.g. ship or aircraft) on a rotating earth

and the relative movement of this platform to it. This effect is determined by

the cruise speed vs in knots [1 knot is around 1.85 km/h], the latitude Φ and the

heading H by the formular:

gE = 7.503vscosΦsinH + 0.004v2 (2.2)

Free-Air anomaly (FAA) and Bouguer anomaly (BA):

The next effect which must be taken into account is the effect of the topographic

elevation of the surface of the earth. This correction is necessary because it com-

pensates the topographic effect of the surface and projects the data onto mean

sea-level. This so-called Free-Air Correction results in the FAA and is generally

used in marine geophysics, where the gravity meter is near mean sea-level and all

topographic highs (bathymetry) are below sea-level.

For regions above mean sea-level the BA is nothing else but the application

of a Bouguer correction (BC) to the FAA, thus the effect of an additional mass

which was substracted from the FAA:

∆gB = ∆gFAA (2.3)

with ∆gB = BA, ∆gFAA = Free-Air Anomaly and BC = Bouguer correction,

where:

BC = 0.0419(ρ× h) (2.4)

In this formular ρ is the average density of the additional plate and h the thickness.

In marine regimes, gravity is in general measured at mean sea-level. In the strict

sense the BA and the FAA are equivalent, because the measurement hight of

the gravity is already at mean sea-level.
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In the case that h = 0 (mean sea-level), the equation is:

∆gBA = ∆gFAA (2.5)

However, the water density is significantly less than the underlying crust. Hence,

it is possible to calculate the BA very easily. If water density and depth are

known, the oceanic basin can be considered as a missing mass. To apply a BC,

this mass deficit can be approximated by an infinite plate with the thickness of

the water column (water depth). The plates density is therefore the difference

density between the water density and the mean crustal density.

∆BCO = 0.0419− (ρ× h) = 0.0419− ((ρw − ρh)× hw) (2.6)

Here BCO is the Bouguer correction for marine regimes, ρw the water density, ρc

the crustal density and hw the observed water depth. If we set ρw = 1030 kg/m3

and ρc = 2670 kg/m3, the BC for marine regimes can be simplified to:

∆BCO = 0.0419− (−1640kg/m3)× hw = −(0.0687(mGal)/m)× hw (2.7)

As mentioned above, BC must be substracted from the FAA. The formular for

BA in marine regimes simplifies to:

∆gB = ∆gFA − BC0 (2.8)

Finally, it is necessary to consider that BC0 is a negative value. The satellite-

derived Free-Air Anomaly (McAdoo and Laxon, 1997) and the derived Bouguer

Anomaly are imaged in figure 13.
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Figure 13: A) Satellite derived Free-Air anomaly in mGal (McAdoo and Laxon, 1997).

B) Derived Bouguer anomaly in mGal. Abbreviations are: BP: Bear Peninsula, MBL:

Marie Byrd Land, EL: Ellsworth Land, TI: Thurston Island, KP: King Peninsula.
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2.2.2 Magnetic data

The magnetic data which I use in this study were also aquired during the two

RV Polarstern expeditions ANT-XXIII/4 in 2006 and ANT-XXVI/3 in 2010.

The data were collected with a Caesium-vapour magnetometer sensor towed by

a 30 m long cable under a BO-105 Helicopter. Additionally, ship-borne magnetic

data were continuously recorded with two 3-component fluxgate magnetometer

sensors which are mounted on the crows nest. The profile grid of the magnetic

measurements are shown in figure 14. A detailed description of the experiment,

the processing steps and gridding is documented in the publication of Gohl et

al. (2013a) and the cruise reports of the expeditions ANT-XXIII/4 in 2006 and

ANT-XXVI/3 in 2010.
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Figure 14: Map with combined helicopter-borne (red lines) and ship-borne (blue lines)

magnetic tracks of both RV Polarstern expeditions in 2006 and 2010, which are included

in the preparation of the magnetic anomaly grids. The irregular line geometry is due to

opportunistic surveying. The green thick line shows the shelf break of the Amundsen

Sea Embayment. MBL: Marie Byrd Land, BP: Bear Peninsula, KP: King Peninsula,

EL: Ellsworth Land, TI: Thurston Island. Modified after Gohl et al. (2013a).

The magnetic anomaly grid of the Amundsen Sea Embayment (Gohl et al., 2013a)

with a grid cell size of 5 km is shown in figure 15 and images clearly the dominance

of long-wavelength anomalies over the middle and outer shelf. In contrast, the

inner shelf of the ASE is dominated by short-wavelength anomalies.
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Figure 15: Map with major magnetic anomalies indicating magmatic and tectonic

features (Gohl et al., 2013a). Abbreviations are: TMI: Total magnetic intensity, BP:

Bear Peninsula, MBL: Marie Byrd Land, EL: Ellsworth Land, TI: Thurston Island, KP:

King Peninsula, PIB: Pine Island Bay.

2.3 Spectral analysis

Spectral analysis of potential field data enables to estimate mass anomaly

depths of layer boundaries in the subsurface of the earth. The method is based

on calculation of the energy spectrum of a potential field to estimate the mean

depth of layer boundaries of significant density contrast. The method was ini-

tially developed for magnetic data (Spector and Grant, 1970) and was updated

for gravimetric data (Dorman and Lewis, 1970; Karner and Watts, 1983). In the

following, I present the derivation of Karner and Watts (1983).

The method requires nearly horizontal bounding layers with significant density

contrast ∆ρ in a mean depth d and can be desribed by a laterally varying relief
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t(x) (Fig.16).

Figure 16: Schematic vertical layer of the crust

.

The boundary between the two layers has a subsurface topography t(x) in a

mean depth d. The density contrast at this boundary is ∆ρ (Fig. 16). The

calculation of the gravimetric effect γ(x) of the boundary then results from a

Fourier Transformation of γ(x) to Γ(k) and T (k). The gravity effect of the

density contrast at the surface (d = 0) is:

Γ(k) = 2πG∆ρe−kdT (k) (2.9)

In this equation k defines the wavenumber and G the gravity constant. The

equation represents the first order derivation of the Taylor series in the spectrum

space and bases on the calculation of the gravity effect of undulating layers in the

subsurface after Parker (1972). The multiplication with e−kd results in an upward

field continuation of the gravity effect of a mass anomaly in the subsurface to the

surface. The energy spectrum Γ(k) is then the square of the amplitude spectrum

of equation 2.9 (e.g. Buttkus, 2000):

|Γ(k)|2 = 4πG2
∣

∣∆ρ2e−2kdT (k)
∣

∣

2
(2.10)

This equation decribes the energy spectrum of the gravity effect of a single layer

in the subsurface. Karner and Watts (1983) used a statistical approach to derive
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the energy spectrum from equation (2.10). They considered that the boundary in

the subsurface as an amount of several mass anomaly bodies which are distributed

over a depth range d±∆d. The Energy spectrum of these bodies is then defined as

mean energy spectrum 〈|Γ(k)2|〉 which requires that ∆ρ, d and T (k) are linearly

independent in the vector space.

|Γ(k)|2 = 4πG2∆ρ2e−2kd|T (k)|2 (2.11)

The exponential term in equation 2.11 can be written as:

e−2kd =
sinh(2k∆d)

k
e−2kd (2.12)

In this equation d represents the mean depth of the mass anomaly. Applying

the logarithm on both sides of equation 2.12 reveals a quasi-linear relationship

between the natural logarithm of the mean energy spectrum and the wavenumber.

Figure 17: Influence of the different terms in equation 2.12

For my model calculation, I assume a mean mass anomaly depth of 25 km and a

subsurface topography undulation of 12.5 km. The second part ln
[

sinh(2k)
k

e−2kd
]

is constant (Fig. 17)
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2.4 Potential field modelling

Potential field modelling has been a standard technique in geophysics for se-

veral decades. In general, forward modelling refers to the process of calculat-

ing a model response given from a physical model. The aim of potential field

modelling is to set profile-based or area-based geophysical data into a regional

geological context. The goal of potential-field data is to provide contraints on

the distribution of geological rock properties in the subsurface. Magnetic data for

example are typically useable in regions where metamorphic and igneous rocks

are common and they have proven vital for understanding the structure and age

of the subsurface. The interpretation of potential field data, regardless if gravity

or magnetic, is highly ambiguous. L. L. Nettleton emphased in 1942:

Unless certain controls other than the gravity and magnetic data are available, the

inherent ambiguties of the physically possible distribution of material which can

produce the observed effects make accurate calculations meaningless even though

the geophysical data may be of any desired precision.

Therefore it is indispensable to include additional informations to constrain the

model. For a better understanding which contraints can be placed, I briefly con-

sider the geological controls on these contraints.

In gravity and magnetic modelling, three geophysical rock parameters control the

model: 1st.: The density, 2nd.: The magnetic susceptibilty and 3rd.: The rema-

nent magnetisation. These parameters are controlled by the original lithology, the

metamorphic and metasomatic mineral assemblages and the structural evolution.

After Clark (1997), the lithology controls the density and magnetic properties via

the mineralogy. In other words, individual lithologies may comprise a remanent

or anisotropic magnetisation that can also be affected by metasomatism or de-
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formation. Metasomatism and metamorphism alter the mineralogy regionally or

locally. Finally, tectonic and tectono-magmatic processes change the position and

orientation of rocks and hence, influence the strucutral evolution of the area. The

combination of all three factors lead to the predefined geophysical rock properties.

For potential field modelling, I use the software IGMAS (Götze et al., 1988).

To calculate the gravity or magnetic effect of a subsurface body such as an in-

trusion, the IGMAS algorithm uses triangulated polyhedra built from a set of

polygons which were orientated in parallel vertical cross sections. The triangula-

tion between these vertical planes (Fig. 18 and Fig. 22) is done automatically

during the modelling procedure.
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2.4.1 Gravity modelling

To set-up a starting model, I use all results described above and in chapters 4, 5

and 6 to constraint the model geometries. Afterwards, I define the density of each

layer and mass anomaly body in the starting model. Furthermore, as measured

P-wave velocities in the crust and the sediments are available, a relationship

between the velocity and the density is needed. However, many velocity-density

relationships have been presented by different authors for sedimentary, igneous,

magmatic and metamorphic rocks (e.g. Nafe and Drake, 1963; Barton et al., 1986;

Christensen and Mooney, 1995). I use the velocity-depth distribution of Barton

et al. (1986) to calculate sediment and crustal densities.

Figure 18: Example layer of a 2D gravity model. Densities are given in 10
3kg/m3.
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2.4.2 Magnetic modelling

For magnetic modelling (Fig. 22), knowledge of the magnetic inclination, the

magnetic declination and the background reference field is necessary (Götze et al.,

1988). The used background reference field of 52000 nT (Fig. 19), the magnetic

declination of 30◦ (Fig. 20) and the inclination of -65◦ (Fig. 21) were derived from

Maus et al. (2010). Further, I use depth estimates based on spectral analysis of

the magnetic anomaly data to constraint an initial 3D magnetic anomaly model

(see chapter 5). Finally, I use results of an Euler deconvolution (Gohl et al.,

2013a) to locate the tops and edges of magnetic bodies in the subsurface.

Figure 19: Total magnetic background field in 2010 after Maus et al. (2010). Values

are given in 10
3 nT. Red frame marks the area of interest.
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Figure 20: Magnetic declination in 2010 after Maus et al. (2010). Values are given in

degree [◦]. Red frame marks the area of interest.

Figure 21: Magnetic inclination in 2010 after Maus et al. (2010). Values are given in

degree [◦]. Red frame marks the area of interest.
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Figure 22: Example layer of a 2D magnetic model. Susceptibility values are given in

SI.
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2.5 Elastic thickness estimation

An additional parameter which characterizes the nature and evolution of the

lithosphere is the effective elastic thickness (Te). The parameter Te can be used to

give an idea of the so-called lithospheric rigidity of the lithosphere. The flexural

rigidity of the crust is an important parameter in the reconstruction of the for-

mation history of basins, as it controls the subsidence in response to topographic

load. I calculate Te via the flexural response of the lithosphere to sedimentary

or topographic loading under the assumption that it behaves like an elastic plate

with the thickness Te in (Watts, 2001).

However, as temperature is considered to be a controlling parameter on litho-

spheric strength, the flexural rigidity of the lithosphere might be expected to

increase with time since rifting of part of the lithosphere and so can be used to

determine the rifting process. For example, young rifts such as the East African or

Ethiopian rifts (e.g. Pérez-Gussinyé et al., 2009) are characterized by a marginal

elastic thickness (0-10 km).

I used the software LITHOFLEX to obtain an estimate of flexural rigidity in the

ASE (Braitenberg et al., 2007). A detailed describtion of the software is given in

the publication of Braitenberg et al. (2007) and in chapter 5. The software uses

the convolution approach with analytical flexure response functions (Wienecke

et al., 2007) or a numerical approach (Braitenberg et al., 2002). I invert the

flexural rigidity of the lithosphere of the ASE in order to match the known loads

derived from seismic reflection measurements with the crustal thickness model

derived from forward gravity modelling. By this procedure, it is possible to di-

vide the lithosphere into different tectonic areas such as rift-related structures or

rift systems.
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3 Contributions to Scientific Journals

The crustal structure and tectonic development of the continental mar-

gin of the Amundsen Sea Embayment, West Antarctica: Implications

from geophysical data

Thomas Kalberg and Karsten Gohl

Geophysical Journal International (2014), 198(1), p.327-341

doi: 10.1093/gji/ggu118

In this paper, we present a P-wave velocity-depth model and two distinct 2D

density-depth models along with multichannel seismic reflection data collected

in the Amundsen Sea Embayment. The models show that the crust of the em-

bayment is stretched and of continental affinity of about 10-14 km thickness at

the continental rise which thickens up to as much as 28 km beneath the inner

shelf. We interpret the homogenous crustal architecture of the continental rise,

including horst and graben structures as an indication for that wide-mode rifting

affected the entire region. A high-velocity layer of variable thickness beneath the

margin conicides with a proposed magma flow along the base of the crust from be-

neath eastern Marie Byrd Land to the Marie Byrd Seamounts. Seaward-dipping

reflectors indicate some degree of volcanism in the area after break-up. Gravity

anomaly data indicate several phases of fully developed and failed rift systems,

including a possible branch of the West Antarctic Rift System.

I calculated the P-wave velocity and the 2D gravity models and I wrote the

manuscript. Karsten Gohl supervised the work and was the Chief Scientist dur-

ing the expeditions ANT-XXIII/4 in 2006 to the Bellingshausen and Amundsen

Sea and ANT-XXVI/3 in 2010 again into the Amundsen Sea Embayment.
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Rift processes and crustal structure of the Amundsen Sea Embayment,

West Antarctica, from 3D potential field modelling

Thomas Kalberg, Karsten Gohl, Graeme Eagles and Cornelia Spiegel

Submitted to Marine Geophysical Research (2015)

We present a 3D gravity and a 3D magnetic model of the Amundsen Sea Em-

bayment based on satellite derived free-air gravity anomaly and a compiled mag-

netic grid. Further, we present results of an effective elastic thickness estimation

of the crust in the Amundsen Sea Embayment. Together with crustal thickness

estimated based on power spectral analysis of the gravity and magnetic data, we

used a set of seismic reflection profiles in the embayment as constraints for the

potential field modelling. The results of modelling were used to derive maps of

the sediment thickness, the basement structure and the Moho. The models reveal

several tectonic lineaments and shows rift basins within the middle and inner shelf

of the Amundsen Sea Embayment. Estimates of the elastic lithospheric thickness

provide further constraints on the geodynamic and tectono-magmatic evolution

of the Amundsen Sea Embayment.

I calculated the 3D gravity and the 3D magnetic model. Further, I calculated the

spectral analysis and the flexural rigidity and I wrote the manuscript. Karsten

Gohl, Graeme Eagles and Cornelia Spiegel supervised the work. Karsten Gohl

was the Chief Scientist during the exepeditions ANT-XXIII/4 in 2006 to the

Bellingshausen and Amundsen Sea and ANT-XXVI/3 in 2010 again into the

Amundsen Sea Embayment.
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Crustal structure and sedimentary architecture in Wrigley Gulf / Marie

Byrd Land, West Antarctica: Implications for the tectonic evolution

and environmental changes from geophysical observations

Thomas Kalberg and Karsten Gohl

To be submitted to Marine Geophysical Research (2015)

A seismic reflection transect from the continental rise onto the shelf in Wrigley

Gulf off Hobbs Coast was used to image the sedimentary architecture and the

basement morphology offshore western Marie Byrd Land. Together with seismic

data from the neighbouring western Amundsen Sea Embayment, the eastern Ross

Sea and onshore receiver function results south of central Marie Byrd Land, we

calculated 4 distinct 2D gravity models based on ship-borne free-air gravity data

along the seismic transect. The data infer Pratt-type compensated stretched con-

tinental or transitional crust which is underlain by a low-density upper mantle.

A near sea- level break-up between New Zealand and West Antarctica and uplift

of Marie Byrd Land thereafter is probable. Furthermore, the seismic reflection

data from the continental rise and the inner shelf image changes in the reflection

character which in turn represent changing environmental conditions during de-

position and episodes of alternating major ice sheet advance and retreat that can

be correlated to environmental changes.

I processed and interpreted the seismic reflection profile, the 2D gravity mod-

els and I wrote the manuscript. Karsten Gohl supervised the work and was the

Chief Scientist during the exepedition ANT-XXVI/3 in 2010 into the Amundsen

Sea Embayment.
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4 The crustal structure and tectonic development

of the continental margin of the Amundsen Sea

Embayment

Thomas Kalberg and Karsten Gohl

Dept. of Geosciences

Alfred Wegener Institute Helmholtz-Centre for Polar and Marine Research

Am Alten Hafen 26

27580 Bremerhaven

submitted to Geophysical Journal Internationalat 19th June 2013

accepted at 23th March 2014

published at 20th May 2014
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4.1 Summary

The Amundsen Sea Embayment of West Antarctica represents a key compo-

nent in the tectonic history of Antarctic-New Zealand continental break-up. The

region played a major role in the plate-kinematic development of the southern

Pacific from the inferred collision of the Hikurangi Plateau with the Gondwana

subduction margin at approximately 110-100 Ma to the evolution of the West

Antarctic Rift System. However, little is known about the crustal architecture

and the tectonic processes creating the embayment. During two RV Polarstern

expeditions in 2006 and 2010 a large geophysical dataset was collected consisting

of seismic- refraction and reflection data, ship-borne gravity and helicopter-borne

magnetic measurements.

