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• Generally correct, but has errors

• all fields, fluxes on model grid

• Generally correct, but has errors

• incomplete information: 
data gaps, some fields
ocean data: mainly surface (satellite)

Combine both sources of information 

quantitatively by computer algorithm

➜ Data Assimilation

Motivation

Information: Model Information: Observations

Model surface temperature Satellite surface temperature
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Data Assimilation

Methodology to combine model with real data

§ Optimal estimation of system state:

• initial conditions    (for weather/ocean forecasts, …)

• state trajectory (temperature, concentrations, …)

• parameters            (ice strength, plankton growth, …)

• fluxes                     (heat, primary production, …)

• boundary conditions and �forcing� (wind stress, …)

§ More advanced: Improvement of model formulation

• Detect systematic errors (bias)

• Revise parameterizations based on parameter estimates

€ 
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Interdisciplinarity of Data Assimilation

€ 

Data
Assimilation

Algorithms Applications

Software

Mathematics:
Optimization
Estimation

Inverse problems
Numerics

Earth Sciences,
Physics, 
Biology,

Cognitive science, 
...

Computer Science:
High-performance computing

Big data
Machine learning
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Outline

Ensemble Data Assimilation

Algorithms / Methodology

• Efficient methods for high-dimensional nonlinear systems 

Applications

• Examples of what one can expect to achieve

Software

• Make ensemble data assimilation easily usable

• Parallel Data Assimilation Framework (PDAF)



Lars Nerger – Ensemble Data Assimilation

Methodology
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Data Assimilation – a general view

Consider some physical system (ocean, atmosphere, land, …)

time

observation

truth

model

state
Variational assimilation

Sequential assimilation

Two main approaches:

Goal: Obtain optimal estimate of system
constrained by model dynamics and observations

Estimate not necessarily 
between model and obs. 
due to model dynamics

Assimilation 
estimate
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Needed for Data assimilation

1. Model

• with some skill

2. Observations

• with finite errors

• related to model fields

3. Data assimilation method

€ 
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Models

Simulate dynamics, e.g. the ocean
§ Numerical formulation of relevant 

terms

§ Discretization with finite resolution in 
time and space

§ “forced” by external sources 
(atmosphere, river inflows)

§ Uncertainties

• initial model fields

• external forcing

• in predictions due to model 
formulation
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2013) and uses total wavenumbers up to 63, which corre-
sponds to about 1.85 × 1.85 degrees horizontal resolution; 
the atmosphere comprises 47 levels and has its top at 0.01 
hPa (approx. 80 km). ECHAM6 includes the land surface 
model JSBACH (Stevens et al. 2013) and a hydrological 
discharge model (Hagemann and Dümenil 1997).

Since with higher resolution “the simulated climate 
improves but changes are incremental” (Stevens et al. 
2013), the T63L47 configuration appears to be a reason-
able compromise between simulation quality and compu-
tational efficiency. All standard settings are retained with 
the exception of the T63 land-sea mask, which is adjusted 
to allow for a better fit between the grids of the ocean and 
atmosphere components. The FESOM land-sea distribu-
tion is regarded as ’truth’ and the (fractional) land-sea mask 
of ECHAM6 is adjusted accordingly. This adjustment is 
accomplished by a conservative remapping of the FESOM 
land-sea distribution to the T63 grid of ECHAM6 using an 
adapted routine that has primarily been used to map the 
land-sea mask of the MPIOM to ECHAM5 (H. Haak, per-
sonal communication).

2.2  The Finite Element Sea Ice-Ocean Model (FESOM)

The sea ice-ocean component in the coupled system is 
represented by FESOM, which allows one to simulate 
ocean and sea-ice dynamics on unstructured meshes with 
variable resolution. This makes it possible to refine areas 
of particular interest in a global setting and, for example, 
resolve narrow straits where needed. Additionally, FESOM 
allows for a smooth representation of coastlines and bottom 
topography. The basic principles of FESOM are described 
by Danilov et al. (2004), Wang et al. (2008), Timmermann 
et al. (2009) and Wang et al. (2013). FESOM has been 
validated in numerous studies with prescribed atmospheric 
forcing (see e.g., Sidorenko et al. 2011; Wang et al. 2012; 
Danabasoglu et al. 2014). Although its numerics are fun-
damentally different from that of regular-grid models, 

previous model intercomparisons (see e.g., Sidorenko et al. 
2011; Danabasoglu et al. 2014) show that FESOM is a 
competitive tool for studying the ocean general circulation. 
The latest FESOM version, which is also used in this paper, 
is comprehensively described in Wang et al. (2013). In the 
following, we give a short model description here and men-
tion those settings which are different in the coupled setup.

The surface computational grid used by FESOM is 
shown in Fig. 1. We use a spherical coordinate system 
with the poles over Greenland and the Antarctic continent 
to avoid convergence of meridians in the computational 
domain. The mesh has a nominal resolution of 150 km in 
the open ocean and is gradually refined to about 25 km in 
the northern North Atlantic and the tropics. We use iso-
tropic grid refinement in the tropics since biases in tropi-
cal regions are known to have a detrimental effect on the 
climate of the extratropics through atmospheric teleconnec-
tions (see e.g., Rodwell and Jung 2008; Jung et al. 2010a), 
especially over the Northern Hemisphere. Grid refinement 
(meridional only) in the tropical belt is employed also in 
the regular-grid ocean components of other existing climate 
models (see e.g., Delworth et al. 2006; Gent et al. 2011). 
The 3-dimensional mesh is formed by vertically extending 
the surface grid using 47 unevenly spaced z-levels and the 
ocean bottom is represented with shaved cells.

