
Contact: janosch.michaelis@awi.de 

1. Motivation and Objectives
In our study, we focus on the convection generated over polar sea ice leads (Figure 1)
and its influence on atmospheric boundary layer (ABL) characteristics.

During winter, large temperature differences occur between the lead surface and the
near-surface atmospheric flow.
 Strong convective 

plumes
 Internal boundary 

layer (IBL) over lead
 Complex processes in 

the entire ABL (Fig. 2)
 Strong local and large 

scale impact([3]-[5])

The convection strongly depends on both meteorological forcing and the lead geom-
etry[6],[7], where the governing processes act on small atmospheric scales.

Based on [6] (“L08”), we propose a new turbulence parametrization for the flow over
a lead accounting for the lead width for a non-eddy resolving small-scale model.
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Figure 1: Characteristics of sea ice leads and heat transport through leads and sea ice, based on [1] and [2].  
The pictures have been taken in the marginal ice zone Northwest of Svalbard on April 08, 2019.

4. Turbulence parametrization
For parametrizing sub-grid scale turbulence, local or non-local closures are applied in non-
eddy-resolving models. For the heat flux ݓᇱߠᇱ, they are written as follows:

Local approach Non-local approach

Characteristics of our parametrization:
• Non-gradient heat transport
• Horizontal inhomogeneities
• Variable lead width

Main idea (approach by L08 [6]):
• Basis: Non-local approach (2)
• Inside the plume at P2 and P3 (Fig. 4), ܭℎ and ߁depend on mean lead surface conditions.

Outside, at P1 and P4, a local approach (1) is used. A lead width of ܮ = 1km was prescribed.
• Decay of turbulence due to lateral entrainment and dissipation over downstream sea ice
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Drawbacks of L08: For 1 < ܮkm, the decay is too strong; for ܮ < 1km, it is too weak.

New modified and extended approach (“New”)
• Separation into two regions and new decay functions to include lead width ࡸ: 

Homogeneous convection assumed for 0 ≤ ࢟ ࢟ decay starts at ;ࡸ ≥ ࡸ =
• Two different length scales: one for vertical velocity (࢝ࡰ) and one for temperature (ࣂࡰ)
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• In addition: Inside the plume, a non-local approach is used also for momentum fluxes
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 ℎ: Exchange coefficient for heatܭ
Potential temperature   :ߐ
Height :ݖ
Non-local  :߁ term

2. Methods
Non-eddy-resolving model “METRAS”[8]-[9]

• Grid: 200m horizontally, 20m vertically

• Parametrization of sub-grid scale 
turbulence needed

Large eddy simulation 
(LES) model “PALM” [10]-[11]

• Grid: 5m in all 
directions

• All relevant turbulent 
scales are resolved

Turbulence parametrization (see 4.)

Results are
validated with 

time-averaged
results of LES.
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Figure 4: Dominating parameters in our parameterization.

3. Model setup

Figure 3: Model domain and setup of idealized lead scenarios.

Initial conditions:
• Scenarios represent measured

springtime conditions in the
polar ocean regions observed
during several campaigns[12],

[13], [14].

• ܷ, ܮ and ܶ݅ܿ݁ are varied
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Figure 6: Results of the sensible heat flux in Wm-2 obtained with LES and METRAS with our new closure for other lead scenarios.

6. Conclusions & Outlook
We developed a new non-local parametrization for the turbulent fluxes over leads that
accounts for the lead geometry (width .(ࡸ It is applicable in plume-resolving but non-
eddy-resolving atmosphere models.
Results obtained with our new parametrization agree well with time-averaged LES
results for different ࡸ and various atmospheric forcing.

Our approach can be applied for sensitivity studies on the impact of leads on larger
scales to derive parametrizations for climate and weather prediction models.
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Figure 2: Convective plume developing over a sea ice lead (based on [6], [7]).
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Figure 5: Results of the sensible heat flux in Wm-2, potential temperature in K, and horizontal wind speed in ms-1 obtained with 
LES and with METRAS using a local and our new non-local turbulence closure.
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