Two P-wave velocity-depth models based on forward travel-time modelling of

nine ocean bottom hydrophone recordings provide an insight into the lithospheric

structure beneath the Amundsen Sea Embayment. seismic reflection data image

the sedimentary architecture and the top-of-basement. The seismic data provide

constraints for 2D gravity modelling, which supports and complements P-wave

modelling. Our final model shows 10 - 14 km thick stretched continental crust

at the continental rise that thickens to as much as 28 km beneath the inner shelf.

The homogenous crustal architecture of the continental rise, including horst and

graben structures are interpreted as indicating that wide-mode rifting affected

the entire region.

We observe a high-velocity layer of variable thickness beneath the margin and re-

lated it, contrary to other "normal volcanic type margins", to a proposed magma

flow along the base of the crust from beneath eastern Marie Byrd Land - West

Antarctica to the Marie Byrd Seamount province. Furthermore, we discuss the

possibility of upper mantle serpentinization by seawater penetration at the Marie
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Byrd Seamount province. Hints of seaward-dipping reflectors indicate some de-

gree of volcanism in the area after break-up. A set of gravity anomaly data indi-

cate several phases of fully developed and failed rift systems, including a possible

branch of the West Antarctic Rift System in the Amundsen Sea Embayment.

4.2 Introduction

Studying the lithospheric architecture of the Amundsen Sea Embayment (ASE)

of West Antarctica (Fig. 23) provides constraints on tectono-magmatic recon-

structions of the West Antarctic continental margin and the embayment itself

from Paleozoic to Cenozoic times. Improved knowledge of the structure and de-

velopment of the lithosphere is the key to unravelling the evolution of the West

Antarctic continental margin and the corresponding landscapes. The area experi-

enced a number of key events during the tectonic history of the southern Pacific,

including the inferred collision of the Hikurangi Plateau with the Gondwana at

approximately 110 - 100 Ma subduction margin (Davy and Wood, 1994; Mor-

timer et al., 2006) to the evolution of the West Antarctic Rift System.

A number of plate-kinematic reconstructions are centred on the region, most

recently by Eagles et al. (2004a) and Wobbe et al. (2012), but suffer from a

lack of information about the deep crustal structure of the West Antarctic con-

tinental margin. The ASE also experienced a number of magmatic events from

mid-Mesozoic to Late Cenozoic times (Wobbe et al., 2012). Analysis and modell-

ing of magnetic data provides a first insight into the basement structure of the

ASE shelf and implies that the present day basement morphology of the ASE

shelf may control the dynamic behaviour of grounded parts of the West Antarc-

tic Ice Sheet (WAIS) (Gohl 2012, Gohl et al., 2013a). An improved understanding

of the tectono-magmatic processes and of the formation of basement ridges and

sedimentary basins provides further constraints on paleo and modern ice sheet
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Figure 23: Bathymetric map of the Amundsen Sea Embayment after Nitsche et al.

(2013) showing the locations of two OBH profiles and corresponding multi-channel

seismic reflection profiles (thick black lines). The red dashed line marks the interpolated

profile AWI-100/200, connecting the profiles AWI-20060100 and AWI-20060200. Thin

dotted black lines mark other seismic reflection profiles. The thin yellow frame shows

the window which was used for the spectral analysis. TI is Thurston Island, PIB is Pine

Island Bay, KP is King Peninsula, CP is Canisteo Peninsula.

dynamics as demonstrated in Bingham et al. (2012) or Smith et al. (2013).
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This study presents a combination of geophysical data from the ASE, which were

collected to study the lithospheric architecture and tectono-magmatic evolution

of the West Antarctic continental margin. At first, we present and highlight the

results of each individual dataset. A continental rise-to-shelf seismic reflection

transect provides constraints on the top- of-basement morphology and sedimen-

tary architecture of the margin. Two deep crustal seismic refraction and wide-

angle reflection profiles are used to derive velocity-depth profiles. Supported by

a spectral analysis of gravity data, two different continuous 2D forward gravity

models place constraints on the crustal architecture and formation of the conti-

nental margin and shelf of the ASE.

Following this, we propose a new integrated model of the tectonic evolution of

the margin of the ASE. With this model we attempt to reconstruct the tectono-

magmatic development of this margin from its break-up from New-Zealand as

early as 90 Ma (Wobbe et al., 2012) to the Present which further supports bound-

ary conditions for ice-sheet modelling attempts in this part of West Antarctica.

4.3 Tectonic and geological background

The tectonic development of the Pacific margin of West Antarctica since Late

Cretaceous times consisted of several distinct phases (Fig. 24). The southwest-

ward propagation of rifting and break-up began with the separation of Chatham

Rise from the Amundsen Sea margin of eastern Marie Byrd Land as early as 90

Ma and continued around 83 Ma with the break-up of Campbell Plateau from

central Marie Byrd Land (e.g. Mayes et al., 1990; Bradshaw et al., 1991; Larter

et al., 2001; Eagles et al., 2004a, Wobbe et al., 2012).
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Figure 24: Pre-rift reconstruction model of distinct tectonic phases from the late

Cretaceous to early Paleocene of the Amundsen Sea Embayment including Chatham

Rise (striated) and Campbell Plateau (stippled) modified after Wobbe et al. (2012)

(Fig. 24 a, c-f) using the rotation parameters of Wobbe et al. (2012) and Grobys et

al. (2008). Fig. 24b shows configuration using the rotation parameters from Larter et

al. (2002). The black arrows in Figure 24a and 24b show the direction of movement of

the Bellingshausen Plate. Thin black lines show fracture zones, thick black lines show

mid ocean ridge segments. Thin black dashed line show suspected rift arm of the West

Antarctic Rift System. Stippled area in Fig. 24e and 24f shows oceanic crust which was

formed along the Bellingshausen Plate margin. The colour scale in Fig. 24e shows the

crustal thickness after modelling results of Wobbe et al. (2012)
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From about 80 Ma, the Bellingshausen Plate started acting as an independently

rotating plate, and continued to do so until about 61 Ma (e.g. Larter et al., 2002;

Eagles et al., 2004a, b). Its incorporation into the Antarctic Plate occurred as

part of a major plate reorganisation in the South Pacific (Cande et al., 2000). Kipf

et al. (2014) postulated that at around 65-56 Ma, the Marie Byrd Seamounts

were formed from magmatic material that was transported from beneath the West

Antarctic continental crust by a so-called continental insulation flow.

The eastern shelf, which contains Pine Island Bay, has been suggested by Dalziel

and Elliot (1982), Storey (1991) and Grunow et al. (1991) as the site of a

Paleozoic-Mesozoic crustal boundary zone between the Marie Byrd Land block in

the west and the Thurston Island crustal block in the east, whose apparent paleo-

magnetic polar wander paths differ.Recent analysis of magnetic and seismic data

from the ASE shelf show that tectonic lineaments and sedimentary sub-basins

cross the shelf of which some may be related to a branch of the eastern West

Antarctic Rift System (Gohl et al., 2013a, b). Apatite-He age trends, derived

from rock samples of the eastern Pine Island Bay, infer rift-related block fault-

ing indicating that the present glacially formed Pine Island Trough may have

originated from tectonic activity as part of the West Antarctic Rift System (Lin-

dow et al., 2011). Different thermal signatures of the Mt. Murphy area and its

neighbouring areas indicate a major fault system which was active during or after

Oligocene (Lindow et al., 2011).

Latest geological studies in Marie Byrd Land show Cretaceous multistage rifting

phases and strike slip faulting superimposed by transtension (Siddoway, 2008).

Gravity data, receiver-function analysis of teleseismic earthquakes and geological

analysis suggest that the submarine plateaus of New Zealand and conjugate Marie

Byrd Land consist both of thinned continental crust of only 25-28 km thickness

(Llubes et al., 2003; Luyendyk et al., 2003; Winberry and Anandakrishnan, 2004;
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Grobys et al., 2009). In the ASE, gravity modelling showed the crust of the inner

to middle shelf to be of 24 to 28 km thickness. Moreover, it seems that the ASE

was affected by magmatic intrusions interpreted from distinct zones of anomaly

patterns and lineaments which can be associated with three major tectonic phases

(Gohl et al., 2007, 2013a, b).

Jordan et al. (2010) calculated a Moho depth of about 19 km under the Byrd

Subglacial Basin and the newly identified Pine Island Rift based on gravity inver-

sion. Additionally, Bingham et al. (2012) also inferred crustal thinning leading

to 25-21 km thick crust beneath the Ferrigno rift and the adjacent Siple Trough

region.
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4.4 Seismic experiment

The seismic dataset presented in this study consist of two deep-crustal seismic

refraction profiles and a suite of multichannel seismic reflection profiles (Fig. 23),

that were acquired during RV Polarstern expeditions ANT-XXIII/4 in 2006 and

ANTXXVI/3 in 2010. The seismic source used for both refraction and reflection

recordings of the profiles AWI-20060100 and AWI-20060200 consisted of 8 G-

Guns (68.2 liters in total) and a Bolt air gun (32 liters). The shot interval of 60 s

corresponded to an average shot spacing of 150 m. Additionally, seismic reflection

profile AWI-20100119 was acquired with 3 GI-Guns, fired every 10 s (Gohl et al.,

2013b). The multi-beam bathymetry was measured with the Hydrosweep DS-III

system.

4.4.1 Seismic reflection data

We mapped the top-of-basement along the refraction profiles AWI-20060100

and AWI-20060200, in coincident seismic reflection data (Fig. 25). These were

acquired by using a 600 m long analogue streamer with 96 channels. The data

were recorded with a sampling interval of 4 ms. The data gap between the seismic

reflection profiles AWI-20060100 and AWI-20060200 (Fig. 25) was bridged with

the nearest seismic reflection profile AWI-20100119 (Fig. 25) in order to gener-

ate an almost continuous transect. Data processing comprised CDP sorting with

binning of 100 m, owing to the long shot interval for the profiles AWI-20060100

and AWI-20060200 and 25 m for the profile AWI-20100119, bandpass filtering

of 10-200 Hz and a detailed velocity analysis followed by stacking and poststack

migration.
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Figure 25: Compilation, line drawing and interpretation of seismic-reflection pro-

files AWI-20060100, AWI-20060200 and AWI-20100119 across the continental margin

of the Amundsen Sea Embayment. The thick blue line indicates the interpreted top-

of-basement. The dashed red line shows the interpolated top-of-basement based on a

spectral analysis of free-air gravity data. The thin black lines within the sedimentary

layer indicate unconformities, horst and graben and rift structures. Numbers including

red triangles show the position of the OBH stations along the transect. The red lines

indicate SDR - seaward dipping reflectors.
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Attempts to suppress the shallow-water multiples on the shelf (Fig. 25) using tech-

niques such as FK-filtering, Radon-transformation and predictive deconvolution

produced minimal improvements due to the limited streamer length. Multiple sup-

pression yielded, however, better results with the data of profile AWI-20100119

(Gohl et al., 2013b). We composed the three seismic reflection profiles into a

single projected seismic transect (Fig. 25). On the continental rise, the reflection

data show stratified sediments to a two-way-time of 2.5 s (around 3 km depth)

in the deepest basins. Below the sediments, the rise is dominated by seamounts

of the Marie Byrd Seamount province.

We observe indications of normal faults and horst and graben structures within

the continental rise sediments. At the foot of the slope, some reflections beneath

the top of the acoustic basement are reminiscent of the seaward-dipping reflectors

(SDR) known for many passive continental margins of volcanic type. The top

basement reflector disappears south of profile distance 160 km (AWI-20060200)

(Fig. 25) and beyond which strong seafloor multiples on the shelf and the slope

mask deeper signals.

The seismic shelf records show that the basement is exposed on the inner shelf of

the ASE (Fig. 25). Sediment sequences beneath the middle shelf dip seawards at

0.5◦, and at 1.5◦ beneath the inner shelf. The outer shelf is dominated by large

progradational sedimentary wedges (Gohl et al., 2013b).
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4.4.2 Seismic refraction data and traveltime modelling

Due to sea-ice coverage, and in order to minimize the risk of instrument loss,

only 9 ocean bottom hydrophone (OBH) systems were deployed along the 165 km

long profile AWI-20060100, with a regular interval of 18 to 19 km (Fig. 25). Four

of the systems (OBH 102, 104, 106 and 108) recorded usable data. Along the

171 km long profile AWI-20060200 (Fig. 25), seven OBH systems were deployed

with the same spacing between the Marie Byrd Seamount province and the foot

of the continental slope (Fig. 25). Only five of these recorded usable data (OBH

202, 203, 205, 206 and 207).

The raw OBH data were merged with the navigation data and then converted to

SEG-Y format. The exact position of the OBH stations on the seafloor along the

tracks were relocated by using direct P-wave arrivals. A bandpass filter of 4-20

Hz was applied to the seismic traces for reducing high and low frequent noise

from the seismic signal.

We identify coherent P-wave phases of up to 120 km source-to-receiver offset at

some stations (Fig. 26). All records show good-quality refracted P-wave phases

from the crust (Pc1 and Pc2 phases) (Fig. 26), some recordings contain high-

amplitude wide-angle Moho reflections (PmP-phase) and intracrustal reflections

(PcP -phase) as well as low-amplitude refracted phases from the upper mantle

(Pn-phase). The Moho was identified as velocity contrast between the crustal

layer and the upper mantle at velocities higher than 8.0 km/s.
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Figure 26: Top panel: part of seismic section from OBS 202 and 108, both plotted

with a reduction velocity of 8 km s-1 and a bandpass filter of 4-20 Hz. Middle panel:

Same section with modelled phases (black lines) and picked signals (red bars with bar

length representing the pick uncertainty). Bottom panel: Ray tracing results with ray

coverage in the P-wave velocity model.
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We assigned a picking uncertainty of 150 ms to all P-wave arrivals. The travel-

time inversion software RAYINVR (Zelt and Smith, 1992) was then used for ray-

tracing to forward model the travel-time branches, by applying a layer-stripping

procedure from top to bottom. This was followed by a travel-time inversion for

fine-tuning the model parameters.

For the lower crust a resolution between 0.5 and 0.6 is reasonable at the shelf edge

and continental rise, where 0 means no ray coverage and 1.0 represent maximum

ray coverage (Fig. 29). Hence, the resolution of our P-wave models is the better

in the upper and lower crust and the ray coverage is the densest at the middle

section of both OBH profiles. Limited offsets lead to a lack of Pn- and PmP

phases recordings at the ends of the profiles. The velocity distribution is laterally

homogenous within the entire crust.

The velocity-depth model of profile AWI-20060200 (Fig. 28A) consists also of

a sedimentary layer, upper and lower crustal layers underlain by an upper mantle

layer. Sediment velocities range from 1.7 to 2.5 km/s in the upper part to 3.5

km/s in the deepest basin. The depth to basement increases slightly towards the

shelf. Two basement highs separate the area into three distinct areas (Fig. 28A,

B). In satellite-altimetry data (McAdoo and Laxon, 1997), these highs correspond

to circular features south of the Marie Byrd Seamount province. They probably

therefore represent buried seamounts of the province. The northernmost area is

around 30 km wide and 1.0 - 1.5 km thick.
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A second area in the middle part of the profile is 25 km wide and filled with

sedimentary rocks of around 1.8 km thickness. At the southern flank of the

profile the largest basin is 120 km wide and the sediments are up to 2.1 km thick.

The upper crust thickens slightly from 3 km in the north to 6 km at the southern

profile end. P-wave velocities in the upper crust range from 5 to 6 km/s. The

lower crust also thickens slightly southward, from 7 km in the northern ASE to

around 13 km towards the shelf. The crust-mantle boundary (seismic Moho) can

be identified at a depth of 14 km in the north, which increases to 23 km near

the foot of the continental slope. Lower crustal velocities range from 6 km/s at

the top of the layer to 7 km/s at its base in the north and 7.7 km/s in the south.

The seismic Moho can be recognised at the base of the lower crustal high-velocity

layer by upper mantle velocities larger than 8 km/s.
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Figure 27: Comparison of picked and computed travel time branches from the P-wave

velocity models for each OBH station combined with the corresponding ray path. Depth

is annotated in km, the sections are plotted with a reduction-velocity T-X/8 in (s). The

error bars indicate observed picking times and the size of the bars corresponds to the

picking uncertainty. Solid red lines show the calculated travel times. Near-offset phases

(Psed, direct waves) are not annotated. Position of each OBH along the profiles is

shown in figure 25.
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Figure 28: Final P-wave velocity models of the seismic refraction profiles. B: AWI-

20060100 (bottom) and A: AWI-20060200 (top). The models are overlain by a semi-

transparent mask showing areas without ray coverage. Numbers and triangles show the

OBH stations along the profiles. I, II, III and I’, II’, III’, IV and V label sedimentary

basins along the profiles.
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The data of OBH profile AWI-20060100 (Fig. 28B) were inverted to yield a

2D velocity-depth model that comprises a sedimentary layer, and upper and

lower crustal layers underlain by the uppermost mantle. We identify five distinct

sedimentary basins with variable (0.7 km -1.5 km) fill thickness and velocities

ranging between 1.7 km/s and 3 km/s. The upper crust is between 4.1 and 6.3

km thick with P-wave velocities ranging from 5 km/s to 6.2 km/s. The lower

crustal thickness increases southward from 14 km in the north to 24 km beneath

the inner shelf. Velocities in this layer range between 6.2 km/s and 7.1 km/s

in northern part and between 7 to 7.6 km/s in the southern part. The seismic

Moho was identified at depths between 25 and 30 km. Similar ss on profile

AWI-20060200, the seismic Moho is identified at the base of the lower crustal

high-velocity layer.
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Figure 29: Resolution values of the two seismic travel-time inversion models for the

P-wave velocity -depth models B: AWI-20060100 (bottom) and A: AWI-20060200 (bot-

tom). The grey shading corresponds to the resolution value. Resolution values of greater

than 0.5 indicate a moderate to good resolution. The yellow lines show the layer bound-

aries from the corresponding velocity-depth model. Contour lines are plotted at an

interval of 0.2.
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4.5 Gravity anomalies and modelling

The interpretation and modelling of potential field data is carried out to investi-

gate regional geological issues and to highlight deep and shallow crustal anomalies

as well as basin structures. A joint interpretation of profile-based seismic data

with free-air gravity anomaly (FAA) (Fig. 30A) and Bouguer anomaly (BA)

(Fig. 30B) grids sets the seismic data into a regional geological context. We cal-

culated the BA of the area between 75◦S to 71◦S and 100◦E to 120◦E by using the

satellite derived FAA of McAdoo and Laxon (1997), the latest bathymetry grid

of Nitsche et al. (2013) (Fig. 23) and a Bouguer reduction density of 2670 kg/m3.