Although the latest version of FESOM (Wang et al. 
2013) employs the K-Profile Parameterization (KPP) for 
vertical mixing (Large et al. 1994), we used the PP scheme 
by Pacanowski and Philander (1981) in this work. The rea-
son is that by the time the coupled simulations were started, 
the performance of the KPP scheme in FESOM was not 
completely tested for long integrations in a global setting. 
The mixing scheme may be changed to KPP in forthcom-
ing simulations. The background vertical diffusion is set 
to 2 × 10−3 m2s−1 for momentum and 10−5 m2s−1 for 
potential temperature and salinity. The maximum value of 
vertical diffusivity and viscosity is limited to 0.01 m2s−1.  
We use the GM parameterization for the stirring due to 

Fig. 1  Grids correspond-
ing to (left) ECHAM6 at T63 
(≈ 180 km) horizontal resolu-
tion and (right) FESOM. The 
grid resolution for FESOM is 
indicated through color coding 
(in km). Dark green areas of the 
T63 grid correspond to areas 
where the land fraction exceeds 
50 %; areas with a land fraction 
between 0 and 50 % are shown 
in light green
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Variable-resolution mesh
(ocean model FESOM)
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Observations

Measure different fields … for example in the Ocean
§ Remote sensing

§ E.g. surface temperature, salinity, sea surface height, 
ocean color, sea ice concentrations & thickness

§ In situ (ships, autonomous vehicles, …)

§ Argo, CTD, Gliders, …

§ Data is sparse: some fields, data gaps

§ Uncertainties

§ Measurement errors

§ Representation errors: 
Model and data do not represent exactly the same 
(e.g. cause by finite model resolution)
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Avalable T and S profiles during July 2008  

Example: Physical Data in North & Baltic Seas 

MARNET
stations

Scanfish and 
CTD profiles

Satellite surface temperature
(12-hour composite)
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Daily gridded SeaWiFS chlorophyll data
Ø gaps: satellite track, clouds, polar nights

Ø On model grid: ~13,000-18,000 data points daily 
(of 41,000 wet grid points)

Ø irregular data availability

Example: Chlorophyll-a observations (SeaWiFS)
mg/m3

Nerger, L., and W.W. Gregg. J. Marine Systems 68 (2007) 237
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Observation Error Estimates
If no observation errors available:

• need to estimate them

If observation errors available:

• they are typically usable

• usually do not account for 
representation errors 
(might be too low)

data errors from comparison with 2186 
collocation points of in situ data (SeaWiFS) 

logarithmic data errors provided with 
satellite chlorophyll data (OC-CCI)

Pradhan et al, JGR 2019 Nerger & Gregg, JMS 2007
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Data Assimilation Methods

Combine observations and model state estimate
• Account for uncertainty in observations

• Account for uncertainty in model state estimate

• Account for relations (correlations) between 
observed part of the model state and unobserved parts
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Ensemble Data Assimilation

Estimate uncertainty
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Ensemble Kalman Filters

First formulated by G. Evensen (EnKF, J. Geophys. Res. 1994)

Kalman filter: express probability distributions by mean 
and covariance matrix

EnKF: Use ensembles to represent 
probability distributions 

observation

time 0 time 1 time 2

analysis

ensemble 
forecast

ensemble 
transformation

initial
sampling

state 
estimate

forecast
There are 

many 
possible 
choices!

What is 
optimal is part 

of our 
research

Different 
choices in 

PDAF
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Ensemble Covariance Matrix 

§ Provide uncertainty information (variances + covariances)

§ Generated dynamically 
by propagating ensemble of model states

Uncertainty: Standard deviation of log Chlorophyll
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Ensemble Covariance Matrix (II) 
§ Also:

Provide information on error correlations 
(between different locations and different fields)

§ Example: Assimilation of sea surface height
(Brankart et al., Mon. Wea. Rev. 137 (2009) 1908-1927)

update [as in Brankart et al. (2003) or Testut et al. (2003)]
for each water column, with an additional weight on
the observations decreasing with the distance r as
exp(2r2/d2), with d 5 200 km (the typical distance at
which the correlation ceases to be significant). Figure 6
illustrates the resulting local structure of the background
covariance that is used to perform the observational
update. The figure shows the observational update in-
crement that would result from one single observation
(with 0.04-m error standard deviation), located at 98N,
548W (in the middle of the area traversed by the me-
soscale rings). The long-range (nonsignificant) influence
is effectively set to zero, without affecting much the
local covariance structure described by the ensemble.