Additionally, we used the spectrum of the gravity data to fill the data gap between

the seismic refraction profiles AWI-20060100 and AWI-20060200, which exhibits

a prominent gravity anomaly high. This high is similar to those observed close to

various shelf breaks worldwide, which can be related to various density contrasts

including those resulting from crustal thinning, thick accumulations of sediments,

and magmatic underplating (Watts and Fairhead, 1999). However, in order to

calculate the depths of significant density interfaces in our data gap, we applied

the power spectral analysis based on the method of Spector and Grant (1970) to

the FAA of McAdoo and Laxon (1997).

79



The crustal structure and tectonic development of the continental margin of the
Amundsen Sea Embayment

Figure 30: Compilation of gravity data. Fig. 30A maps the satellite-derived free-

air gravity anomaly of the Amundsen Sea Embayment (McAdoo and Laxon, 1997).

The thin black dotted and continues lines mark prominent gravity anomalies along

the middle and outer shelf of the Amundsen Sea Embayment. Figure 28B images

the calculated Bouguer Anomaly. The framed semi-transparent area beneath shelf

break shows a prominent low (Outer Low). The thick black dotted line marks the 2D

gravity rise-to-shelf model transect (Fig. 32). Abbreviations are: ASEL-Amundsen Sea

Embayment Low, TIL-Thurston Island Low, PGA-Peacock Gravity Anomaly, PT-Pine

Island Trough, BP-Bear Peninsula, MBL- Marie Byrd Land, EL is Ellsworth Land, TI

is Thurston Island, KP is King Peninsula.
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The method was developed for magnetic data and adapted for gravity data by

Karner and Watts (1983). The method is based on the assumption of geologi-

cal interfaces that are essentially horizontal with some small relief. With this

assumption, the power spectrum of a group of prismatic sources distributed over

the subsurface topography reveals a quasi-linear relationship between the power

spectral density (PSD) and the wave number kr. In a plot of the natural loga-

rithm of the FAAs power spectrum against kr, a set of distinct linear segments

is related to the mean anomalies of the mass anomaly. The slope of a linear

segment multiplied by -0.5 yields the mean depth to its source. The window used

for the spectral analysis covers an area of 200 km2 and is a compromise between

uniform size and area (Fig. 23). The chosen area should contain provinces of

uniform geology, but on the other hand should be large enough to resolve longer

wavelengths and therefore greater depths.
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4.5.1 Satellite-derived free-air gravity anomaly

The FAA of the outer shelf is dominated by two highs of up to 80 mGal

which correspond to the bathymetrically elevated Western and Eastern Outer

Banks (Gohl et al., 2013b). Over the middle shelf area, we identify a major

WSW-ENE trending negative anomaly with a minimum of -70 mGal and name

it the Amundsen Sea Embayment Low (ASEL). This anomaly is interrupted

by the so-called Peacock Gravity Anomaly (PGA) that is northwest-southeast

orientated (Eagles et al., 2004a) and which continues to Thurston Island (TI) as

the Thurston Island Low (TIL). Pine Island Bay (PIB) is divided by the north-

striking glacial Pine Island Trough (PIT) with a gravity low of -50 mGal (Fig.

30A).

4.5.2 Satellite-derived Bouguer anomaly

The gravity effect of topography and bathymetry is removed from the FAA

to generate the BA such that only information on rock density variations is re-

tained. At long wave-lengths, the transition from oceanic to continental crust can

be clearly identified from a pronounced southward decrease of the BA from 140

to 40 mGal (Fig. 30B). The inner shelf is characterized by shorter wavelength

anomalies of between 0 and 70 mGal whereas the outer shelf shows predominantly

long wavelength anomalies of between -20 and 70 mGal, that correlate with bod-

ies identified in a recent magnetic analysis of the ASE (Gohl et al., 2013a). We

also identify a significant BA high larger as 60 mGal in the PIB region.

As in the FAA, the ASEL and TIL appear as a WSW-ENE trending low dom-

inating the middle shelf (Fig. 30B) which is interrupted by a positive WNW

trending anomaly of up to 70 mGal corresponding to the PGA. The outer shelf

area is dominated by a major gravity low which we name the Outer Low. The

boundary between the outcropping basement in the south and the sedimentary
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basin on the shelf corresponds to a change in the BA from 0 to 50 mGal. At

least a prominent BA high up to 60 mGal over the PIB can be identified.

4.5.3 Spectral analysis results

Spectral analysis for the gap between the two seismic refraction profiles (Fig.

23) reveals two distinct linear segments for which linear regressions suggest a

deeper and a shallower interface (Fig. 31). The choices of endpoints for the

linear regression were made by visual inspection. The slope of the low-frequency

(deeper) segment A corresponds to a mass anomaly depth of 22 ± 2 km whereas

the slope of high-frequency (lower) segment B corresponds to an anomaly depth

of about 4 ± 2 km. The uncertainty of the depths of the interfaces is controlled by

the sampling interval of the spectral analysis and can be estimated to be around

2 km for crustal depths (Cianciara and Marcak, 1976).
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Figure 31: Spectral analysis of the satellite-derived free-air gravity anomaly of McAdoo

and Laxon (1997). The natural logarithm of the energy spectra (PSD) in mGal/km is

plotted against the wave number in km−1. The black dots show the values of the energy

spectra and the grey line is the result of a linear regression for the depth estimation.

The slope of the regression line corresponds to the anomaly mass depth. Anomaly mass

depth is presented in km. Line A show the low frequency area (wave-number lower than

0.1 km−1) and line B the high-frequency area.

4.6 Ship-borne gravity data and 2D modelling

4.6.1 Data processing and description

Shipborne gravity data were collected continuously along all profiles with a

KSS-31 sea gravimeter at a sampling interval of 1 s. The raw data were corrected

for instrument drift during the cruise by using reference measurements in Punta

Arenas, Chile. We reduced the data to FAA with respect to the GRS80 gravity

model using a standard processing procedure (Torge, 1989), including an Eötvös

correction calculated with the ships navigation. The around 200 km wide data

gap between profiles AWI-20060100 and AWI-20060200 was filled using the free-

air gravity data of McAdoo and Laxon (1997).
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The gravity anomaly decreases linearly from model distance 0 to 150 km from

-10 mGal to -70 mGal (Fig. 32). Two short wavelength undulations of a few

mGal in the north correlate with the buried seamounts in the seismic data (Fig.

25). Across the shelf edge, the FAA increases up to 50 mGal at profile distance

250 km. This gravity high is similar to other observations at various shelf breaks,

named the "sedimentation anomaly" according to Watts and Fairhead (1999). If

a 2D model profile is oriented perpendicular to the shelf break the density con-

trast between the sediments and the water is sufficient to model the anomaly. As

our profile runs more or less perpendicular to the shelf edge (Fig. 23), it is likely

that a 3D effect of the shelf break contributes to the upward anomaly. Over the

middle shelf, the FAA reaches a local minimum of -50 mGal at 400 km profile

distance and increases up to 20 mGal towards the inner shelf.

4.6.2 2D Density-depth modelling

We used the software IGMAS (Götze et al., 1988) to model a composite FAA

transect. To calculate the 2D gravity effect of a mass anomaly, the IGMAS

algorithm uses triangulated polyhedra built from a set of polygons defined in

parallel vertical cross sections. The triangulation between these vertical planes is

done automatically during the modelling procedure. We defined polygons using

ship-borne bathymetry data, seismic refraction and seismic reflection data along

profiles AWI-20060100, AWI-20060200 and AWI-20100119, and the results of the

spectral analysis in order to setup a starting model. The model geometries at the

ends of the profiles were edited to account for the regional gravity field.

To simplify the model, we combined all observed sedimentary units into one

layer and calculated an average density of 2050 kg/m3 using the velocity-density

relationship of Nafe and Drake (1963). As the observed P-wave velocities of the

crust indicate continental affinity along the modelled profile (Christensen and
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Mooney, 1995) we used the velocity-density relationship of Barton et al. (1986)

to define upper-crust density of 2650 kg/m3 and a lower-crust density of 2800

kg/m3. Finally, we modelled the observed high-velocity layer with a density of

3150 kg/m3, also after Barton et al., (1986). The uppermost mantle was mod-

elled with a density 3300 kg/m3. During the modelling procedure, we compared

the density with results of the P-wave velocity-depth models and adjusted every

layer boundary to obtain a best fit between the measured and modelled anomaly

by varying the crustal geometry as little as possible.
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Figure 32: Two different 2D forward gravity models of the seismic refraction profiles

AWI-20060100 and AWI-20060200. The data gap between the two seismic refraction

profiles was bridged with satellite-derived gravity data from McAdoo and Laxon (1997)

and modelled using constraints from spectral analysis of the satellite-derived gravity

data of McAdoo and Laxon (1997) and the adjacent seismic reflection profile AWI-

20100119 (Fig. 25). Bathymetric surface is after Nitsche et al., (2013). Density values

are given in 10
3kg/m3.
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Owing to the inherently non-unique testimony of gravity signals, we present two

models that each explain the observed anomaly (Fig. 32). The standard devia-

tion between the measured and modelled FAA in model A is 1.53 mGal along

profile AWI-20060100 and 1.32 mGal along profile AWI-20060200 including the

interpolated part. With model B, these values are 1.53 and 2.01 mGal. In gen-

eral, the correspondence between the velocity-depth and density-depth models is

acceptable. In its central part (Fig. 32) the model suffers from the absence of

seismic reflection data and a velocity-depth model. We constrained the range of

models applicable to this part using the results of the power-spectral analysis of

its FAA field. As noted above, this part of the profile crosses the gravity high of

the Western Outer Bank (Gohl et al., 2013a).

In model A, the sedimentary layer is up to 3 km thick, consistent with the power

spectral analysis. The top-of-basement interface is rough south of the gravity

high at profile distance of 300-370 km. The Moho steps down from a depth of

about 22 to 27 km between profile distance 170 - 200 km, again consistent with

the power spectral analysis, and remains at this depth until after profile distance

400 km, where it is constrained once again by refraction results on profile AWI-

20060100. With these layers, it becomes necessary to model the gravity high as

the signal from a 10 km high bulge in the high-density/high-velocity layer of the

lowermost crust between profile distance 210 - 370 km. In model B, the high can

be explained by thinning of the sedimentary layer between profile distance 170 -

250 km, and its absence between profile distance 250 - 370 km, although this lat-

ter depiction is not consistent with the power spectral analysis. The high-density

layer is 4-7 km thick with no significant bulge.
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4.7 Discussion

4.7.1 Crustal structure

The FAA predominantly reflects the seafloor topography (Fig. 30A), whereas

the BA portrays density and thickness variations of the lithosphere, including

the gradual negative gradient that indicates the transition from continental to

oceanic crust (Fig. 30B). However, our transect lies mostly within the interpreted

continental crust. The Outer Low of the ASE shelf correlates with an elevated

basement identified in seismic reflection data from the ASE, named the West-

ern Outer Bank (Gohl et al., 2013b). Contrary to the FAA, the corresponding

BA signal reaches into the continental rise indicating that its source is not to-

pographic. The corresponding BA signal is probably the gravimetric signal of a

thicker continental sliver generated during the Cretaceous extension that led to

the separation of West Antarctica and Zealandia.

We subdivide the crust of the ASE into an upper crust, a lower crust and a

high-velocity lowermost crustal layer. The average upper crustal P-wave velocity

of around 5.5 km/s along the entire transect is typical of uppermost continental

crust (Christensen and Mooney, 1995) (Fig. 28). The absence of any P-wave

velocity or density variations below the two Marie Byrd seamounts indicates that

these basement highs consist of similar material as the surrounding crust. The

northern end of profile AWI-20060200 is less certain due to the lack of ray cover-

age and reversed records.

In general, the lower crustal P-wave velocities and densities are greater than

expected for normal continental crust indicating a more mafic crustal composi-

tion (Christensen and Mooney, 1995). Between model distances 180 to 380 km,

our models are not constrained by deep seismic data. However, based on the

gravity spectral analysis and an adjacent seismic reflection profile, we argue that
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the sedimentary layer and the upper and lower crust have architectures similar

to those beneath the continental slope and the inner shelf. The modelled rougher

basement explains the high-frequency variations of the FAA. In Model A the es-

timated depth to top basement fits better to the flanking seismically constrained

profiles than Model B, suggesting that its geometry is more appropriate to de-

scribe the ASE.

4.7.2 High-velocity layer

Traveltime modelling reveals P-wave velocities of 7.0 to 7.6 km/s in the lower

crust along both seismic refraction profiles corresponding to densities between

3140 to 3160 kg/m3 in the gravity models (Barton et al., 1986). These densities

differ significantly from those expected for normal upper mantle density (3300

kg/m3) or for normal lower continental crust (Anderson, 1989). The maximum

10 km thickness of this layer is comparable to the thickness of high-velocity bodies

known from other extended and volcanic type continental margins like the East

Greenland continental margin (Voss et al., 2007) or its conjugate Vøring margin

offshore mid-Norway (Mjelde et al., 2002). In these settings, the high-velocity

bodies are interpreted as underplating of gabbro by accumulation of magma at

the Moho during extension.

By analogy, therefore we propose that the high-velocity layer beneath the ASE

may represent widespread magmatic underplating (Fig. 32) indicating that the

margin is of volcanic-type rather than of magma-poor type (Mutter et al., 1984).

Hints of SDRs farther north reinforce the notion that the break-up process be-

tween greater New Zealand and West Antarctica was accompanied by magmatism.

Grobys et al. (2009) interpret the observed high-velocity body of the conjugate

southern Bounty Trough off eastern New Zealand as a mafic body intruded into

the lower and upper crust and its high-velocity zone, as possible underplating at
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the base of the crust. However, the continental margins of eastern Zealandia, the

Chatham Rise and the Campbell Plateau are not characterised well enough to

match the categories of volcanic or non-volcanic type margins due to the lack of

deep crustal data.

If the SDRs found along line AWI-20060200 (Fig. 25) of the Amundsen Sea

do not find a counterpart on the New Zealand margin, the Amundsen Sea SDRs

may be sequences of post-break-up volcanic phases. A study of the Southeast

Greenland margin of Hopper et al. (2003) reports volcanic seaward dipping re-

flectors on oceanic crust, 180 km seaward of the continent-ocean-boundary which

suggests that SDRs are not necessarily related to initial break-up.

Kipf et al. (2014) propose the generation of magma from partial melting of

upper mantle rocks convecting as part of a so-called continental insulation flow

on the basis of HIMU-type magmatic rocks (high time-integrated 238U/204Pb)

from beneath the Marie Byrd Land to the present day Marie Byrd Seamount

province between Late Cretaceous and Paleocene. They suggested the upwelling

arm of the convection cell exists beneath Marie Byrd Land at the present day.

This hypothesis suggests an alternative source of gabbroic lower crust on the ASE

shelf, in direct proximity to the Marie Byrd Land Seamount province.

However, if the bulge would be constituted by gabbroic melt, the expected density

would be around 2800 kg/m3, which is significant lower than the observed 3150

kg/m3.In the end the density of the HVL is too high for magma of Phanerozoic

origin. On the other hand, the occurrence of cumulated layers could significantly

rise the density of the material.

91



The crustal structure and tectonic development of the continental margin of the
Amundsen Sea Embayment

4.7.3 Serpentinization

An alternative explanation for the HVL is serpentinization of mantle material

(e.g. Carlson and Miller, 2003). Serpentinized peridotite can have velocities and

densities similar to those of lower continental crust (Biollot et al., 1992). Serpen-

tinite was observed along many non-volcanic passive margins such as the West

Iberian margin (Boillot and Winterer, 1988, Whitmarsh and Sawyer, 1996) or

the Newfoundland margin (Reid, 1994). Biollot et al. (1992) suggested that the

formation and accretion of serpentinite beneath the crust may play a role in areas

of rifted continental margins.

However, in these settings serpentinisation requires the penetration of seawater

downward via faults, and low-angle detachment surfaces. Another possibility is

via deep hydrothermal circulation. Hydrothermal activity was observed at in-

traplate volcanoes such as the Lo-’ihi volcano (Malahoff et al., 2006). The Marie

Byrd Seamount province is identified as a system of intraplate volcanoes (Kipf

et al., 2014). Hence, the crust of this area has a potential for seawater penetration.

Serpentinization is a gradual process creating no clear boundary between un-

altered peridotite and serpentinized mantle material. Magma-poor margins are

often characterized by an increasing P-wave velocity from the crystalline base-

ment to the mantle without a clear Moho response due to serpentinized mantle

material (Minshull, 2009). At the West Iberian margin, the absence of clear

Moho reflections were interpreted as the result of partial serpentinized mantle

peridotite (Chian et al., 1999).

Mjelde et al. (2002) discussed the possible occurrence of serpentinized mantle

in combination with magmatic underplating along the Vøring volcanic passive

margin offshore mid-Norway. The observation of clear Moho reflections was the
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key argument for favouring the underplating hypothesis (Mjelde et al., 2002). We

modelled the observed HVL with a density of 3300 kg/m3 and hence, of significant

higher density than the average density of serpentinite at this depth (Christensen,

1996). We therefore imply a continental margin that is likely more influenced by

magmatism than undercrusted by serpentinite.