b. Uncorrelated errors

In experiment 1 (see Table 2), we use the observation
vector that is perturbed by a white noise (observation
errors are thus spatially uncorrelated) and the obser-
vation error covariance is parameterized using a diag-
onal matrix (R 5 s2I). The parameterization is thus fully
consistent with the simulated errors. Figure 7 (top
panels) shows a map of the ensemble standard deviation
of errors (difference with respect to the true state) after
the observational update corresponding to experiment 1.
It is shown for altimetry (ez), for the altimetric gradient,
and for velocity (ey). It is computed as (the formula
for the gradient is similar to the formula used for
velocity)

e2
z 5

1

N
!
N

i51
(zf ! zt

i 1 dzi)
2 and

e2
y 5

1

N
!
N

i51
[(u f ! u t

i 1 du i)
2 1 (yf ! yt

i 1 dyi)
2], (52)

where zt
i, u t

i, yt
i is the ith true state (corresponding to the

ith snapshot of the model sequence), zf,u f,yf is the
forecast state (corresponding to the mean of the model
sequence), and dzi, du i, dyi is the ith observational up-

date. This result can be directly compared with Fig. 4
(bottom panels), which represents the same quantity be-
fore the observational update. Indeed, since the back-
ground state is the mean state and since the ensemble of
true state is the ensemble of all snapshots of the sequence,
the standard deviation of the sequence is equal to the
ensemble standard deviation of errors before the ob-
servational update; that is, (52) with dzi 5 0, du i 5 0, and
dyi 5 0. The comparison shows that the error on al-
timetry is significantly reduced by the observational
update, becoming much smaller than both the back-
ground error standard deviation (Fig. 4, bottom panels)
and the observational error standard deviation. This is
because background errors are correlated over an area
of about L 3 L, with L ; 125 km (see Fig. 6), including
about L2/Dj2 ; 25 observations with uncorrelated errors.
The resulting errors are thus about 1/ez

2 ; 1/sf
2 1 25/s2.

Observations are dense and very accurate and there-
fore the background has only little influence and the
resulting error is ez ; s/5 5 0.008 m, a rough estimation
that is quite consistent with the results is observed in
Fig. 7. Filtering off a white noise is easy if the back-
ground error correlation scales (about L) are large with
respect to typical data spacing (Dj).

However, the error reduction factor (with respect to
background error) is less favorable for the gradient of
altimetry. This is because computing altimetric differ-
ence Dz between adjacent model cells amplifies the
relative errors. Relative errors on velocities are again
slightly worse because the relation between surface
velocity and altimetry is not perfectly geostrophic (and
thus not perfectly linear).

On the other hand, the observational update of the
error covariance is illustrated in Fig. 7 (bottom panels),
showing the estimated error standard deviation (the
square root of the diagonal of Pa). This estimation is
quite consistent in amplitude and structure with the en-
semble standard deviation of the error (measured by dif-
ference with respect to the true state), also shown in Fig. 7
(top panels). The good quality of the error estimate (for

FIG. 6. Observational update increment on (left) sea surface height (m), (middle) zonal velocity (m s21), and (right) meridional velocity
(m s21), that would result from one single observation (with 0.04-m error standard deviation) of altimetry located at 98N, 548W (in the
middle of the area traversed by the mesoscale rings). This illustrates the size of the domain of influence of the observations.

JUNE 2009 B R A N K A R T E T A L . 1921Assimilation increment in sea 
surface height

Induced change 
in zonal velocity 
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Ensemble-estimated Cross-correlations

 

Cross correlations between total chlorophyll
and chlorophyll in phytoplankton groups

Pradhan et al., J. Geophy. Res. Oceans, 124 (2019) 470-490

 

Cross-correlations are used to correct non-observed quantities
from observed ones
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Ø Properties and differences not well understood
Ø Learn from studying relations and differences

_
_

ETKF

Ensemble-based/error-subspace Kalman filters

A little �zoo� (not complete):

EAKF

ETKF

EnKF(94/98)

SEIK

EnSRF
SEEK

RRSQRT

ROEK

MLEF
EnKF(2003)

EnKF(2004)
SPKF

ESSE

ESTKF

EnKF(94/98)
SEEK

SEIK
Efficiency of SEIK 

(Nerger et al. 2005) SEIK

(Nerger et al. 2012)

New filter
formulation

RHF

anamorphosis

Which filter should one use?

DEnKF

ESTKF

EnSRF

EAKF

Filter instability
(Nerger 2015)

L. Nerger et al., Tellus 57A (2005) 715-735
L. Nerger et al., Monthly Weather Review 140 (2012) 2335-2345
L. Nerger, Monthly Weather Review 143 (2015) 1554-1567
S. Vetra-Carvalho et al., Tellus A 70 (2018) 1445364

ETKF
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Assessing Ensemble Kalman Filters

Mathematical assessment of ensemble Kalman filters limited by
• optimality only proven for Gaussian error distributions
• convergence properties only clear for large ensemble limit

but
• models are nonlinear -> non-Gaussian distributions
• only small ensemble feasible to run for high-dimensional models

A practical approach
• compare and characterize behavior of different methods
• reach general conclusions from analyzing differences mathematically

Further: Ensemble Kalman filters don’t work in ‘pure’ form
• Need adaptions (‘fixes’) 
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Essential “Fixes” for Ensemble Filters

Covariance Inflation

Localization
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Covariance inflation

§ True variance is always underestimated
§ small ensemble size
§ sampling errors (unknown structure of P)
§ model errors

➜ can lead to filter divergence

§ Simple remedy

➜ Increase error estimate before analysis

§ Inflation
§ Increase ensemble spread by constant factor
§ Some filters allow multiplication of a small matrix 

(“forgetting factor”  ≤1; computationally very efficient)
§ Needs to be experimentally tuned

(Mathematically, this is a regularization)
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Localization: Why and how?

Ø Combination of observations and 
model state based on ensemble estimates 
of error covariance matrices

Ø Finite ensemble size leads to 
significant sampling errors 

• errors in variance estimates

Ø usually too small

• errors in correlation estimates
Ø wrong size if correlation exists
Ø spurious correlations when true correlation is zero 

Ø Assume: long-distance correlations are small in reality

Ø Localization: damp or remove estimated long-range correlations
(Houtekamer & Mitchell, 1998, 2001)

0 10 20 30 40
−2

−1

0

1

2

3

4
Example: Sampling error and localization
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Observation Localization

Local Analysis:
Ø Update small regions  

(like single vertical columns)
allows to define distance

Ø Use only observations within some
distance around this region

Ø State update and ensemble 
transformation fully local

Observation localization:

Ø Down-weight observations 
with increasing distance

S: Analysis region
D: Corresponding data region



Lars Nerger – Ensemble Data Assimilation
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Adaptive localization radius in global ocean model

• Localization radius is usually hand-tuned
• Numerical analysis in small models shows:

errors minimal when localization radius chosen such that
local sum of observation weights = ensemble size

• Application with FESOM (Finite Element Sea-ice Ocean Model):
• Fixed 1000km radius leads to increasing errors in 2nd half of year
• Lower RMS error in sea surface height than fixed 500km radius

Error-reduction of sea surface height

Kirchgessner, Nerger, Bunse-Gerstner, Mon. Weather Rev., 142 (2012) 2165-2175

truemodel state. The analysis step is computed after each
forecast phase of 10 days with an observation vector
containing about 68 000 observations. Overall, the ex-
periments were conducted over a period of 360 days.
The experiments use the ETKF with OL. Two ex-

periments with fixed localization radii of l5 500 km and
l5 1000 km are performed. A third experiment uses the
localization radius determined such that the effective
observation dimension is equal to the ensemble size.
The inflation factor was set to r 5 1.1.

b. Assimilation performance

Figure 8 shows of the RMS errors of the sea surface
height over time relative to an experiment without data
assimilation for the three experiments. For the fixed
radius of l 5 1000 km, the relative RMS error is quickly
reduced below 0.5, but increases again after day 150. The
relative RMS errors for the fixed radius of 500 km and
the experiment with the localization radius based on the
effective observation dimension are similar and the er-
rors generally decrease over time.However, the variable
localization results in smaller RMS errors than the fixed
localization radius. In the second half of the experiment,
the RMS errors obtained with the variable localization
radius are even smaller than those for the fixed locali-
zation radius of 1000 km.
Overall, the experiments show that the effective ob-

servation dimension can be used to specify a spatially
varying localization radius that yields estimates of similar
quality than those produced by a fixed radius. However,
while the fixed radius has to be tuned with several ex-
periments, this is not required for the variable radius.

7. Conclusions

In this study, the optimal value for the localization
radius in domain localization and observation localiza-
tion was examined using numerical experiments. Using
the Lorenz-96model and a nonlinear shallow-watermodel
allowed for the assessment the localization behavior with
two simple nonlinear models with different dynamics.
The main focus was on dense observations with uniform
observational error, which are used in real assimilation
applications (e.g., as gridded satellite observations of the
ocean surface temperature or sea surface height). For this
type of observations, it was possible to assess the relation
of the localization radius to the ensemble size over the
whole model domain.
The localization radius is optimal if the estimation errors

are minimal. It depends on the ensemble size and varies
for different weight functions. Typically, the optimal
radius is determined by experimentation. Yet, one can
define an effective observation dimension given as the
sum of the observation weights involved in a local anal-
ysis. The optimal localization radius was obtained, if
the effective observation dimensionwas about equal to the
size of the ensemble. Moreover, the optimal value of the
effective observation dimension is constant for different
weighting functions. This situation can be explained by
the fact that the degrees of freedom for the analysis are
determined by the rank of the ensemble. The degrees of
freedom are optimally utilized if the ensemble size
equals the effective observation dimension. In the case
of constant observation errors, the degrees of freedom
are distributed over different numbers of observations
for different weight functions. If the observation network
is less dense, other effects, like sampling error for distant
observations, become more important so that this re-
lation is weaker. For multivariate data assimilation in the
shallow-water model, the optimal effective observation
dimension was the same for all three model fields. If the
observation density is reduced, the linear relation in the
shallow-water model was still conserved, but the slope
was different. For both models, the optimal value of the
effective observation dimension was roughly equal to the
ensemble size if a field was completely observed. For
dense observations that are distributed in two dimensions,
a simple relation between the ensemble size and the op-
timal localization radius was deduced from the experi-
ments. This relation can be used to define an adaptive
localization radius that ensures that the effective obser-
vation dimension is equal to the number of ensemble
members. The relation was tested using a global ocean
model where synthetic observations of the sea surface
height were assimilated. With the adaptive localization,
without tuning, a similar error reduction as using an

FIG. 8. RMS errors for the assimilation experiment using FESOM
relative to the errors from an experiment without assimilation.
Shown are the relative RMS errors for a fixed localization radius of
1000km (black), 500km (red), and the variable localization derived
from the effective observation dimension (blue).