4.7.4 Tectono-magmatic evolution

The seismic reflection data of the ASE reveal dipping lowermost strata on

the inner ASE shelf, which may represent the earliest sedimentary rocks in the

Amundsen Sea (see also Gohl et al., 2013b). We interpret the different north-

ward dipping sedimentary reflectors as probable results of different extensional

phases during the formation of the area. Normal faults indicate crustal extension

affected the area. The present-day crustal architecture beneath the shelf infers

wide-mode rifting such as observed in the Basin and Range Province of western

North America (Hamilton, 1987) rather than narrow-mode rifting such as the

east African Rift System (e.g. Ebinger et al., 1989, Buck et al., 1991; Rosenbaum

et al., 2002) but the existence cannot be excluded from our data.

Horst and graben structures are a further indication that the region evolved

by wide-mode rifting (Buck et al.,1991). Fault-like structures on the shelf may

represent block-faulting during early stage and aborted rifting. The BA of the

ASE shelf (Fig.30B) shows several pronounced local highs and lows suggesting

a pattern of rift basins and intervening highs. It is possible to speculate that

the basins in the ASE (Fig. 25) are related to the pre-break-up dextral transten-

sional strain known from western MBL (Siddoway et al., 2008) which is a hint

for activity of the WARS affecting the entire ASE. A southward decrease of the

BA with a gradient of about 1.5 mGal km−1 may also indicate that the crust

was affected by rifting. The WSW-ENE trending ASEL and TIL strike parallel
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to the Pacific Antarctic Ridge in the north and the Bentley Subglacial Trough

in the south and where our model crosses the ASEL it shows a thinned, 20 km

thick continental crust.
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Figure 33: (a) interpreted 2D gravity model based on the seismic refraction profiles

AWI-20060100 and AWI-20060200. The top-of-basement was mapped by using the

seismic reflection profiles AWI-20060100, AWI-20060200 and AWI-20100119. The black

arrows show the flow direction of the inferred continental insulation flow (Kipf el al.,

2012, 2014) from beneath Marie Byrd Land to the Marie Byrd Seamount Province. The

blue arrows represent extensional rifting. The slides (b) to (e) show schematically the

tectono-magmatic development of the margin from break-up of New Zealand and West

Antarctica to Oligocene. Abbreviations are: MBL is Marie Byrd Land, NZ is New

Zealand.
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We interpret these observations as a record of a multi-stage initial Cretaceous

wide-mode rifting event and thermal subsidence that followed the eventual suc-

cessful break-up Zealandia from Antarctica. Our data show evidence for crustal

extension connected to activities of the WARS since Cretaceous that resulted in

the abandonment or evolution of a young-stage wide rift zone in favour of a fully

developed extended continental margin and mature oceanic crust. It is possible

that this rifting is connected to the well documented distributed Cenozoic exten-

sion superposed by narrow mode extensional events within the eastern Ross Sea

sector of the WARS and the onshore parts of the ASE (Luyendyk et al., 2003;

Davey et al., 2006; Jordan et al., 2010). However, the absence of implications for

narrow-mode rifting in the offshore part of the ASE is not in conflict with this

interpretation.

The orientation of lineaments in potential field data infer that these rifting events

continued to affect the ASE after break-up from Zealandia, becoming a site for

Bellingshausen-West Antarctic and East Antarctic-West Antarctic plate diver-

gence in Paleocene and Oligocene times (Eagles et al., 2004a; Gohl et al., 2013a).

Figure 33 presents a schematic tectono-magmatic reconstruction of the continen-

tal margin segment sampled by our model from late Cretaceous break-up of New

Zealand and West Antarctica until Oligocene times (Fig. 33 e to b) and the

present-day configuration (Fig. 33a). Fig. 33e shows the possible lithospheric

configuration during or short before break-up between New Zealand and West

Antarctica at around 100 Ma.

The crustal architecture was homogenous along the entire profile. At this time, ex-

tension may starts between Zealandia and West Antarctica. Mukasa and Dalziel

(2000) inferred subduction-related I-type magmatism occurred at least until 94

± 3Ma (U-Pb zircon date) from the Walgreen Coast - eastern MBL (Fig. 23) to

western Pine Island. Fig 33d. shows the possible configuration during onset of
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wide-mode rifting between 60 to 80 Ma. We infer the onset of magmatism at this

time based on magmatic flow estimations as discussed above. Fig. 33c images

ongoing magma flow, the occurrence of the Marie Byrd Seamount province which

was accompanied by thermal subsidence of the paleo shelf of the ASE. The time

slice shown in Fig. 33b illustrates the lithospheric configuration during 30 Ma.

Ongoing magma accumulation was accompanied by tectonic rifting. At least Fig.

33a illustrates the present day configuration. The reconstruction is based on the

crustal architecture of our gravity and seismic model (Fig. 32b). The basin de-

velopment we illustrate at the top surface of our transect is based on a schematic

back-strippe reconstruction applied for the ASE shelf by Gohl et al. (2013b).

Due to the absence of evidence for a volcanic extended margin south of Zealandia,

we prefer to explain the magmatic underplating as a product of partial melting

during convective mantle flow set up by long-lived continental insulation. There

are no robust constraints about the timing of this flow but Kipf et al. (2014)

propose the formation of the Marie Byrd Seamounts to be in Early Cenozoic (56

Ma). With respect to the present-day distance of around 800 to 1000 km between

the central Marie Byrd Seamount province and coast of eastern Marie Byrd Land

(Fig. 23) and an average convective velocity of around 1-5 cm/a (Schubert et al.,

2001), the onset of magma flow may have occurred around 10 m.y. earlier at

about 65 Ma. This is consistent with a suspected major plate reorganisation in

the South Pacific in Paleocene (Cande et al., 2000).

Further, the assumed increasing magmatic activity beneath the ASE shelf shown

in Fig. 33b at about 30 Ma correlates with the emplacement age of the Dorrel

Rock intrusive complex in Marie Byrd Land (Rocchi et al., 2006) implying that

a major or several single magmatic events related to multi-stage tectonic activity

affected the Amundsen Sea margin. Additionally, the observation of different

thermal signatures in the Mt. Murphy area of western Marie Byrd Land, which
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indicate a major fault system and which was active during or after the Oligocene

(Lindow et al., 2011) is an implication for tectonic activity in this region. We

interpret this as a further indication that tectonic and magmatism were coupled

processes during the Oligocene and are related to the active branch of the WARS

in the ASE (Gohl et al., 2013 a,b).

Following the recent hypothesis of Kipf et al. (2014) we infer that the mag-

matic bulge at the Moho discontinuity was the result of a long-distance magma

flow which reached the Moho, grew continuously and then spilled over (Fig. 33).

This magma bulge is likely to be responsible for the Outer Low in the BA and the

corresponding elevated top-of-basement which is identified in seismic data (Gohl

et al., 2013b). It seems reasonable, that the accumulation of magmatic material

at the Moho cause uplift of the overlying structures (Brunov et al., 2005).

4.8 Conclusion

Geophysical data from the ASE provide new insights into the lithospheric archi-

tecture and tectono-magmatic development of this continental margin. Two deep

crustal seismic profiles image the crustal and upper mantle structure of parts

of the continental rise, slope and shelf. A continuous rise-to-shelf 2D gravity

model supports and expands on the velocity-depth models and enables the inter-

pretation of a tectono-magmatic history for the ASE margin from its break-up

with Zealandia to the present and indicating a margin-wide process of magmatic

underplating. The main findings are summarized as follows:

1. The geophysical data image the upper and lower crust and reveal a high-

velocity layer at the base of the lower crust beneath the shelf. The crust

is 10 - 14 km thick at the continental rise and up to 29 km thick beneath

the inner shelf. Seismic refraction data reveal P-wave velocities between 7.1

and 7.6 km/s in the high-velocity layer indicating a margin-wide process of
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magmatic underplating whose thickness varies up to a maximum 10 km.

2. 2D gravity modelling supports the hypothesis of a magmatic layer beneath

the shelf and is consistent with the velocity-depth model. Indications of

seaward-dipping reflectors in the seismic data suggest that break-up be-

tween greater New Zealand and West Antarctica may have been accompa-

nied by magmatism not necessarily related to initial break-up.

3. Following the interpretation of Kipf et al. (2014), the high-velocity layer can

be related to the Marie Byrd Seamount Province as product of a continen-

tal insulation flow which transported mantle material from beneath West

Antarctica to the present day Marie Byrd Seamount Province. The onset

of the magma flow in the Paleocene, which is maybe mantle originated, cor-

relates with a major plate reorganisation in the South Pacific (Cande et al.,

2000). Magma accumulation at the base of the crust seems to be responsi-

ble for the elevated basement beneath the outer shelf of the Amundsen Sea

Embayment. The absence of a gradational transition between the velocity

body, normal upper crustal seismic velocities and a significant higher den-

sity of the observed HVL suggest that serpentinized mantle not is present

beneath the ASE.

4. The crustal architecture, sedimentary setting and potential field data from

the ASE indicate its formation during crustal extension. The constant

crustal thickness and horst and graben structures suggest that this process

was an expression of wide-mode rifting. Geophysical data show early stage,

fully developed and failed initial rifting structures within the ASE suggest-

ing a late active branch or integrated feature of the West Antarctic Rift

System.
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Abstract

5.1 Abstract

The Amundsen Sea Embayment of West Antarctica is of particular interest

as it provides critical geological boundary conditions in better understanding the

dynamic behavior of the West Antarctic Ice Sheet, which is undergoing rapid

ice loss in the Amundsen Sea sector. One of the highly debated hypothesis is

whether this region has been affected by the West Antarctic Rift System, which

is one of the largest in the world and the dominating tectonic feature in West

Antarctica. Previous geophysical studies suggested an eastward continuation of

this rift system into the Amundsen Sea Embayment.

This geophysical study of the Amundsen Sea Embayment presents a compilation

of data collected during two RV Polarstern expeditions in the Amundsen Sea Em-

bayment of West Antarctica in 2006 and 2010. Bathymetry and satellite-derived

gravity data of the Amundsen Sea Embayment complete the dataset. Our 3D

gravity and magnetic models of the lithospheric architecture and development of

this Pacific margin improve previous interpretations from 2D models of the region.

The crust-mantle boundary beneath the continental rise and shelf is between

14 and 29 km deep. The imaged basement structure can be related to rift basins

within the Amundsen Sea Embayment, some of which can be interpreted as prod-

ucts of the Cretaceous rift and break-up phase and some as products of later

propagation of the West Antarctic Rift System into the region. An estimate of

the flexural rigidity of the lithosphere reveals a thin elastic thickness in the east-

ern embayment which increases towards the west.

The results are comparable to estimates in other rift systems such as the Basin

and Range province or the East African Rift. Based on these results, we infer an

arm of the West Antarctic Rift System is superposed on a distributed Cretaceous
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rift province in the Amundsen Sea Embayment. Finally, the embayment was

affected by magmatism from discrete sources along the Pacific margin of West

Antarctica in the Cenozoic.

5.2 Introduction

Knowledge of the present architecture of the Pacific margin of West Antarc-

tica (WA) is essential for improved plate kinematic and tectonic reconstructions

of the Amundsen Sea Embayment (ASE) (Fig. 34). The embayment experienced

processes that formed the southern Pacific starting with the inferred collision of

the Hikurangi Plateau with the Gondwana subduction margin at approximately

110-100 Ma (Davy and Wood, 1994; Mortimer et al., 2006) and continuing until

the evolution of the West Antarctic Rift System (WARS).
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Figure 34: (a) Topographic map of West Antarctica showing the regional setting

derived from BEDMAP2 (Fretwell et al., 2013). Tectonic blocks (Dalziel and Elliot,

1982) are marked in yellow-dotted areas: EWM Ellsworth-Whitmore Mountains, TI

Thurston Island, AP Antarctic Peninsula, MBL Marie Byrd Land. Rift structures such

as the West Antarctic Rift System, Ferrigno Rift (FR) and George IV Sound (GIVS)

are indicated with blue lines. The dotted blue line shows a possible extension of the

West Antarctic Rift System branch into the Amundsen Sea Embayment. (b) Overview

bathymetric map of the Amundsen Sea Embayment after Nitsche et al. (2007, 2013)

showing the locations of three seismic refraction profiles (thick black lines) (Kalberg

and Gohl., 2014) and seismic reflection profiles (thin dotted black lines). Yellow frames

show the areas used for the spectral analysis of the magnetic and gravity anomaly data.

The white frame shows the area within which our potential field data are modelled. PIB

is Pine Island Bay, PIT is Pine Island Trough, BSB is Bentley Subglacial Basin and

BST is Bentely Subglacial Trench.
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Additionally, as tectonic processes can influence the variation of environmental

conditions (Hay, 1996), understanding the region’s tectonic history may help con-

strain models and concepts for Cenozoic global cooling and Antarctic glaciation

(De Conto and Pollard, 2003; Coxall et al., 2005). For example, there is an in-

creasing interest in the geomorphological evolution of the ASE and the controls

it exerted on the dynamics of the West Antarctic Ice Sheet (WAIS) (e.g. Bell et

al., 1998; Studinger, 2001, Dalziel et al., 2001). In addition, detailed knowledge

of the lithospheric development may provide constraints on key geological param-

eters to estimate geophysical proxies such as geothermal heat flux (Shapiro and

Ritzwoller, 2004).

The influence of plate tectonic processes on the evolution of the cryosphere has

been studied in other regions of Antarctica such as the Scotia Sea, just north of

the Antarctic Peninsula (Lawer et al., 2011; Eagles and Jokat, 2014). However,

knowledge of the tectonic development and continental lithospheric structure in

West Antarctica is based mostly on geophysical studies in the Ross Sea (Cooper

et al., 1991; Trey et al., 1999; Luyendyk et al., 2001, Luyendyk et al., 2003),

Marie Byrd Land (LeMasurier and Landis, 1996; Winberry and Anandakrishnan,

2004; LeMasurier, 2008) and the Pine Island Glacier region (Jordan et al., 2010).

These regions are characterized by thinned continental crust with an average

thickness of 21 km to 25 km. Numerous fault-bounded basins in the Ross Sea

sector comprise the well-known West Antarctic Rift System (WARS). Further

east, a crustal thickness of 21 km under the Bentley Subglacial Trench suggests

intra-continental extension there too (Winberry et al., 2004).

Recent studies of the ASE presented by Weigelt et al. (2007), Gohl et al. (2007,

2013a,b), Wobbe et al. (2012) and Kalberg and Gohl (2014) reveal the ASE

to be underlain by multi-staged rifted, extremely stretched and magmatically-

underplated continental crust which is overprinted by several tectonic lineaments.
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The data have been interpreted to indicate a set of rift basins that formed as a

prolongation of the WARS into the ASE (Gohl et al., 2007; Gohl et al., 2013a,b;

Kalberg and Gohl, 2014). The ASE seems to have evolved by wide-mode rather

than narrow-mode rifting (Kalberg and Gohl, 2014). The modelled magmatic

underplating can be related to a continental insulation flow, which transported

magmatic material from beneath the crust of Marie Byrd Land to the Marie Byrd

Seamount province offshore (Kipf et al., 2014; Kalberg and Gohl, 2014).

Eagles et al. (2009) suggested extensional branches of the WARS were active

around Alexander Island and in George VI Sound (GVIS), to the NE of the ASE,

in the period 34-26 Ma. Additionally, recent studies of Bingham et al. (2012)

showed that the Ferrigno Rift, inland of the ASE and GVIS (Fig. 34) was affected

by crustal thinning that they attributed to the same causes as the WARS. Con-

trary to the Ross Sea and the Amundsen Sea sectors of the WARS, there seems

to be no evidence for widespread Cenozoic magmatism around the Ferrigno rift

region (Bingham et al., 2012). In great contrast, Granot et al (2013) calculated

Euler rotation parameters that infer these eastern reaches of the WARS would

have worked in plate convergence.

Plate kinematic reconstructions of the southern Pacific realm and the West Antarc-

tic margin (e.g. Larter et al., 2002; Eagles et al., 2004; Wobbe et al., 2012)

explain reasonably well the general break-up and ocean drifting process between

New Zealand and West Antarctica but suffer from sparse information on the re-

gional tectonic architecture of the ASE lithosphere which was a key region for

the initiation of rifting and break-up.

This study presents a spatial insight into the lithospheric architecture of the

Pacific margin of WA in the ASE between 120◦W and 104◦W and between 70◦S

and 74◦S using a detailed 3D gravity and magnetic model supported by seis-
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mic constraints. The models image the basement morphology, regional crustal

thickness, and the distribution of magmatic bodies and magmatic zones in the

embayment. A joint interpretation reveals several tectonic lineaments and shows

rift basins within the middle and inner shelf of the ASE. Estimates of the elastic

lithospheric thickness provide further constraints on the geodynamic evolution of

the ASE.

5.3 Geological background

The tectonic blocks of West Antarctica (Dalziel and Elliot, 1982) are sepa-

rated from the tectonically contrasting East Antarctic cratons and mobile belts

by the Transantarctic Mountains and the WARS, which is one of the world largest

continental rift systems (Fig. 34). The structural composition of the WARS is

comparable to other major continental rift zones such as the East African Rift or

the Basin and Range Province (Behrendt et al., 1991; Tessensohn and Wörner,

1991; LeMasurier and Landis, 1996; LeMasurier, 2008).

The ASE was formed as consequence of the Late Cretaceous break-up of the

former Gondwana supercontinent blocks of West Antarctica and greater New

Zealand (e.g. Eagles et al., 2004a; Wobbe et al., 2012). The evolution of the

Pacific margin of WA since that time included several distinct tectonic phases

(Fig. 35). South-westward propagation of rifting and break-up started with the

separation of Chatham Rise from the eastern MBL margin as early as 90 Ma and

continued to around 83 Ma with the break-up of Campbell Plateau from central

Marie Byrd Land (e.g. Mayes et al. 1990; Bradshaw et al., 1991; Larter et al.,

2001; Eagles et al., 2004a, Wobbe et al., 2012).
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Figure 35: Schematic plate-tectonic reconstruction model of distinct tectonic phases

in the SW Pacific from Late Cretaceous to early Paleocene (modified after Wobbe et

al., 2012) using rotation parameters of Grobys et al. (2008) and Wobbe et al. (2012) in

(a) and (c-f), and rotation parameters of Larter et al. (2002) in (b). The black arrows

in (a) and (b) show the movement direction of the Bellingshausen Plate. Thin black

lines show fracture zones, thick black lines show mid ocean ridge segments. The thin

black dashed line indicates the presumed eastern rift branch of the West Antarctic Rift

System (Gohl et al., 2013a,b). Dotted area in (e) and (f) shows oceanic crust which was

formed along the Bellingshausen Plate margin. (e) includes the crustal thickness scale

of Wobbe et al. (2012). Abbreviations are: ANT West Antarctic plate, BEL Belling-

shausen plate, BS Bollons Seamount, BT Bounty Trough, CaP Campbell Plateau, ChP

Challenger Plateau, ChR Chatham Rise, MBL Marie Byrd Land, NNZ North Island of

New Zealand, PAC Pacific plate, SNZ South Island, ASE Amundsen Sea Embayment,

WARS West Antarctic Rift System and ASE is Amundsen Sea Embayment.
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From about 80-79 Ma, the Bellingshausen Plate began acting as an independent

tectonic plate, and continued to do so until about 61 Ma (e.g. Larter et al., 2002;

Eagles et al., 2004a,b). Its incorporation into the Antarctic Plate at this time

occurred as part of a major plate reorganisation in the South Pacific (Cande et

al., 2000). Based on Ar-Ar dating of dredged rocks, Kipf et al. (2014) postulated

that at about 65-56 Ma the Marie Byrd Seamounts were formed from magmatic

material that was transported from beneath the West Antarctic continental crust

by a continental insulation flow.

The eastern shelf of the ASE has been suggested as the site of a Paleozoic-

Mesozoic crustal boundary between the Thurston Island crustal block in the

east and the MBL block in the west, whose apparent paleomagnetic polar wan-

der paths differ significantly (Dalziel and Elliot, 1982; Storey, 1991; Grunow et

al., 1991). Müller et al. (2007) considered that the WARS east of the Ross Sea

started acting in dextral strike-slip or extensional motion east of the ASE between

chrons 21 and 8 (48-26 Ma.). They postulated that this motion was connected

to a Pacific-Phoenix-East Antarctica triple junction at the southwestern Belling-

shausen Sea margin via the Bentley Subglacial Trench (Fretwell et al., 2013) and

the Byrd Subglacial Basin.

Moho depth estimates under the Byrd Subglacial Basin and the Pine Island Rift

reveal crust of only 19 km thickness (Jordan et al., 2010). An estimate of the

region’s flexural rigidity suggests an effective elastic thickness of just 5 km in the

same area (Jordan et al., 2010). These results infer continental thinning in this

part of WA, which Jordan et al. (2010) interpreted to have been achieved by

distributed Cretaceous rifting followed by Cenozoic narrow-mode rifting. Crustal

thickness estimates based on receiver functions reveal a crustal thickness of about

17 km in parts of the western WARS (Chaput et al., 2014). Recent analyses of

geophysical data from the ASE shelf show that sedimentary sub-basins and tec-
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tonic lineaments cross the shelf, some of which can be related to an eastern branch

of the WARS (Gohl et al., 2013a,b; Kalberg and Gohl, 2014). A continuous 2D

continental rise to shelf gravity model shows 12-29 km thick continental crust

that seems to have been thinned during wide-mode rifting (Kalberg and Gohl,

2014).

Recent Apatite-He age trends derived from rock samples of the eastern Pine

Island Bay infer rift-related block faulting (Lindow et al., 2011). In this context,

it seems likely that the topographic depression of the present glacially-formed

Pine Island Trough on the eastern ASE shelf may have originated by extensional

tectonic activity related to development of the WARS. West of Pine Island Bay,

thermochronological analysis of the Mt. Murphy block and its neighbouring areas

reveals a history of differential burial and uplift that is interpreted in terms of

Oligocene motions on a major fault system (Lindow et al., 2011).

5.4 Data acquisition and processing

5.4.1 Database

The gravity data comprise the satellite-derived Free-air gravity anomaly (FAA)

from McAdoo and Laxon (1997) (Fig. 36c). We calculated the Bouguer anomaly

(BA) (Fig. 36c) based on the FAA and the bathymetric grid of Nitsche et al.

(2007, 2013), using a Bouguer reduction density of 2670 kg/m3. Figure 36c shows

a magnetic anomaly grid of the ASE (Fig. 36c). Gohl et al. (2013a) describe the

experimental setup, data processing and gridding procedure from helicopter and

shipborne magnetic data collected during two RV Polarstern expeditions in 2006

and 2010, and go on to interpret the grid with the help of a set of 2D forward

models.
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We constrained the crustal thickness and density distributions in our gravity

model by using the results of published seismic reflection data and forward mod-

elling of three seismic refraction profiles (Nitsche et al., 2000; Lowe and Ander-

son, 2002; Gohl et al., 2007; Uenzelmann-Neben et al., 2007; Weigelt et al., 2009,

2012; Uenzelmann-Neben and Gohl, 2012, 2014; Gohl et al., 2013b; Hochmuth

and Gohl, 2013; Kalberg and Gohl, 2013; Gohl et al., 2013b; Kalberg and Gohl,

2014). Where no deep crustal seismic data are available, we used the results of a

power spectral analysis of the gravity and magnetic data.

5.4.2 Data description

Free-air anomaly:

The FAA of the outer shelf is dominated by two gravity highs of up to +80 mGal

corresponding to the bathymetrically elevated Eastern and Western Outer banks

(Gohl et al., 2013b) (Fig 36a). A characteristic feature of the middle shelf area

is a major WSW-ENE trending negative anomaly with a minimum of -70 mGal,

named the Amundsen Sea Embayment Low (Kalberg and Gohl, 2014). This

anomaly is interrupted by the prominent northwest-southeast trending Peacock

Gravity Anomaly (Cunningham et al., 2002) and continues north of Thurston

Island as the Thurston Island Low (Kalberg and Gohl, 2014). Pine Island Bay at

the inner shelf is divided by the north-striking glacial Pine Island Trough with a

gravity low of -50 mGal.

Bouguer anomaly:

The gravitational influence of the bathymetry can be removed from the FAA

by calculating the BA such that only the effects of rock density variations in

the subsurface are retained. The inner shelf of the ASE is dominated by short

wavelength anomalies of between 0 and +70 mGal whereas the outer shelf shows

predominantly long wavelength anomalies between -20 mGal and +70 mGal that
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correlate with bodies modelled in recent magnetic data collected in the ASE (Gohl

et al., 2013a). As in the FAA, the Amundsen Sea Embayment and Thurston Is-

land lows (Kalberg and Gohl, 2014) appear as a WSW-ENE trending anomaly

that dominates the middle shelf (Fig. 36b) and is interrupted by the positive

Peacock Gravity Anomaly. The outer shelf area is dominated by a major Outer

Low (Kalberg and Gohl, 2014) of up to +80 mGal. The boundary between the

outcropping basement of the inner shelf and the sedimentary basin of the middle

and outer shelf (Gohl et al., 2013a,b) corresponds to a step in the BA from 0

mGal to +50 mGal.
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Figure 36: Compilation of gravity and magnetic data. Fig. 36a maps the satellite-

derived free-air gravity anomaly of the Amundsen Sea Embayment (McAdoo and Laxon,

1997). The thin black dotted and continues lines mark prominent gravity anomalies

along the middle and outer shelf of the Amundsen Sea Embayment. Figure 36b maps

the calculated Bouguer Anomaly. The framed semi-transparent area beneath shelf break

shows a prominent low (Outer Low). Figure 35c shows the magnetic anomaly map of the

ASE (Gohl et al., 2013a). Abbreviations are: ASEL-Amundsen Sea Embayment Low,

TIL-Thurston Island Low, PGA-Peacock Gravity Anomaly, PT-Pine Island Trough, BP-

Bear Peninsula, MBL- Marie Byrd Land, EL is Ellsworth Land, TI is Thurston Island,

KP is King Peninsula and PIB is Pine Island Bay.
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Magnetic data:

The outer and the middle shelf areas of the ASE shelf are dominated by long

wavelength NW-SE trending magnetic anomalies (Fig. 36c) which crossing the

Peacock Gravity Anomaly (Fig. 36a and 36b). Recent studies have related these

anomalies to fault-bounded basins formed by rift processes that occurred before

break-up as early as 100 Ma and during break-up between 90 and 83 Ma (Gohl,

2012; Wobbe et al., 2012; Gohl et al., 2013a). The inner shelf shows predomi-

nately short wavelength anomalies (Fig. 36c). The transition from long to short

wavelength magnetic anomalies is interpreted to be the signature of a bound-

ary between sediment-covered basement and outcropping basement (Gohl et al.,

2013a) (Fig. 36c).
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5.5 Spectral analysis

As directly measured crustal thickness is only available from two seismic re-

fraction profiles in the western ASE (Kalberg and Gohl, 2014) (Fig. 34b), we use

spectral analysis of the potential field data to derive crustal thicknesses for the

entire embayment. We calculated the depth of interfaces with significant density

and susceptibility contrast by using a power spectral analysis of the FAA and

the magnetic data. This method was initially developed for magnetic data (Spec-

tor and Grant, 1970) and upgraded for gravity data (Dorman und Lewis, 1970;

Syberg, 1972; Karner und Watts, 1983).

The power spectral analysis is based on the assumption that the source of an

anomaly field can be regarded as a collection of flat-topped prisms of different

heights below the measurement surface. With this assumption, the natural log-

arithm of the power spectrum of the field should portray a set of linear facets

when plotted against wave number (kr). The gradients of the facets can be used

to interpret the mean depths to the sources.

We chose three sub-areas for the power spectral analysis. Ideally, the chosen

areas should contain provinces of relatively uniform geology, but should also be

large enough to resolve longer wavelengths and, therefore, greater target depths.

Hence, the chosen window size of 200 km2 is a result of a compromise for these

considerations. The analysed areas cover the continental slope and rise (I) as

well as the middle (II) and inner shelf area (III) (Fig. 33b). The uncertainty

of the depth calculation is controlled by the sampling resolution and can be es-

timated to be around 2 km (Cianciara and Marcak, 1976). Studinger (2001)

showed that the information contents in the low-frequency parts of the spectra of

satellite-derived and aero-gravity data are comparable, and thus that the differ-

ences between crustal thickness estimates based on the two sources are negligible.
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Figure 37: Power spectrum analysis of free-air gravity data of McAdoo and Laxxon

(1997) (Fig. 36a). I, II and III are plots of the natural logarithm of the radially averaged

power spectra (PSD) as a function of radial wave number kr. Plots I-III correspond to

divisions shown in figure 34b. The black dots show the values of the energy spectra and

the grey lines are the result of a linear regression for the depth estimation. Anomaly

mass depth is presented in km. Mean depth to anomaly mass depth are estimated from

the slope of the corresponding PSD’s are shown.
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Figure 38: Power spectral analysis of magnetic data (Fig. 36c). I, II and III are plots

of the natural logarithm of the radially averaged power spectra (PSD) as a function of

radial wave number kr. Plots I-III correspond to divisions shown in figure 34b. The

black dots show the values of the energy spectra and the grey lines are the result of a

linear regression for the depth estimation. Anomaly mass depth is presented in km.

The results of the power spectral analysis are presented in Figures 37 and 38. At

first glance, it is evident that the crustal thickness estimates based on the power
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spectral analysis and the crustal thickness derived from seismic refraction data

(Kalberg and Gohl, 2014) are comparable. The power spectral analyses of the

FAA in all three sub-areas show two linear segments corresponding to distinct

density interfaces (Fig. 37). At the Nyquist wave number (0.50 km−1), the power

spectrum flattens out in the high-frequency domain and gives way to white noise.

Spectral analysis of Gohl et al. (2013a) magnetic anomaly grid of the ASE reveal

three linear segments in all three areas (Fig. 38). Similar to the gravity data, the

power spectral analysis of the magnetic data flattens out at high frequencies and

gives way to white noise at a Nyquist wave number of 0.80 km−1.

5.6 Potential field modelling

We used the potential field forward modelling software IGMAS (Götze et al.,

1988) to calculate the 3D effects of anomalous bodies in the subsurface. The grav-

ity or magnetic effect is calculated for a set of triangulated polyhedrons generated

from polygons drawn along parallel vertical cross-sections. Density or magnetic

susceptibility values are then assigned to each of these polygons. Our starting

model comprises 22 parallel vertical planes, which are orientated from north to

south and cross the shelf break of the ASE. The spacing between each pair of 500

km long planes is 25 km. The modelled area presented in this study covers an

area of 275000 km2 between 70◦S and 74◦S and between 104◦W and 120◦W (Fig

34b). To avoid edge effects, the flanking planes (planes 1 and 22) are modelled

at distances of 1000 km eastward and westward of the region.
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5.6.1 Density-depth modelling

To simplify our starting model, we treated all the sedimentary units as a single

layer with an average density of 2050 kg/m3. We used a maximum model depth

below sea-level of 30 km. P-wave velocities of the crystalline crust in the ASE

infer continental affinity (Kalberg and Gohl, 2014). We used the velocity-density

relationship for continental crust of Barton et al. (1986) for calculating crustal

densities based on the seismic refraction data. The upper-crustal density was

2650 kg/m3 and the lower-crustal density was 2800 kg/m3. Further, we mod-

elled an intracrustal layer based on latest seismic refraction observations in the

Embayment with a density of 3150 kg/m3 (Kalberg and Gohl., 2014) as well as

magmatic intrusive bodies with a moderate high density of 3000 kg/m3. Finally,

the uppermost mantle was modelled with a density of 3300 kg/m3.

The standard deviation between the observed (Fig. 39a) and modelled FAA

(Fig. 39b) is 6.78 mGal for the entire ASE. Differences between the modelled

and the measured FAA can be explained by out-of-plane effects and edge effects

at the shelf edge. Uncertainty of 100 kg/m3 for the density of the high-density

body infers an uncertainty of 1 km in crustal thickness. The depth of the Moho

below sea-level increases from 14 km at the continental rise to 29 km at the inner

shelf of the ASE (Figs. 40, 41 and 42a). Above this, the entire ASE is underlain

by a high-density lower crust of thickness varying between 1 and 10 km, from

north to south (Fig. 40).
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Figure 39: Figure 39a maps the modelled free-air gravity anomaly of the Amundsen

Sea Embayment. Fig. 39b images the measured free-air gravity anomaly (McAdoo

and Laxon, 1997). The three vertical thick black dashed lines show the position of

three example vertical layers 3, 13 and 21 which are shown in Fig. 40. Thin dashed

vertical black lines show the position of all other model layers which are shown in Fig.

41. The thick black dashed line image the shelf break and the dashed white line shows

outcropping basement (Gohl et al., 2013a,b).
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At the continental rise in the eastern embayment, we modelled the top of base-

ment at 7.5-9.0 km to be covered by 1.0-4.5 km of sedimentary rocks. This

geometry is confirmed in seismic and bathymetric data (Fig. 42b) (Gohl et al.,

2013a,b; Kalberg and Gohl, 2014; Nitsche et al., 2007, 2013). The outer shelf of

the western embayment is characterized by shallower basement at 4 to 5 km depth

beneath the Western Outer Bank (Gohl et al., 2013b). Seismic data confirm the

model depiction of a shallower level basement over parts of the shelf edge of the

eastern embayment (Fig. 39b; Hochmuth and Gohl, 2013). The model shows

NE-SW trending basins crossing the central and eastern parts of the middle shelf,

filled with 6 km or more of sediments (Fig. 39b). South of these basins, the

top-of-model-basement is only very shallowly buried or exposed (Fig. 39a and b),

as can be observed or inferred in seismic and magnetic data (Gohl et al., 2013a,b).
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Figure 40: 2D forward gravity models of the example layers 3, 13 and 21. Database is

the satellite-derived gravity data from McAdoo and Laxon (1997), crustal informations

derived from a spectral analysis of the satellite-derived gravity data of McAdoo and

Laxon (1997) and a previous 2D model in the western embayment (Kalberg and Gohl,

2014). Bathymetric surface is after Nitsche et al., (2013). Density values are given in

10
3kg/m3.
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Figure 41: 2D forward gravity modelling results of all layers. Database and density-

colour codification is the same as for the three example layers in fig. 40.
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Figure 42: Features derived from 3D forward gravity modelling. a) sedimentary

thickness map of the Amundsen Sea Embayment. b) crustal thickness in the ASE. c)

Moho depth. Thin black lines illustrate multi-channel seismic reflection profiles and

the two thick black lines show deep crustal seismic refraction profiles in the western

embayment (Kalberg and Gohl, 2014). The three yellow frames show the windows I-III

which were used for spectral analysis of the magnetic and gravity data (Fig. 34b). The

thick white dotted line shows the northerly limit of outcropping or shallow basement

as interpreted from magnetic anomalies (Gohl et al., 2013a,b).
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5.6.2 Magnetic modelling

Magnetic modelling used a magnetic declination of 30◦, an inclination of -65◦

and a 52000 nT background reference field (Maus et al., 2010). Depth estimates

based on spectral analysis of our magnetic anomaly data provided constraints for

an initial 3D magnetic anomaly model. Further, results of an Euler deconvolution

(Gohl et al., 2013a) were used to locate the tops and edges of magnetic sources.

The Euler deconvolution suggests the tops of distinct source bodies may be found

at depths of 7 km below sea-level on the outer and the middle shelf, but that

the tops of inner shelf source bodies may be much shallower (Gohl et al., 2013a).

The maximum model depth was fixed at 16 km in view of an estimated Curie

depth of 16 km beneath the central ASE shelf (Denk, 2011). Above this, the top

of basement was estimated from seismic data (Weigelt et al., 2009, 2012; Gohl et

al., 2013b; Kalberg and Gohl., 2014).
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Figure 43: Figure 43a shows the modelled magnetic anomaly map of the Amundsen

Sea Embayment. Fig. 43b images the measured magnetic anomaly map (Gohl et al.,

2013a). The three vertical black dashed lines show the position of the three example

slices 3, 13 and 21 which are shown in Fig. 44 and the thin dashed lines show the

locations of all other slices. The thick black dashed line images the shelf break and the

thick white dashed line marks the outcropping basement (Gohl et al., 2013a,b).
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Although the magnetic susceptibilities of different rock types can vary by several

orders of magnitude, it is possible to use them to distinguish generally between

sedimentary (0.000005 SI), mafic (0.0001-0.13 SI) or felsic (0.0001-0.02 SI) rock

compositions (Domack et al., 1992; Sanger and Glen, 2003). In our model, we

used susceptibilities of 0.000005 SI for the sedimentary layer, 0.001 SI for the

crystalline continental crust, and 0.08 for mafic intrusive bodies. The standard

deviation between the measured (Fig. 43a) and modelled total anomaly field (Fig.