JUNE 2014 K IRCHGES SNER ET AL . 2173

Localization radius [meter]

x 105
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Current developements
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• Ensemble Kalman filters (and standard variational methods) are 
current ‘work horses’
• With various ‘fixes’ like localization

• Aim: Better account for nonlinearity

• Fully nonlinear: Particle filters
• still no established method for high-dim.

• Hybrid methods
• Hybrid ensemble-variational
• Hybrid ensemble Kalman – particle filters

• Iterative filters

Current developements
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• Represent state and its error by ensemble      of states

• Forecast:
• Integrate ensemble with numerical model

• Analysis:
• update ensemble mean

• update ensemble perturbations

(both can be combined in a single step)

• Ensemble Kalman & nonlinear filters: Different definitions of

• weight vector     

• Transform matrix  

Linear and Nonlinear Ensemble Filters

X

w̃

W

xa = xf +X0f w̃

X0a = X0fW

N
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• Ensemble Transform Kalman filter 
• Assume Gaussian distributions
• Transform matrix

• Mean update weight vector 

(depends linearly on y)

ETKF (Bishop et al., 2001)

A
�1 = (m� 1)I+ (HX

0f )TR�1
HX

0f

w̃ = A(HX
0f )TR�1

⇣
y �Hxf

⌘

N

W =
p
(m� 1)A�1/2⇤N

• Transformation of ensemble perturbations

(depends only on R, not y)
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• Nonlinear Ensemble Transform Filter
Ø Mean update from Particle Filter weights: for all particles i

NETF (Tödter & Ahrens, 2015)

w̃i ⇠ exp
⇣
�0.5(y �Hx

f
i )

T
R

�1(y �Hx
f
i )
⌘

Ø Ensemble update 
• Transform ensemble to fulfill analysis covariance

(like ETKF, but not assuming Gaussianity)
• Derivation gives

(     : mean-preserving random matrix; useful for stability)⇤

W =
p
m

⇥
diag(w̃)� w̃w̃T

⇤1/2
⇤

p
N

Tödter, J. and Ahrens, B. (2015) Mon. Wea. Rev. 143,1347–1367

(Nonlinear function of observations y)
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ETKF-NETF – Hybrid Filter Variants

1-step update (HSync)

• : assimilation increment of a filter
• !: hybrid weight (between 0 and 1; 1 for fully ETKF)

Xa

HSync
= X

f

+ (1� �)�XNETF + ��XETKF

�X

2-step updates
Variant 1 (HNK): NETF followed by ETKF

• Both steps computed with increased R according to !

Variant 2 (HKN): ETKF followed by NETF

X̃a

HNK
= Xa

NETF
[Xf , (1� �)R�1]

Xa

HNK
= Xa

ETKF
[X̃a

HNK
, �R�1]
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Choosing hybrid weight !

• Hybrid weight shifts filter behavior

• How to choose it?

Possibilities:

• Fixed value

• Adaptive

• According to which condition?

• Base on effective sample size 

set

(close to 1 if           small, i.e. small contribution of NETF)

�adap = 1�Neff/Ne

Neff =
X

i

1/(wi)2

Neff
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Test with Lorenz-96 Model (ensemble size N=50)

Ensemble size N=50
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Test with Lorenz-96 Model (ensemble size N=50)

Ensemble size N=50
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• All hybrid variants improve estimates 

compared to LETKF & NETF

• Dependence on forgetting factor & 

localization radius like LETKF

• Similar optimal localization radius

• Largest improvement for variant HNK

(NETF before LETKF)

• Currently testing in a larger model ...
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Applications
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Assimilation effect on Temperature (September 2012)

Assimilation (analysis)Free run
RMS (root-mean-square) deviation

Assimilation (analysis)Free run

Assimilate surface
temperature each 12 h

Compare assimilated
estimate with assimilated
surface temperature data
(monthly average)

Reduce RMS deviation and
mean deviation (bias)

➜ necessary effect

Mean deviation (observation – model)
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Improving forecasts

• Very stable 5-days forecasts

• At some point the improvement might break down due to dynamics
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LSEIK forecast

LSEIK analysis

120h LSEIK forecast

Figure 7: RMS error temporal evolution over the period 16 October 2007 – 21 October

2007 for simulated SST without DA (black curve); LSEIK analysis (red); mean of ensemble

forecast based on 12-hourly analysis (blue) and 5 days forecast (green curve) initialized

with the analysis state obtained on 16 October 2007.

38
S. Losa et al., J. Mar. Syst. 105–108 (2012) 152–162

Impact of Assimilation for temperature forecasts
(North & Baltic Seas)
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Longe-range effect

Example: Assimilate satellite sea 
surface height data (DOT)

Androsov et al., J. Geodesy, (2019) 93:141–157

Improve also temperature 
at 2000m depth

Reduce difference to assimilated 
data (necessary)
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Bias Estimation

Example: Chlorophyll bias of a 
biogeochemical model

Bias = systematic  errors

§ un-biased system: 
random fluctuation around true state

§ biased system: 
systematic over- and underestimation
(common situation with real data)

§ Bias estimation:
Separate random from systematic 
deviations

Nerger, L., and W.W. Gregg. J. Marine Systems, 73 (2008) 87-102

Logarithmic bias estimate
April 15, 2004
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Assimilation Free – Assimilation

Biogeochemistry: Coupled data assimilation effect

Free run

Surface oxygen mean for May 2012 (as mmol O / m3)

Free run

Coupled data assimilation case: physics and biogeochemistry
• Assimilate satellite sea surface temperature observations
• Assimilation directly changes Oxygen and other biogeochemical 

variables (strongly-coupled assimilation)
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Assimilation into coupled model: AWI-CM

Atmosphere
• ECHAM6
• JSBACH land

759ECHAM6–FESOM: model formulation and mean climate

1 3

2013) and uses total wavenumbers up to 63, which corre-
sponds to about 1.85 × 1.85 degrees horizontal resolution; 
the atmosphere comprises 47 levels and has its top at 0.01 
hPa (approx. 80 km). ECHAM6 includes the land surface 
model JSBACH (Stevens et al. 2013) and a hydrological 
discharge model (Hagemann and Dümenil 1997).

Since with higher resolution “the simulated climate 
improves but changes are incremental” (Stevens et al. 
2013), the T63L47 configuration appears to be a reason-
able compromise between simulation quality and compu-
tational efficiency. All standard settings are retained with 
the exception of the T63 land-sea mask, which is adjusted 
to allow for a better fit between the grids of the ocean and 
atmosphere components. The FESOM land-sea distribu-
tion is regarded as ’truth’ and the (fractional) land-sea mask 
of ECHAM6 is adjusted accordingly. This adjustment is 
accomplished by a conservative remapping of the FESOM 
land-sea distribution to the T63 grid of ECHAM6 using an 
adapted routine that has primarily been used to map the 
land-sea mask of the MPIOM to ECHAM5 (H. Haak, per-
sonal communication).

2.2  The Finite Element Sea Ice-Ocean Model (FESOM)

The sea ice-ocean component in the coupled system is 
represented by FESOM, which allows one to simulate 
ocean and sea-ice dynamics on unstructured meshes with 
variable resolution. This makes it possible to refine areas 
of particular interest in a global setting and, for example, 
resolve narrow straits where needed. Additionally, FESOM 
allows for a smooth representation of coastlines and bottom 
topography. The basic principles of FESOM are described 
by Danilov et al. (2004), Wang et al. (2008), Timmermann 
et al. (2009) and Wang et al. (2013). FESOM has been 
validated in numerous studies with prescribed atmospheric 
forcing (see e.g., Sidorenko et al. 2011; Wang et al. 2012; 
Danabasoglu et al. 2014). Although its numerics are fun-
damentally different from that of regular-grid models, 

previous model intercomparisons (see e.g., Sidorenko et al. 
2011; Danabasoglu et al. 2014) show that FESOM is a 
competitive tool for studying the ocean general circulation. 
The latest FESOM version, which is also used in this paper, 
is comprehensively described in Wang et al. (2013). In the 
following, we give a short model description here and men-
tion those settings which are different in the coupled setup.

The surface computational grid used by FESOM is 
shown in Fig. 1. We use a spherical coordinate system 
with the poles over Greenland and the Antarctic continent 
to avoid convergence of meridians in the computational 
domain. The mesh has a nominal resolution of 150 km in 
the open ocean and is gradually refined to about 25 km in 
the northern North Atlantic and the tropics. We use iso-
tropic grid refinement in the tropics since biases in tropi-
cal regions are known to have a detrimental effect on the 
climate of the extratropics through atmospheric teleconnec-
tions (see e.g., Rodwell and Jung 2008; Jung et al. 2010a), 
especially over the Northern Hemisphere. Grid refinement 
(meridional only) in the tropical belt is employed also in 
the regular-grid ocean components of other existing climate 
models (see e.g., Delworth et al. 2006; Gent et al. 2011). 
The 3-dimensional mesh is formed by vertically extending 
the surface grid using 47 unevenly spaced z-levels and the 
ocean bottom is represented with shaved cells.

Although the latest version of FESOM (Wang et al. 
2013) employs the K-Profile Parameterization (KPP) for 
vertical mixing (Large et al. 1994), we used the PP scheme 
by Pacanowski and Philander (1981) in this work. The rea-
son is that by the time the coupled simulations were started, 
the performance of the KPP scheme in FESOM was not 
completely tested for long integrations in a global setting. 
The mixing scheme may be changed to KPP in forthcom-
ing simulations. The background vertical diffusion is set 
to 2 × 10−3 m2s−1 for momentum and 10−5 m2s−1 for 
potential temperature and salinity. The maximum value of 
vertical diffusivity and viscosity is limited to 0.01 m2s−1.  
We use the GM parameterization for the stirring due to 

Fig. 1  Grids correspond-
ing to (left) ECHAM6 at T63 
(≈ 180 km) horizontal resolu-
tion and (right) FESOM. The 
grid resolution for FESOM is 
indicated through color coding 
(in km). Dark green areas of the 
T63 grid correspond to areas 
where the land fraction exceeds 
50 %; areas with a land fraction 
between 0 and 50 % are shown 
in light green
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to avoid convergence of meridians in the computational 
domain. The mesh has a nominal resolution of 150 km in 
the open ocean and is gradually refined to about 25 km in 
the northern North Atlantic and the tropics. We use iso-
tropic grid refinement in the tropics since biases in tropi-
cal regions are known to have a detrimental effect on the 
climate of the extratropics through atmospheric teleconnec-
tions (see e.g., Rodwell and Jung 2008; Jung et al. 2010a), 
especially over the Northern Hemisphere. Grid refinement 
(meridional only) in the tropical belt is employed also in 
the regular-grid ocean components of other existing climate 
models (see e.g., Delworth et al. 2006; Gent et al. 2011). 
The 3-dimensional mesh is formed by vertically extending 
the surface grid using 47 unevenly spaced z-levels and the 
ocean bottom is represented with shaved cells.