43b) is 50.8 nT which corresponds to a model error of about 3.5 percent. As for

the gravity model, differences between the modelled and the measured magnetic

anomalies can be explained by out-of-plane and edge effects of intrusive bodies.
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Figure 44: 2D forward magnetic models of the example layers 3, 13 and 21 (Fig 43).

Database is the measured magnetic anomaly map of the ASE from Gohl et al. (2012),

mass anomaly depth estimations derived from a power spectral analysis of the magnetic

data (Fig. 36c) and a previous 2D magnetic model in the western embayment (Gohl et

al, 2012). Bathymetric surface is after Nitsche et al., (2013) and the basement structure

was derived from seismic observations. Susceptibility values are given in SI.
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For simplicity, and given the lack of independent constraints, we used a single

susceptibility value for all intrusive bodies in the embayment. Below the outer and

middle shelf, most of the source bodies are deep-seated, whereas intrusions below

the inner shelf top close to the seafloor. In contrast to the gravity modelling,

the basement morphology has no significant influence on the long wavelength

magnetic anomaly field. Magnetic anomalies associated with the basins of the

middle and inner shelf of the eastern embayment are modelled by susceptibilities

consistent with the presence of mafic intrusions (Figs. 44 and 45). The locations

of the strong susceptibilities correlate with modelled high-density bodies in the

3D gravity model (Figs. 40 and 41).
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Figure 45: 2D forward magnetic models of all layers. Database and susceptibility-

colour codification is similar to the three example layers in fig. 44.
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5.7 Elastic thickness estimation

The effective elastic thickness (Te) of the lithosphere gives an idea of litho-

spheric rigidity, and is calculated via its flexural response to sedimentary or topo-

graphic loading under the assumption that this response is like that of an elastic

plate with thickness Te (Watts, 2001). As temperature is considered to be a

control on lithospheric strength, the flexural rigidity of the lithosphere might be

expected to increase with time since rifting of part of the lithosphere and so might

be used to determine the rifting process.

We used the software LITHOFLEX to obtain an estimate of flexural rigidity

in the ASE (Braitenberg et al. 2007). LITHOFLEX provides a suite of utili-

ties to study the isostatic state, rheologic properties and the elastic thickness of

the lithosphere. In addition, the program includes a set of utilities that allow

forward and inverse calculation of the gravity field. LITHOFLEX requires the

crustal load and Moho depth, which are available from our 3D density-depth

model (Figs. 40, 41 and 42) and seismic data (Gohl et al., 2013b; Kalberg and

Gohl, 2014). The crustal load can be defined by the so-called equivalent to-

pography or rock equivalent topography (RET). RET is a representation of the

topography of the Earth that combines ocean water and ice into layers equiva-

lent to the density of topographic rock, while keeping the water and ice masses

constant. Hence, RET allows the computation of the gravity effect based on a

single constant mass-density layer.
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Figure 46: Map of the effective elastic thickness (Te) of the lithosphere of the Amund-

sen Sea Embayment. Values are given in [km]. Thick black dashed line marks the shelf

break.

We calculated RET with LITHOFLEX using the bathymetry of Nitsche et al.

(2007; 2013), the water density (1030 kg/m3) and an average crustal density

(2800 kg/m3) (Kalberg and Gohl., 2014). As the ice sheet in the ASE sector is

grounded relatively far inland of the rifted parts of the ASE, we ignore the effect

of the ice sheet and argue that this has no significant influence on the isostatic

state of the shelf. We calculate the flexural rigidity with respect to the known

sedimentary cover and the known crustal thickness. Based on this method, it is

possible to divide the ASE into different lithospheric areas, which can be inter-

preted according to their geological significance. The best fitting lithospheric Te

model (Fig. 46) exhibits an elastic thickness increasing from 10 to 15 km in the

eastern embayment, from 10 to 20 km in the western embayment and from 0 to

5 km in Pine Island Bay, which is therefore the weakest part of the ASE.
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5.8 Interpretation and Discussion

Lithospheric and crustal structure

The transition from oceanic to continental crust can be clearly identified at a

gradient towards more positive values beyond the shelf break in the Bouguer

anomaly (Fig. 36b). The Outer Low over the Western Outer Bank of the ASE

shelf (Fig. 36a) comprises a terrace in this signal and a basement terrace in our

gravity model. Unlike in the FAA, the BA signal is not ubiquitous beneath the

outer shelf, indicating that its source is not of topographic nature. We interpret

it to indicate a buried horst block, possibly a remnant from Cretaceous extension

that led to the separation of West Antarctica and Zealandia.

The basement morphology in the ASE is interpreted to be the result of dis-

tributed crustal rifting and deformation, leaving a buried network of failed rifts

and rift-related accommodation zones (Gohl et al., 2013b; Kalberg and Gohl,

2014). These sedimentary sub-basins of the middle and outer shelf can be related

the long tectonic history of the embayment. The basement ridge in the western

embayment (Fig. 42b) follows an ENE-WSW trending positive gravity anomaly

(Fig. 36a and Fig. 36b) and might be related to uplift over a high-density mag-

matic layer, possibly a part of a lithospheric mantle, transported from Marie

Byrd Land by a postulated continental insulation flow (Kalberg and Gohl, 2014;

Kipf et al., 2014) (Fig. 40).

The basement topography of the western embayment (Fig. 42 and 43) may have

determined its preglacial geomorphology. We infer that the basement ridges (Fig.

41a) may have set the template for past ice flow trends as has been interpreted for

the eastern embayment (Gohl et al., 2013b; Hochmuth and Gohl, 2013). The two

deep sub-basins in the eastern embayment also parallel the major glacial troughs

such as the Pine Island Trough and Abbot Trough.
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The intrusive bodies of moderately high-density (3000 kg/m3) are interpreted

to consist of cumulated gabbro resulting from partial melting of the lithospheric

mantle.

The correlation between these high-susceptibility and high-density bodies is bet-

ter in the eastern than in the western embayment. Only mafic intrusions pro-

duce both significant magnetic and positive gravity anomalies (Sterritt, 2006).

Hence, we suggest the eastern embayment hosts a greater concentration of mafic

intrusions than the western embayment, where intrusions may be of more felsic

composition. Thus, the sources of the intrusions are from different fractionation

processes of the melt. Mafic intrusions in the eastern embayment can be related

to the Dorrel Rock intrusive complex in Marie Byrd Land which is an emplace-

ment of the gabbro from abot 34 Ma (Rocchi et al., 2006), implying that a major

magmatic event in late Cenozoic affected the Amundsen Sea margin (Kalberg

and Gohl, 2014).

We attribute the felsic intrusions in the western embayment to decompression

melting during WARS-related extension (Gohl et al., 2013a,b), the presence of a

mantle plume beneath Marie Byrd Land (e.g. LeMasurier and Landis, 1996) or

to the large Southwest Pacific Diffuse Alkaline Magmatic Province as postulated

by Finn et al. (2005). For example, Trua et al. (1999) proposed that felsic

intrusions can be generated by partial melting of gabbroic material followed by

low-pressure fractionation. However, a conclusive process cannot be stated based

on our data.
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Assuming a normal lower continental crustal layer in the Amundsen Sea Embay-

ment, the expected density would be around 2800 kg/m3. This is significant lower

than the observed 3150 kg/m3 (Kalberg and Gohl, 2014). The density of this

observed layer seems to be also too high for magma of Phanerozoic origin but

the occurrence of cumulated layers could significantly rise the density of parts

of the crustal material. A similar high-density/high-velocity layer of 10-15 km

thickness was observed beneath normal continental lower crust of the Ethiopian

Rift by Mackenzie et al. (2005). They interpret a density of about 3170 kg/m3 as

a result of Oligocene underplating of mafic material. We infer a similar process of

margin-wide magmatism in the embayment (Kalberg and Gohl., 2014), possibly

related to a magmatic insulation flow (Kipf et al., 2014).

Te and rifting:

Our calculated lithospheric elastic thickness Te of 0-5 km for the eastern ASE and

PIB (Fig. 46) correlates with the NNW-SSE trending thick sedimentary basin

in the eastern embayment (Fig. 42; and in Gohl et al., 2013b) and with a small

positive Bouguer gravity anomaly (Fig. 36b). Unlike the positive BA associated

with sedimentary basins in the Ross Sea Rift, where Te is greater (Karner et al.,

2005) therefore, it seems unlikely that the BA could be seen as the consequence of

a time lag between mantle uplift during Cretaceous rifting of a weak lithosphere

(Te = 0 km), followed much later by regionally-compensated Cenozoic sedimen-

tation over a strengthened lithosphere (Te = 30 km).

Latest gravity inversion results of Cochran et al. (2015) suggest that the ASE

shelf has been tectonically inactive since Cretaceous extension and continental

breakup. They relate the post-breakup architecture of the embayment and shelf

to be the result of subsidence, sedimentation and the advance-retreat cycles of

the West Antarctic Ice Sheet. However, our Te estimates are similar to those

over young continental rift zones such as the Basin and Range Province (Te =
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5km) (Lowry and Smith 1994) or the Afar region, followed by the Main Ethiopian

rift (Te = 7km) (Pérez-Gussinyé et al., 2005). We therefore suggest that the low

rigidity and the positive Bouguer anomaly of the eastern ASE shelf are signals of

fairly recent rift events, possibly related to younger WARS activity (Gohl et al.,

2013b) overprinting the Cretaceous extensional phases.

Tectono-magmatic implications:

The lower crust in the Amundsen Sea Embayment with a density that is signifi-

cantly higher than that of normal lower crust in the region suggests widespread

magmatism. This is in agreement with the hypothesis of a continental insulation

flow transporting HIMU-like material from beneath western Marie Byrd Land to

the Marie Byrd Seamounts at 80-60 Ma (Kipf et al., 2014). Kalberg and Gohl’s

(2014) schematic tectono-magmatic reconstruction of a 2D continental rise to

shelf gravity model is in agreement with this interpretation (Kalberg and Gohl,

2014) which suggests that the continental margin was magmatically underplated.

Finn et al. (2005) attributed the Marie Byrd Seamounts to a Southwest Pacific

Diffuse Alkaline Magmatic Province, sourced from the mantle over the paleo-

Pacific subduction zone that preceded late Cretaceous rifting in the ASE region.

This part of the mantle is characterised today by low shear velocities (Schaeffer

and Lebedev, 2013) below Marie Byrd Land, the Ross Sea and the ASE.
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However, the thickness of the lithosphere, and with it conceivably Te, decreases

with increasing geothermal gradient that can result from extension or the advec-

tion of anomalously warm material (Ebinger et al. 1999; Buck, 2004). We observe

a decrease in Te at the continental rise of the ASE through the middle shelf of

PIB which correlates with the slow mantle shear wave velocities (Schaeffer and

Lebedev, 2013). Similar observations were also made in the East African and

Ethiopian rifts (e.g. Pérez-Gussinyé et al., 2009).

The NNE-SSW striking basin in the eastern embayment coincides well with the

low Te values (Fig. 46). We suggest that this basin may have developed as a

result of transtensional motion on branch of the WARS. As such, the basin may

have a similar origin as the Ferrigno Rift (Bingham et al., 2012) or GVIS (Eagles

et al., 2009). If, like in these analogues, the basin lay along part of the West-

East Antarctic plate boundary zone and connected with the paleo-subduction

zone west of Palmer Land and the Antarctic Peninsula, then it would date from

some time soon after the around 61 Ma establishment of the East Antarctic-West

Antarctic-Phoenix triple junction south of Peter I island.
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5.9 Conclusions

Analyses of geophysical data from the ASE provide new insights into the

lithospheric architecture and tectono-magmatic development of this part of the

continental margin of West Antarctica. Our 3D gravity model supports and

expands on previous 2D velocity-depth and density-depth models (Kalberg and

Gohl, 2014) and enables an interpretation of the tectono-magmatic history for

the ASE margin from its break-up with Zealandia to the present, indicating a

margin-wide process of magmatic underplating. Our 3D magnetic model sup-

ports earlier interpretations of distinct magmatic events in the ASE. An estimate

of the flexural rigidity completes the interpretation of the tectono-magmatic his-

tory. The main findings are summarized as follows:

1. 3D gravity modelling reveals the upper and lower crustal architecture be-

neath the shelf. The crust is 10 - 14 km thick at the continental rise, and

up to 29 km thick beneath the inner shelf. A high-density layer of vari-

able thickness, reaching a maximum of 10 km, is ubiquitous at the base

of the lower crust. The high-density layer indicates a margin-wide process

of magmatic underplating. The crust is intruded by numerous magmatic

bodies.

2. 3D magnetic modelling suggests a set of high-susceptibility bodies that

correlate more closely with the modelled magmatic bodies in the eastern

embayment than in the western embayment. This suggests magmatic intru-

sions of more mafic composition in the eastern embayment and material of

more felsic composition in the western embayment, and can be interpreted

in terms of varying melt sources for the two regions. The mafic intrusions

may correlate with the Dorrel Rock intrusive complex in MBL, implying a

major magmatic event accompanied the multi-stage tectonic activity that
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affected the Amundsen Sea margin during Oligocene. The interpreted felsic

intrusions in the western embayment may be attributed to decompression

melting during WARS-related extension, to a suspected mantle plume be-

neath MBL, or to the mantle source of the large Southwest Pacific Diffuse

Alkaline Magmatic Province (Finn et al., 2005).

3. Lithospheric rigidity is low (Te of 0 - 5 km) under the Pine Island Bay

segment of the eastern Amundsen Sea Embayment and corresponds to a

shelf sub-basin observed in seismic records. The low Te supports an inter-

pretation that Cenozoic rifting affected this segment of the ASE.
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6.1 Abstract

Marie Byrd Land, West Antarctica, is characterized by higher topography than

its surrounding area, which can be related to the presence of an anomalous un-

derlying mantle. The temporal and spatial distribution of this mantle anomaly

and its influence on the geomorphological development of the West Antarctic

continental margin and the entire South Pacific have been subject of vigorous

debates. During the RV Polarstern cruise ANT-XXVI/3 (2010), a geophysical

dataset was collected offshore Marie Byrd Land consisting of seismic reflection

data, ship-borne gravity and bathymetry data in order to study the regions sedi-

mentary and the crustal structure and their implications for uplift of the Marie

Byrd Land margin.

Sediment sequences of alternating reflectivity at the continental rise and on the

shelf indicating changes in climate conditions during deposition and distinct tec-

tonic events after break-up. A larger inclination angle than observed in sediments

on other Antarctic shelves indicates that the impingement of mantle material re-

sults in crustal uplift after continental break-up. Our results show a 10-12 km

thick Pratt-type compensated crust on the continental rise and an up to 27 km

thick ocean-to-continent transitional crust beneath the continental rise and the

shelf. The modelled crust is thicker compared to data from inland of Marie Byrd

Land and coincides with the presence of a high density layer beneath the lower

crust. We interpret this layer to be related to widespread magmatism.

6.2 Introduction

The continental margin of West Antarctica is of particular interest in recon-

structing the tectonic development of West Antarctica. In a broader sense, it

is also a key region in understanding the current rapid changes in climate, ma-

rine circulation and in particular the dynamic behavior of the West Antarctic
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Ice Sheet (WAIS). The region is tectonically active despite its intraplate location

which has been related to the presence of anomalously warm upper mantle, in-

terpreted from unusually slow seismic velocities (Sieminski et al., 2003). Marie

Byrd Land (MBL) is part of the West Antarctic continental margin, bounded

by the West Antarctic Rift System (WARS) in the south and by an elevated,

dome-like structure in the north (Fig. 47). This dome has been attributed to

plume-related tectonic uplift (LeMasurier and Landis, 1996; LeMasurier, 2008).

The plume seems to be similar in petrologic character, geologic history and size

to the Kenyan and Ethiopian domes (LeMasurier, 2008).

Contrary to the plume model, recent studies propose that the elevated area

is supported by a warm Pacific mantle rising beneath it following the end of

subduction at the MBL continental margin, and that its volcanoes are part of a

much larger SW Pacific Diffuse Alkaline Magmatic Province (DAMP) (Finn et al.,

2005). Other studies propose two hot mantle anomalies of which the larger one

is centred in the Ross Sea sector, resulting in up to 1 km of dynamic topography

(Spasojevic et al., 2010). Sutherland et al. (2010) illustrated this topography in

the seafloor off West Antarctica, which is elevated by 0.5 to 1.2 km above the level

of its conjugate area south of New Zealand and predictions using the lithospheric

age-subsidence relationship (e.g. Stein and Stein, 1992).
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Figure 47: Subglacial elevation and bathymetry of West Antarctica, the Transantarc-

tic Mountains, Ross Embayment and the Amundsen Sea Embayment. Inset shows

reference location map. Both based on BEDMAP 2 (Fretwell et al., 2013). The Ross

Sea is characterized by a series of basins and basement highs. Marie Byrd Land is high-

lighted by the dashed dark blue area. Ross Embayment: Ross Sea plus Ross Ice Shelf.

West Antarctic Rift System: Ross Embayment plus extended parts of West Antarctica

marked by thick grey dashed lines. Study area is highlighted in the red box. WA: West

Antarctica, EA: East Antarctica.
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Within the continents, mantle upwelling lead to tectonic uplift and widespread

magmatism (Cox, 1989) such as in the Afar region of the East African Rift System

(e.g. Marty et al., 1996) or the western cordillera in the United States (Parsons et

al., 1994). LeMasurier and Landis (1996) and Sieminski et al. (2003) suggested

that a mantle plume caused this uplift of central MBL beginning as early as

30 to 28 Ma and coincides with the inception of alkaline volcanism (Hole and

LeMasurier, 1994).
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Figure 48: Overview map of the West Antarctic continental margin. Transect A

includes seismic reflection profiles AWI-20100111, AWI-20100112 and AWI-20100113

(red). Thin black dashed lines are other seismic reflection profiles. AWI-20060100

(shelf) and AWI-20060200 (continental rise) annotate deep crustal seismic refraction

profiles in the Amundsen Sea to the east. BAS056-S111 is a seismic reflection profile

in the western Amundsen Sea Embayment (Gohl et al., 2013). The grey hatched area

marks the continent-ocean transition after Wobbe et al. (2012). The green dashed

line marks the distance L [km] of the dipping shelf sediments to the apex of the MBL

dome. The blue star marks the seismic receiver function data point of Winberry and

Anandakrishnan (2004).

However, two different hypotheses exist regarding the geomorphology of MBL

and greater New Zealand during their Cretaceous continental break-up. One

hypothesis suggests that the conjugate margins were at or near sea-level during

break-up, and than MBL uplifted thereafter (LeMasurier and Landis, 1996; Roc-

chi et al., 2006). A contrary hypothesis postulates that the region was already

elevated during continental break-up because of the presence of a mantle anomaly

which causes uplift (Luyendyk et al., 2001; Sutherland et al., 2010).
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This study uses the first geophysical data from Wrigley Gulf off Hobbs Coast,

West Antarctica (Fig. 47), that were collected for their relevance to studies

of the tectonic evolution and sedimentary architecture of this part of the conti-

nental margin. A seismic reflection transect from the continental rise onto the

shelf (Fig.48) images the sedimentary architecture and the basement structure for

the first time. In combination with seismic data from the neighbouring western

Amundsen Sea Embayment (Gohl et al., 2007, Weigelt et al., 2009, Gohl et al.,

2013, Kalberg and Gohl, 2014), the eastern Ross Sea (Luyendyk et al., 2003) and

onshore receiver function results south of central MBL (Winberry and Anandakr-

ishnan, 2004), a suite of simple 2D gravity models provide new constraints on

crustal thickness estimations and mantle density beneath the MBL margin. Built

from these constraints, our preferred model involves the presence of regional mag-

matic underplating, which can be associated with an anomalous mantle (Finn et

al., 2005) or mantle plume (LeMasurier, 2008).

Uplift of central MBL has left its signature in the tectono-sedimentary architec-

ture of the adjacent post-break up sediments on the inner shelf. The sedimentary

architecture of the inner shelf off Hobbs Coast further provides indications for

a near sea-level break-up between New Zealand and West Antarctica and uplift

of MBL thereafter. Additionally, seismic reflection data from the continental

rise and the inner shelf image changes in the reflection character which in turn

represent changing environmental conditions during deposition and episodes of

alternating major ice sheet advance and retreat that can be correlated to envi-

ronmental changes.

6.3 Geological setting

Wrigley Gulf, off Hobbs Coast, is part of the West Antarctic continental margin

which is conjugate to Campbell Plateau, south of New Zealand. Following their

145



Crustal structure and sedimentary architecture in Wrigley Gulf/Marie Byrd
Land, West Antarctica: Implications for the tectonic evolution and
environmental changes from geophysical observations

separation 90-83 m.y. ago (Eagles et al..; 2004, Wobbe et al., 2012), Campbell

Plateau underwent long-term subsidence. MBL, on the other hand, was affected

by pure shear extension orthogonal to the Transantarctic Mountains until 28 Ma

(Cande et al, 2000), and alkaline magmatism starting around 34 Ma (Rocchi et

al, 2006) as part of activity of the West Antarctic Rift System (Fig. 47). Unlike

the subsided Campbell Plateau, central MBL is characterized by a large (800 x

500 km) structural dome with an average elevation of 2700 m above sea-level and

3200 m above the glacial-isostatically corrected bedrock-surface elevation (Fig.1).

Late Cenozoic mafic igneous rocks are widespread in the Ross Sea and MBL with a

geochemistry of HIMU-type magmatic rocks (high time-integrated 238U/204Pb)

(Behrendt et al., 1991; Rocchi et al.,2002, Finn et al., 2005). Panter (2006) con-

sidered metasomatized lithosphere as source for alkaline magmatism in the area

of greater New Zealand and adjacent continental fragments of Gondwana such as

Marie Byrd Land. The timing of onset of metasomatic magmatism is constrained

to between 500 and 100 Ma which coincides with subduction and the distribution

of HIMU volcanism in the area (Panter, 2006). Rocchi et al. (2002) discussed a

model alternatively to the plume hypothesis (e.g. LeMasurier and Landis, 1996;

LeMasurier, 2008) to explain and correlate the regional tectonics, magmatism

and plate dynamics in the WARS. They propose that origin and emplacement

of magmatic material in West Antarctica are related to the reactivation of pre-

existing trans-lithospheric faults, which triggered local decompression melting of

an enriched mantle that was previously veined during a decompression episode as-

sociated with an amagmatic late Cretaceous extensional rift phase of the WARS.

A seismic shear-wave tomographic model of the upper mantle beneath the Antarc-

tic plate shows a low-velocity structure extending from the asthenosphere down

to the transition zone beneath the volcanic region of MBL (Sieminski et al., 2003).

Teleseismic receiver function studies (Fig. 48) showed a 24 km thin crust just
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south of the crest of the elevated part of MBL. The thinned crust is interpreted

to be the result of crustal extension from the Cretaceous to middle Cenozoic

(Winberry and Anandakrishnan, 2004). The MBL dome is 1 km higher than the

top surface of this thickness of crust ought to lie if in simple isostatic equilibrium

with normal-density mantle (Winberry and Anandakrishnan, 2004).

The timing of the onset of glaciation in Wrigley Gulf off Hobbs Coast is not

tightly constrained, but drilling data and seismic profiles along the Pacific margin

of Antarctica reveal extensive aggradation and progradation of the continental

shelf during the late Cenozoic, which can be associated with glacial processes

(Cooper et al., 2008). Weigelt et al., (2009) infer the onset of major glacial ad-

vances onto the continental shelf around West Antarctica in Miocene times and

emphasize that the ice sheet in the Amundsen Sea Embayment responded sen-

sitively in its expansion to environmental changes throughout the late Cenozoic.

The first seismo-stratigraphic model of the ASE (Gohl et al. 2013) infer similar

reflection characteristics compared to those on the Ross Sea shelf for which age

models exist from drill records. A chrono-stratigraphic model for seismic units

on the ASE shelf assign an Early Cretaceous age to the oldest sedimentary unit

and a Pliocene to Pleistocene age to the top unit (Gohl et al., 2013).

6.4 Data acquisition and processing

A 290 km long transect of multichannel seismic reflection data (profiles AWI-

20100111, -0112 and -0113) was acquired from the continental rise onto the shelf

of Wrigley Gulf off Hobbs Coast during RV Polarstern cruise ANT-XXVI/3 in

2010 (Fig. 49). Three GI-Guns with a total generator volume of 2.2 liters (450

in3) were used as seismic source. Shot interval of 10 s corresponds to a shot

distance of 25 m. Profile AWI-20100111 was recorded with a 3000 m long digital

streamer with 240 channels. Sea-ice required the deployment of an 600 m long
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analogue streamer of 96 channels for profiles AWI-20100112 and AWI-20100113,

both with a sampling rate of 1 ms. Standard data processing include common-

depth-point sorting with a binning interval of 25 m, bandpass filtering, velocity

analysis, stacking and poststack migration.

Various attempts were made to suppress sea-floor multiples on the shelf using

FK-filtering, radon transformation and predictive deconvolution, but due to the

small source energy and short offsets all attempts produced minimal results. Ship-

borne gravity data were collected continuously with a KSS-31 sea gravimeter at

a sampling rate of 1 s. The data were drift corrected by onshore reference mea-

surements in Wellington, New Zealand and Punta Arenas, Chile. We reduced the

data to free-air anomaly (FAA) with respect to the GRS80 gravity model using

a standard processing procedure (Torge, 1989), including an Eötvös correction

calculated with the ships navigation.
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6.5 Results

6.5.1 seismic reflection data

Data from the continental rise reveal a relative smooth top of basement (Fig.

49). Four sedimentary units can be identified with a total two-way-time (TWT)

thickness up to 1.5 s, corresponding to 1.5-2 km sediment thickness at CDP 66 -

7000, interrupted by two small seamounts. We distinguish several high-amplitude

reflectors separating at least 4 distinct units apart from each other in the basin.

These units are mostly continuous and with a nearly horizontal strata (Fig. 49).

Unit 1 is of homogeneous, transparent and undisturbed strata and characterised

by low reflectivity and little internal structure. Some internal, nearly horizontal

reflectors can be identified within Unit 2. Unit 3 also shows some horizontal

reflectors and internal structure which is of higher reflectivity than Unit 2. Unit

4 is characterised by high reflectivity. The top of basement reflector on the

continental rise becomes slightly shallower towards the foot of the shelf slope.

Chaotically deposited sediments, identified from undulating and rough reflectors,

lie at the foot of the shelf. Other high-reflectivity strata near the bottom of the

slope indicate turbidity currents and gravity slides.
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Figure 49: Compilation (top) and horizon interpretation (bottom) of seismic transect

A from the continental rise to the inner shelf. Gaps in the data are airgun shutdowns.

Continental rise Units 1, 2, 3 and 4 can be distinguished based on their reflection

characteristics. Grey filled zones on the shelf mark sediment sequences alternating with

sequences of closely-spaced, continuous reflectors within the over-inclined oceanward

dipping strata. CDP distance: 25 m.

Seafloor multiples mask the signal from the top of basement and it disappears

beneath the shelf edge. Seafloor relief on the 400-700 m deep shelf is relatively

smooth. The seafloor deepens towards the inner shelf, which is typical for polar

shelves (Anderson, 1999). A series of oceanward dipping units characterize the

inner and middle shelf strata (Fig. 49). These units occur in packages that alter-

nate between reflection-rich and reflection-poor.
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Between CDP 7000 and 9500, the top of basement is interpolated to the inner

shelf where it crops out. The dip of strata on the shelf increases from towards the

shelf edge. Middle and inner shelf strata dip at around 4◦, calculated based on a

CDP interval of 25 m, a distance of 22.5 km (900 CDPs) and the thickness of the

middle shelf sediments of about 1.5 km (Fig 51). Accuracy of the dip calculation

is limited by the resolution of seismic reflection observations and can estimated

to 0.2◦. Sedimentary strata on the inner shelf are disrupted by basement-cutting

normal faults (Fig. 49).

6.5.2 Gravity modelling

In order to test the model response of a suspected low-density upper mantle

(LeMasurier and Landis, 1996, Sieminski et al., 2003, Finn et al., 2005) under-

neath central MBL, we calculated a suite of simple 2D gravity forward models

(Fig. 50) of the measured FAA. We derived the constraints for our starting model

from our bathymetric and seismic data as well as from supplementary geophysical

data in adjacent regions (e.g. Wobbe et al., 2012; Gohl et al., 2013; Kalberg and

Gohl, 2014).
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Figure 50: Suite of IGMAS forward gravity models along the seismic transect (Götze

and Lahmeyer, 1988). Thick grey lines represent the measured shipborne free-air gravity

anomaly. Blue lines: calculated free-air gravity anomaly. Layer densities are given in

10
3kg/m3. Standard deviation between the measured and the calculated free-air gravity

is less than 1 mGal in all models. Model D is our preferred model. The semi-transparent

and striated layers in the northern part of the models show areas of suspected oceanic

crust according to Wobbe et al. (2012).

Sediment thickness was adopted from seismic reflection data and the sediments

were modelled as single layer with a constant density of 2050 kg/m3 adopted from

P-wave velocities of the nearest seismic refraction data from the western Amund-

sen Sea Embayment (Fig. 48, AWI-20060200) (Kalberg and Gohl, 2014). Crustal

thickness beneath the western Amundsen Sea Embayment varies between 12 and

27 km (Kalberg and Gohl, 2014). To the south, near the crest of the MBL dome,

onshore receiver function analysis suggests crustal thickness of 24 km (Winberry

and Anandakrishnan, 2004). The crust of the eastern Ross Sea shelf region is

around 23 km thick (Luyendyk et al., 2003). Hence, we use a crust of 25 km in
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our starting model assuming that no significant changes in the crustal structure

occurs along the margin.

For simplificity, we exclude a distinct oceanic part in the northern part of the

model (Fig. 50) as interpreted by Wobbe et al. (2012). We argue that this

has no significant influence to our interpretation, which concerns the continental

part of MBL. We used a background density of 2760 kg/m3, seawater density of

1030 kg/m3, a normal mantle density of 3300 kg/m3, and warm mantle density

of 3150 kg/m3. Layer boundaries in all models are smooth, and no intrusions or

dykes are required to fit the measured FAA. Differences between the measured

and modelled FAA can be explained by out-of-plane effects for the shelf-edge and

the two seamounts on the continental rise. We estimate that an uncertainty of

100 kg/m3 for the upper-mantle density leads to an uncertainty of 1 km in crustal

thickness. The standard deviation between the measured and the calculated FAA

is less than 1 mGal in all models.

Model A (Fig. 50) shows the combination of a normal-density mantle and a

single-layer crust with a density of 2700 kg/m3. The Moho depth is 12 to 15

km on the continental rise and 24 km beneath the shelf. Model B (Fig. 50)

demonstrates the effect of low-density mantle (3150 kg/m3) in combination with

a single-layer 2700 kg/m3 crust. Beneath the continental rise, the Moho depth

ranges between 10 and 12 km and reaches 24 km beneath the shelf. In Model C

(Fig. 50), a normal mantle density is modelled with a lower crust of 2900 kg/m3

and upper crust of 2700 kg/m3 are used. The crustal thickness ranges from 10

to 15 km at the continental rise and 24 km beneath the shelf. Finally, model D

(Fig. 50) has a two-layered crust with an upper crustal density of 2700 kg/m3

and a lower crust of 2900 kg/m3, and mantle with a ’warm’ low-density upper

part and normal lower part. The crust is 10 to 12 km thick on the continental

rise and 27 km thick beneath the shelf.
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6.6 Discussion

Continental rise sediments off Hobbs Coast:

The thickness of sediments on the continental rise is 1.5 to 2 km (Fig. 49). Lack of

drill control means that only a visual inspection and interpretation of the chrono-

stratigraphy is possible. However, it is widely accepted that changes in seismic

facies of sediments indicate changing environmental conditions during deposition.

We interpret the low reflectivity and paucity of internal structure in Unit 1 as

indications of deposition under conditions with weak or no bottom water cur-

rents, and hence at a time before glaciation on Antarctica. Increasing internal

structure in Unit 2 infers increasing water current activity, which we interpret in

terms of the presence of ephemeral ice sheets during a transitional period. Unit 3

seems to have been deposited in accompaniment to perennial ice-sheet glaciation

of Antarctica. Its high reflectivity indicates strong current fluctuations, and the

presence of debris flows can be attributed to sediment transport by advances of

ice sheets to the shelf edge. Unit 4 is transparent and its origin remains specula-

tive.

At least we suggest, that this framework for understanding the dynamic of sed-

iments in Wrigley Gulf must be considered as a working model because of the

lack of borehole control. Lindeque et al. (2013) present a more detailed seismo-

stratigraphic interpretation of the sedimentary setting and its correlation with

environmental conditions during deposition along the Pacific margin of West

Antarctica but their interpretation also suffers from the lack of drill data.

Shelf sediments off Hobbs Coast:

The inner shelf of Wrigley Gulf is characterized by oceanward dipping strata

whose inclination increases from the inner shelf to the shelf break (Fig. 49).

Sediments in this part lying directly on top of the basement (Fig. 49) and may
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represent the earliest sedimentary rocks in the region. We interpret the increasing

northward dip of these sedimentary reflectors as a probable consequence of dif-

ferent extensional phases during deposition. Normal faults indicate that crustal

extension affected the shelf (Fig. 49). This extension may correlate with tectonic

rifting and the relative movement of East and West Antarctica after break-up

and/or during the formation of the West Antarctic Rift System (WARS) (Müller

et al., 2007).

Alternating reflection-rich and reflection-poor regions on the middle shelf of Wrigley

Gulf (Fig. 49) can be interpreted as indications of major glacial retreats and ad-

vances, as in the western Amundsen Sea Embayment (Weigelt et al., 2009, Gohl

et al., 2013). Reflection-poor units indicate poorly-stratified, homogenous de-

posited sediments and/or a strong scattering of acoustic energy by point sources

(e.g. large clasts). Several studies, for example at the continental shelf of the

Ross Sea (De Santis et al.,1995, De Santis et al.,1997) or the Antarctic Peninsula

(Vanneste and Larter, 1995), have shown that glacially-deposited sediments con-

sist of diamictites (tills etc.) which are poorly or non-sorted with a wide range

of clast sizes and of acoustically transparent facies.

On the other hand, studies of the sedimentary architecture on Antarctic con-

tinental shelves have also interpreted high-amplitude, closely-spaced reflectors

to result from marked contrasts in sedimentary physical properties (De Santis,

1995, De Santis, 1997, Bartek et al., 1997). These contrasts are interpreted to be

an indication for strong variations in the composition and diagenesis of the de-

posited material related to changes in depositional character. Open water and/or

glaciomarine conditions allow a stronger diversification and stratification of de-

posits (e.g. Eyles et al., 1985) that produce continuous high-amplitude reflections

in the seismic record.
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Following the glacial sequence stratigraphic model of Powell and Cooper (2002),

we propose that reflection-poor units indicate an expanded ice sheet during

cold, polar climate intervals. During glacial retreats, stratified deposition of fine

grained mud produce sequences of continuous reflectors on the inner and middle

shelf of Wrigley Gulf. Sequence boundaries between reflection-poor and reflection-

rich seismic units are clear, but unfortunately the absence of chrono-stratigraphic

constraints frustrates the task of estimating the temporal distribution of cold and

warm periods and the transitional phases between them. In this context it seems

likely that dynamic variations and the evolution of the WAIS can be observed

in seismic records from the Ross Sea Embayment through Wrigley Gulf to the

Amundsen Sea Embayment and beyond, enabling an inference of spatial and tem-

poral similarities in glaciation all along the Pacific margin of West Antarctica.