Although the latest version of FESOM (Wang et al. 
2013) employs the K-Profile Parameterization (KPP) for 
vertical mixing (Large et al. 1994), we used the PP scheme 
by Pacanowski and Philander (1981) in this work. The rea-
son is that by the time the coupled simulations were started, 
the performance of the KPP scheme in FESOM was not 
completely tested for long integrations in a global setting. 
The mixing scheme may be changed to KPP in forthcom-
ing simulations. The background vertical diffusion is set 
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We use the GM parameterization for the stirring due to 

Fig. 1  Grids correspond-
ing to (left) ECHAM6 at T63 
(≈ 180 km) horizontal resolu-
tion and (right) FESOM. The 
grid resolution for FESOM is 
indicated through color coding 
(in km). Dark green areas of the 
T63 grid correspond to areas 
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OASIS3-MCT

Ocean
• FESOM
• includes sea ice

Coupler library
• OASIS3-MCT

Two separate executables for atmosphere and ocean

Goal: Develop data assimilation methodology for
cross-domain assimilation (“strongly-coupled”)
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Assimilation Effect on Surface Temperature

No Assimilation Assimilation
Difference between model simulations and observations

• Also subsurface temperature is improved

Current work
• Assess effect on atmosphere
• Final aim: strongly-coupled assimilation 

(e.g. assimilate oceanic observation into atmosphere)

Assimilate subsurface temperature profile data

4/30/2016
Day 120

Qi Tang @ AWI
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Software
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single
program

Indirect exchange (module/common)
Explicit interface

state
time

state
observations

mesh data
Model

initialization
time integration
post processing

Ensemble Filter
Initialization

analysis
ensemble transformation

Observations
quality control

obs. vector
obs. operator

obs. error

Core of PDAF

Components of an Assimilation System

modify parallelization

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118
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PDAF: A tool for data assimilation

PDAF - Parallel Data Assimilation Framework

§ a program library for ensemble data assimilation

§ provide support for parallel ensemble forecasts

§ provide fully-implemented & parallelized filters and smoothers 

(EnKF, LETKF, NETF, EWPF … easy to add more)

§ easily useable with (probably) any numerical model

(applied with NEMO, MITgcm, FESOM, HBM, TerrSysMP, …)

§ run from laptops to supercomputers (Fortran, MPI & OpenMP)

§ first public release in 2004; continuous further development

§ ~370 registered users; community contributions

Open source: 

Code, documentation & tutorials at 

http://pdaf.awi.de

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118
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Offline coupling – separate programs

Model

Aaaaaaaa

Aaaaaaaa

aaaaaaaa
a

Start

Stop

read ensemble files

analysis step

Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Start

Stop

Do i=1, nsteps

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing

For each ensemble state
• Initialize from restart files
• Integrate
• Write restart files

• Read restart files (ensemble)
• Compute analysis step
• Write new restart files

Assimilation
program

write model
restart files

generic
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Offline coupling - Efficiency

Offline-coupling is simple to implement
but can be very inefficent

Example: 
Timing from atmosphere-ocean 
coupled model (AWI-CM) 
with daily analysis step:

Model startup: 95 s
Integrate 1 day: 28 s
Model postprocessing: 14 s

Analysis step: 1 s

overhead

Restarting this model is ~3.5 times
more expensive than integrating 1 day

➜ avoid this for data assimilation
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Extending a Model for Data Assimilation

Extension for 
data assimilation

revised parallelization enables 
ensemble forecast

plus:
Possible 

model-specific 
adaption

Start

Stop

Do i=1, nsteps

Initialize Model
Initialize coupler

Initialize grid & fields

Time stepper
in-compartment step

coupling

Post-processing

Model
single or multiple 

executables

Initialize parallel. Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Stop

Initialize Model
Initialize coupler

Initialize grid & fields

Time stepper
in-compartment step

coupling

Post-processing

Init_parallel_PDAF

Do i=1, nsteps

Init_PDAF

Assimilate_PDAF

Start

Initialize parallel.

Finalize_PDAF
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Augmenting a Model for Data Assimilation

Couple PDAF (Parallel Data Assimilation Framework) with model

• Modify model to simulate ensemble of model states

• Insert correction step (analysis) to be executed at prescribed interval

• Run model as usual, but with more processors and additional options

Forecast 1

Forecast 2

Forecast 40

Forecast 1

Forecast 2

Forecast 40Analysis

(EnKF)

Observation

...

Day 1

00:00h

...

Day 1

12:00h

...

Day 1

12:00h

Day 2

00:00h

...

Analysis step in 

between time steps

Continue model

time stepping with

changed fields

Initialize 

ensemble

Ensemble 

forecast
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• Interface routines call PDAF-core routines

• PDAF-core routines call case-specific routines 
provided by user (included in model binding set)

• User-supplied call-back routines for elementary operations:

§ field transformations between model and filter

§ observation-related operations

• User supplied routines can be implemented 
as routines of the model 
(for MITgcm: Fortran-77 fixed-form source code)

PDAF interface structure

Model PDAF User routines
(call-back)

Access information through modules/common
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PDAF: User-friendliness

Assumption: Users know their model

� let users implement assimilation system in model context

For users, model is not just a forward operator

� let users extend their model for data assimilation 

Keep simple things simple:

Ø Define subroutine interfaces to separate model and assimilation 
based on arrays

Ø No object-oriented programming
(most models don’t use it; most model developers don’t know it;
not many objects would be involved)

Ø Users directly implement observation-specific routines 
(no indirect description of e.g. observation layout)
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Example: Value of Efficient Software

Adaptive Localization (Kirchgessner et al, 2012)
• Original study done with small models (Lorenz-96, shallow water)
• Paper reviewer asked to apply it with full-scale forecast model
• FESOM with PDAF was fully coded without adaptivity

Ø Update PDAF library (just when recompiling)
Ø Adding adaptivity routine and running experiment

Kirchgessner, Nerger, Bunse-Gerstner, Mon. Weather Rev., 142 (2012) 2165-2175

Error-reduction of sea surface height

truemodel state. The analysis step is computed after each
forecast phase of 10 days with an observation vector
containing about 68 000 observations. Overall, the ex-
periments were conducted over a period of 360 days.
The experiments use the ETKF with OL. Two ex-

periments with fixed localization radii of l5 500 km and
l5 1000 km are performed. A third experiment uses the
localization radius determined such that the effective
observation dimension is equal to the ensemble size.
The inflation factor was set to r 5 1.1.

b. Assimilation performance

Figure 8 shows of the RMS errors of the sea surface
height over time relative to an experiment without data
assimilation for the three experiments. For the fixed
radius of l 5 1000 km, the relative RMS error is quickly
reduced below 0.5, but increases again after day 150. The
relative RMS errors for the fixed radius of 500 km and
the experiment with the localization radius based on the
effective observation dimension are similar and the er-
rors generally decrease over time.However, the variable
localization results in smaller RMS errors than the fixed
localization radius. In the second half of the experiment,
the RMS errors obtained with the variable localization
radius are even smaller than those for the fixed locali-
zation radius of 1000 km.
Overall, the experiments show that the effective ob-

servation dimension can be used to specify a spatially
varying localization radius that yields estimates of similar
quality than those produced by a fixed radius. However,
while the fixed radius has to be tuned with several ex-
periments, this is not required for the variable radius.

7. Conclusions

In this study, the optimal value for the localization
radius in domain localization and observation localiza-
tion was examined using numerical experiments. Using
the Lorenz-96model and a nonlinear shallow-watermodel
allowed for the assessment the localization behavior with
two simple nonlinear models with different dynamics.
The main focus was on dense observations with uniform
observational error, which are used in real assimilation
applications (e.g., as gridded satellite observations of the
ocean surface temperature or sea surface height). For this
type of observations, it was possible to assess the relation
of the localization radius to the ensemble size over the
whole model domain.
The localization radius is optimal if the estimation errors

are minimal. It depends on the ensemble size and varies
for different weight functions. Typically, the optimal
radius is determined by experimentation. Yet, one can
define an effective observation dimension given as the
sum of the observation weights involved in a local anal-
ysis. The optimal localization radius was obtained, if
the effective observation dimensionwas about equal to the
size of the ensemble. Moreover, the optimal value of the
effective observation dimension is constant for different
weighting functions. This situation can be explained by
the fact that the degrees of freedom for the analysis are
determined by the rank of the ensemble. The degrees of
freedom are optimally utilized if the ensemble size
equals the effective observation dimension. In the case
of constant observation errors, the degrees of freedom
are distributed over different numbers of observations
for different weight functions. If the observation network
is less dense, other effects, like sampling error for distant
observations, become more important so that this re-
lation is weaker. For multivariate data assimilation in the
shallow-water model, the optimal effective observation
dimension was the same for all three model fields. If the
observation density is reduced, the linear relation in the
shallow-water model was still conserved, but the slope
was different. For both models, the optimal value of the
effective observation dimension was roughly equal to the
ensemble size if a field was completely observed. For
dense observations that are distributed in two dimensions,
a simple relation between the ensemble size and the op-
timal localization radius was deduced from the experi-
ments. This relation can be used to define an adaptive
localization radius that ensures that the effective obser-
vation dimension is equal to the number of ensemble
members. The relation was tested using a global ocean
model where synthetic observations of the sea surface
height were assimilated. With the adaptive localization,
without tuning, a similar error reduction as using an

FIG. 8. RMS errors for the assimilation experiment using FESOM
relative to the errors from an experiment without assimilation.
Shown are the relative RMS errors for a fixed localization radius of
1000km (black), 500km (red), and the variable localization derived
from the effective observation dimension (blue).
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Localization radius [meter]
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Summary

Ensemble data assimilation
• Quantitative combination of model and 

observational data
• Improve observed and non-observed fields, 

fluxes, parameters, and predictions

PDAF simplifies the implementation and application of 
data assimilation

• Get faster to the application and results

Lars.Nerger@awi.de - Building EnsDA Systems for Coupled Models

Tomorrow’s Tutorial: 
• Implementation of PDAF with simple model 
• Experiments with an ensemble Kalman filter
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