Crustal architecture:

We modelled four possible crust-mantle configurations along our transect in or-

der to test the hypothesis of a thermal mantle anomaly beneath MBL. Gravity

modelling, regardless if forward or inverse, results in inherently non-unique solu-

tions. Hence, additional geological information is necessary to reduce the number

of independent model parameters. The sedimentary architecture is constrained

by our seismic reflection data. Seismological observations indicate a low-velocity

mantle anomaly beneath MBL and its continental margin (Sieminski et al, 2003,

Jordan et al., 2010), which is consistent with our gravity models B and D. Mod-

els C and A can be rejected. The transect crosses the suspected continent-ocean

transition of Wobbe et al (2012) (Fig. 48), which consists of thinned continental

crust or oceanic crust interleaved with segments of transitional crust or continen-

tal fragments (Wobbe et al., 2012). Therefore, models A and B, which use single

layered oceanic crust can also be disregarded. Consequently, we prefer model D

as the closest of the four representations of our profile to the real crustal structure.
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North of the shelf, this preferred final model presents a 10 to 12 km thick two-

layered crust, which is thicker and of lower average density than expected for

normal oceanic crust (White et al., 1990). Beneath the shelf, the crustal thick-

ness increases up to 27 km, thicker than the 24 km that results from Winberry

and Anandakrishnan’s (2004) seismic receiver function analysis onshore to the

south. The crustal architecture and densities are similar to seismic refraction

observations and gravity modelling results in the western Amundsen Sea Embay-

ment (Kalberg and Gohl, 2014).

The FAA along the transect averages zero, implying isostatically-compensated

crust. We interpret the crust on the continental rise as of stretched continen-

tal type and to be isostatically compensated by a Pratt-type mechanism. The

model’s high density crustal layer (3150 kg/m3) is denser than the 3000 kg/m3

used by Wobbe et al. (2012) in his 2D gravity model, but similar to that modelled

in the ASE (Kalberg and Gohl, 2014). The high density crustal layer can be at-

tributed to magmatic underplating and so correlated with the action of a mantle

plume in either its plume-head arrival or plume-tail phase (White and McKen-

zie, 1989) or related to an anomalously warm Pacific mantle beneath Antarctica

(Finn et al., 2005; Panter et al., 2006). However, it is not possible with these

2D forward models to distinguish between high-density lower crust (a result of

underplating) and low-density upper mantle.
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Tectonic Implications:

As discussed above, we interpret the increasing northward dip of the inner shelf

sedimentary reflectors as a probable consequence of different extensional phases

during deposition. The around 4◦ northwards average dip of inner shelf strata

(Fig. 51a) is greater than normal for most Antarctic shelf sediments. To confirm

this thesis, we calculated the stratal inclinations of other West and East Antarc-

tic shelf regions in the same way as demonstrated in Fig. 51 and compared them

with present-day surface elevations of the corresponding hinterland regions using

the bedrock topography of Antarctica derived from the BEDMAP2 grid (Fretwell

et al., 2013).

Seismic surveys from the middle to inner shelf of the western ASE reveal sed-

iments dipping at between 0.9◦ and 1.7◦ (Weigelt et al., 2009). Off Bakutis

Coast, Gohl et al. (2013) observed inclinations of 1.0-0.5 ◦ on the middle shelf

and 4.2 ◦- 2.0◦ over the inner to mid-shelf transition in profile BAS056-S111

(Fig. 48). The distance between this profile and the apex of the MBL dome

is similar to that for profile AWI-20100113 (Fig. 48). Oceanward dipping sedi-

mentary strata in the Eastern Ross Sea (Luyendyk et al., 2001) dip at around

2◦ away from the around 500 m sub-ice topographic high south of the Ross Ice

Shelf - Shirase Coast. Shelf-strata of the western Weddell Sea dip at less than 0.5◦

(Rogenhagen et al., 2000, 2005); the mean elevation of their hinterland is 1000 m.

The hinterland elevation of the Ingrid Christensen Coast of Prydz Bay is also

about 1000 m high, beyond which we calculate an average shelf strata dip ocean-

ward of less than 1◦ (Cooper et al., 1991). At the Wilkes Land margin, the Adelie

Coast is about 500 m high and strata on the middle shelf dip also oceanward at

less than 0.5◦ (Escutia et al., 2003). Hence, an average oceanward dip of 1◦ - 2◦

and average margin hinterland elevations of 0.5 - 1 km seem to be usual for shelf

sediments around most of Antarctica. Departing strongly from this pattern, the
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4◦ dip of strata on Wrigley Gulf shelf off Hobbs Coast and western ASE shelf off

Bakutis Coast (Gohl et al., 2013) correlate with the uplifted (3 km) subglacial

topography of central MBL.

A simple calculation demonstrates the possibility of a causal relationship between

uplift, tectonic processes and tilting of strata on the shelf (Fig. 51c). A regional

tilt of around 1◦ results directly from a 3 km uplift of the MBL dome crest (Fig.

51b). If we add this result to the 1-2◦ inclination of ’usual’ Antarctic shelf sedi-

ments, a total inclination of around 2-3◦ is likely (Fig. 51c) but the Hobbs Coast

sediments dip with around 4◦. For completion, further influences can be invoked

to account for the difference between the calculated 2-3◦ and the observed 4◦ dip

that typifies Wrigley Gulf shelf sediments.

Tectonic processes have a marked effect on sediment transport mechanisms, depo-

sitional processes, sediment strata and facies distributions on continental shelves.

Normal faults on the inner shelf off Hobbs Coast (Fig. 49) imply distinct rifting

events, which may have further influenced the sedimentary architecture. Due to

the distance of the inner shelf sediments to the apex of central MBL (Fig. 48),

flexural effects of the lithosphere to the inclination of inner shelf sediments must

be taken into account.
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Figure 51: a.) Middle shelf sediments of Wrigley Gulf from CDP 8000 to CDP 11000.

Calculation of observed middle shelf sediment dip cobs. dy is the thickness based on

two-way traveltime in (s) of the observed layer, dx is the profile distance in (km) used

for dip calculation where 1 CDP = 25 m. b) Schematic image of factors which influence

the inclination of the sediments on the continental margin. c) Model calculation of the

middle shelf strata inclination. Abbreviations are explained in the legend lower left.

The response of the lithosphere to sedimentary load and rifting can be approx-

imated by an elastic plate with an equivalent thickness Te (e.g. Watts, 2001).

Watts et al. (1989) suggested that the stratal geometry of coastal sediments de-

pend on the sediment supply, the amount of subsidence which directly correspond

to the elastic thickness Te of the lithosphere. The lithospheres flexural rigidity

is primarily controlled by the elastic thickness of the plate (Watts et al., 1982;

Watts, 2001). Based on crustal thickness estimations in Wrigley Gulf (Fig. 50)
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and topographic load defined by the rock equivalent topography (RET) based on

the ships bathymetry (Braitenberg et al., 2007), we estimated the elastic thickness

(Te) by using the software LITHOFLEX (Braitenberg et al., 2007) of 5 -10 km.

This result is similar to findings in the Amundsen Sea Embayment (Kalberg and

Gohl., 2014), under the Pine Island Glacier (Jordan et al., 2010) and also com-

parable to values from other rift systems such as the Basin and Range Province

(Te = 5km) (Lowry and Smith, 1994) or the Afar region, followed by the Main

Ethiopian Rift (Te = 7km) (Pérez-Gussinyé et al., 2005).

A first order estimation of the flexural effect of the lithosphere to the sedimen-

tary dip off Hobbs Coast reveals an additional tilt of less than 0.2◦ which is in

the order of the accuracy of the calculation of the inner shelf sediment dips. At

this point we mention, that a sagging lithosphere due to flexural behavior of the

lithosphere and sedimentary load has an increasing effect to the tilt of the inner

shelf sediments (Watts et al., 1989). The magnitude of influence depends on the

changing rate of the elastic thickness. The model of Watts et al. (1989) predicts

an increasing tendency for oceanward coastal sediment tilt as the flexural rigidity

changes more rapidly with time. Conversely, the sedimentary load has an weak-

ening effect to the lithosphere because of the lower density of sediments relative

to crystalline crust (Lavier et al., 1997).

In summary, we interpret the excess inclination of Wrigley Gulf inner shelf sedi-

ments as a consequence of the combined effects of post-break-up thermal subsi-

dence of the continental margin, flexure of the lithosphere, glacial-isostatic com-

pensation due to changes in ice sheet coverage, rifting during the formation of

the region and uplift of central Marie Byrd Land.
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Situation during break-up:

Luyendyk et al. (2001) suggested that the West Antarctic Erosion Surface was

formed at or above sea-level due to absence of thick early Cenozoic sediments

on the shelf of the eastern Ross Sea. Rocchi et al. (2006) counter that the lack

of early Cenozoic sediments is not inconsistent with a near-sea-level origin. If a

thermal anomaly existed since the Cretaceous, the area would have been elevated

at break-up times (Campbell and Griffiths, 1990). The reflection-poor units of

Wrigley Gulf inner shelf strata (Fig. 49) imply deposition during glacial times,

the earliest in Cretaceous pre-glacial times. These sediments were deposited be-

fore uplift, because they are concordant with reflectors in the upper basement.

Hence, uplift must have been occurred after sedimentation (Fig. 5). We associate

the over-inclined reflection-poor sediments of the inner shelf and the significant

elevation of Wrigley Gulf with low thermal subsidence and uplift after break-up.

The absence of seaward dipping reflectors, however why, in our seismic data is an

indication that extensive volcanism associated with a thermal mantle anomaly

did not occur at break-up times.
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Figure 52: Schematic and exaggerated depiction of the influence of uplift on sedimen-

tary architecture. Figs Ia, IIa and IIIa show the expected onlap that would accompany

sedimentation after uplift. Fig. Ib, IIb, and IIIb show the more conformable sedimen-

tary architecture that would form by deposition before uplift.
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Comparsion with other regions:

The geomorphology of the MBL uplift area best compares to the uplifted region

of the east coast of Brazil. This area was formed in Lower Cretaceous times

by continental break-up between South America and Africa. The east coast of

Brazil is the conjugate to the Cape Angola topographic high. A mantle plume

has been suggested to be responsible for the Paraná continental flood basalts and

the Serra do Mar coastal escarpment, which rises up to 2000 m above sea-level

over a distance of around 1500 km from Porto Alegre in the south to the inland

plateau edge (Peate et al., 1990). The conjugate topographic highs of the east

coast of Brazil and Cape Angola are interpreted to be the opposing halves of a

single original structure (Cox et al., 1989) which is interpreted as result of pre-

break-up uplift.

In contrast, the elevated setting of central MBL and its narrow shelf off Hobbs

Coast is not reflected on the conjugate continental submarine plateaus of New

Zealand. We interpret this asymmetry as a further, purely geomorphological,

indication for a post-break-up uplift of the MBL margin and post-break-up sub-

sidence on New Zealand side (Sutherland et al., 2010).
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Figure 53: Schematic geological interpretation of 2D forward gravity model D. Black

arrows should illustrate the uplift of central Marie Byrd Land due to a thermal mantle

anomaly. Red arrows illustrate the influence of this thermal mantle anomaly. On the

shelf over-inclined dipping sequences alternating between reflection rich and reflection

poor units.

We infer underplating beneath the Marie Byrd Land margin (Fig. 53) is the

result of early stage and initial magmatism after break-up may supported by

anomalously warm Pacific mantle beneath Antarctica (Finn et al., 2005; Panter

et al., 2006). This coincides with the multi-staged tectonic-geodynamic-magmatic

model of Rocchi et al. (2002a, b) which explained evolution of the region without

the occurrence of a mantle plume. The presence of this warm material may be

ascribed to the arrival of a small mantle plume (LeMasurier, 2008) or the escape

of low-density mantle material from beneath subducted slabs (Sutherland et al.,

2010). Finally, the existence of a mantle plume cannot be verified or neglected

from our modelling results.
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Conclusion:

The aim of our study is to use simple 2D gravity models to present evidence for the

timing and cause of MBL uplift in the crustal configuration and the sedimentary

architecture of the region’s continental shelf. The models are constrained using

seismic observations of the top of basement and the sedimentary architecture as

well as supplementary data from nearest geophysical measurements.

1. Gravity modelling shows that Pratt-type compensated stretched continen-

tal or transitional crust is underlain by a low-density upper mantle, consis-

tent with a known negative velocity perturbation (Sieminski et al., 2003)

and geochemical evidence for warm Pacific mantle beneath West Antarctica

(Finn et al., 2005).

2. Changing reflectivity of continental rise sediments represent changes in envi-

ronmental conditions from pre-glacial through trans-glacial to full glaciated

conditions during deposition. We further infer that reflection-poor units on

the inner shelf indicate a cold climate period during deposition, whereas

reflection-rich units were developed during warmer times.

3. Dynamic variations and evolution of the WAIS can be observed in seis-

mic records from the Ross Sea Embayment through Wrigley Gulf to the

Amundsen Sea Embayment and beyond, enabling an inference of spatial

and temporal similarities in glaciation all along the Pacific margin of West

Antarctica.

4. Inner shelf sediments dip oceanward by up to 4◦, about 2◦ steeper than non-

progradational sediment sequences on other Antarctic shelves. This excess

inclination can in some parts be correlated to a total surface uplift of 3 km

in central Marie Byrd Land, and to multiple tectonic processes affecting

the Pacific margin of West Antarctica including rift-related faulting at the

continental margin and the West Antarctic Rift System.
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5. A low-density upper mantle, over-inclined inner shelf sediments and the

absence of flood basalts infer that the central MBL crust is supported by an

anomalous mantle which controlled lithospheric uplift after a non-elevated

break-up between New Zealand and Marie Byrd Land.
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7 Conclusions and Outlook

Most of the questions asked in chapter 1.1 could be answered by analysis and

interpretation of the geophysical data which were collected during the expedi-

tions ANT-XXIII/4 in 2006 to the Bellingshausen and Amundsen Sea and ANT-

XXVI/3 in 2010 into Wrigley Gulf and the Amundsen Sea Embayment including

Pine Island Bay.

The Amundsen Sea Embayment:

The crustal models of the Amundsen Sea Embayment presented in chapters 4 and

5 confirms earlier study conclusions whether the region is composed by stretched

and thinned crust. Curstal thickness variies between 10-14 km beneath the con-

tinental rise and up to 29 km beneath the shelf of the Embayment. The velocity

structure of the crust shows the character of continental crust. The entire crust

is underlaid by a high-velocity layer of variable thickness which can be correlated

with a postulated continental insulation flow from beneath eastern continental

Marie Byrd Land to the Marie Byrd Seamounts (Kipf et al., 2014). Magmatic

intrusions are of felsic nature in the western embayment and of more mafic com-

position in the eastern embayment which I correlate with the prominent Dorrel

Rock intrusive complex (Rocchi et al., 2006) onshore eastern Marie Byrd Land.

Potential field data show tectonic lineaments in WSW-ENE orientation. The

analysis of lithospheric rigidity reveals an elastic thickness between 10-15 km in

the western embayment and 0-5 km in Pine Island Bay indicating a major tec-

tonic event superposed by several minor tectonic events in Oligocene. Further,

the occurence of tectonic activity in the embayment indicates an elongation of

the West Antarctic Rift System into this part of West Antarctica.
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The Marie Byrd Land:

The analysis of the crust of Wrigley Gulf off Hobbs Coast reveals Pratt-type

compensated and stretched crust of continental nature which is underlaid by a

low-density upper mantle layer of variable thickness. This low-density layer co-

incides with a known negative velocity pertubation in the area (Simiensky et al.,

2013). The crust is between 10 to 12 km thick at the continental rise and thick-

ens up to 27 km beneath the shelf. These values are similar to observations in

the western Amundsen Sea Embayment (Kalberg and Gohl, 2014) indicating a

relatively homogenous crustal architecture along this part of the West Antarctic

continental margin.

Continental rise sediments image environmental changes from pre-glacial through

trans-glacial to full glaciated conditions during deposition. These variations can

be also observed in the Ross Sea Embayment through Wrigley Gulf to the Amund-

sen Sea Embayment which implies a common pattern of temporal as well as spa-

tial behavior of the West Antarctic Ice Sheed along the Pacific margin of West

Antarctica.

Sediments of the inner shelf dip seaward with around 4◦ which is about 2◦ steeper

than non-progradational sediment sequences on other Antarctic shelves. I corre-

late this excess inclination with a surface uplift of up to 3 km in central Marie Byrd

Land. Considering the low-density upper mantle and absence of flood basalts I

infer that central Marie Byrd Land is supported by an anomalous mantle which

controlled lithospheric uplift after a non-elevated break-up between Marie Byrd

Land and greater New Zealand.
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Finally, my results suggest that the entire West Antarctic continental margin

between the Ross Sea Embayment and the Antarctic Peninsula (Fig. 1) was

affected by multi-staged rifting processes starting in Cretaceous and culminating

in Oligocene times. These rifting stages where superposed by a single major and

several minor magmatic episodes whose products I correlate with the SW Pacific

Diffuse Alkaline Magmatic Province (Finn et al., 2005) and a suspected magmatic

continental insulation flow from beneath eastern Marie Byrd Land towards the

Marie Byrd Seamounts (Kipf et al., 2014). My models upgrade knowledge of

the West Antarctic continental margin and can be used to constraint new recon-

structions of the tectonic develpoment of the South Pacific. Furthermore, my

basement and crustal models are indispensable for future models of the dynamic

behavior of the West Antarctic Ice Sheet.

It must be kept in mind that my interpretations are based on models, which

are always ambiguous. To confirm or extend my models, first and foremost new

detailed seismic refraction measurements in Wrigley Gulf off Hobbs Coast and

Bakitus Coast would fill the lack of knowledge of the lithospheric architecture.

Maybe these models will show also a homogenous crust of stretched continental

nature which is underlaid by a high-density layer along the entire West Antarctic

continental margin implying a continental wide tectono-magmatic event affecting

West Antarctica.

If this hypothesis will be confirmed, it should be discussed why central Marie

Byrd Land is elevated whereas the eastern part is near sea-level. My models

show a similar crustal architecture both off Hobbs Coast and in the Amundsen

Sea Embayment and hence, the cause of uplift is not a miscellaneous response of

the crust due to magmatic activity. Potentially, this is an effect of an asymmetric

expansion of the West Antarctic Rift system to the Amundsen Sea Embayment

and onshore eastern Marie Byrd Land.
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