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Abstract

The global mean temperature during the Eemian interglacial (ca. 130-115 ka BP) was about 2°C

warmer than today and is thought to have had a climate condition comparable to conditions, which
might occur due to modem anthropogenic climate change. Paleoceanographic records from the sub-
arctic Pacific and especially the Bering Sea over this important period are very limited. Reconstruction
of sea surface temperatures (SST) can lead to assumptions about processes of climate change and help
indicate changes to environmental conditions. This thesis contains new alkenone derived SSTs and
qualitative IP25 sea ice reconstructions, over glacial termination II and marine isotope stage 5 (MIS5)
from the Western Bering Sea (core S0201-2-85KL). The results were compared to Holocene records
from the same area, as well as to records over MIS5 and the Holocene from North Pacific and North

Atlantic. The SST record over glacial termination II and the Eemian period shows many parallels to

the climate development and temperature variability in the Bering Sea during the last 15 ka. In con-
trast to Atlantic and Pacific temperatures, the SST over the last interglacial was not enhanced com-

pared to the Holocene thermal maximum. This suggests a cooling factor within the Eemian Bering
Sea, which possibly includes changes in regards of currents or atmospheric interaction between the
Bering Sea and the North Pacific as well as to teleconnections to the North Atlantic.

1. Introduction

The aim of this master thesis will be to compare existing Holocene sea surface temperature
(SST) records from the Bering Sea with new alkenone-based SST-data from the Eemian pe-

riod (the last interglacial, ca. 130-115 ka before present (BP)). Hereby a focus shall also be

laid on glacial termination II and I, the preceding deglaciation phases of the Eemian and the

Holocene respectively. Additionally IPi5, a biomarker for sea ice occurrence, shall be taken

into account regarding deglaciation periods and sea ice dynamics. To put the Eemian SST

values into supra-regional context, they shall also be compared to other Temperature records
from North Pacific and North Atlantic.

The SST measurements done in this Thesis are embedded in topic 8 of the REKLIM climate

initiative. This initiative focuses on regional climate variability (REgionale KLIMaanderung-

en) and supra-regional interactions and is funded by the Helmholtz research community.

Topic 8 of this initiative deals with rapid climate change derived from proxy data. As the re-

suits of this thesis are used for this initiative, its motivation is also a part of the motivation of

this thesis. However, hypotheses which are related to this motivation cannot be tested by the
results of this thesis alone, but of the results of several studies.
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Motivation & scientific questions

During the Eemian interglacial orbital configurations were comparable to today, but with

higher summer insolation maxima in the northern hemisphere, leading to similar temperature

trends with higher magnitudes (Leduc et ai., 2010). This makes the Eemian interesting for

comparison of long term climate trends with the Holocene. The trends should be similar, but

due to higher magnitudes they should be more distinctive during Eemian times. During the

Eemian the global mean temperature was about 2°C higher than today (Otto-Bliesner et ai.,

2006; Kopp et ai., 2009). The Eemian is therefore of special interest. Although it is not a

complete analogue to the climate situation that may occur if the 2°C limit is crossed, conse-

quences, like global sea level rise, can be comparable (Rohling et ai., 2008). This limit is de-

fined by the United Nations Framework Convention on Climate Change (UNFCCC), in order

to avoid dangerous climate change (EU Climate Change Expert Group 'EG Science', 2008).

A very important aspect regarding this is that during the Eemian the global mean sea level,

reconstructed with proxy data, was at least 6 m higher than today (Kopp et ai., 2009). The

common explanation is that melting of continental ice sheets led to a higher sea level. Climate

models suggest, that no more than 3.4 m were contributed by the Greenland ice sheet (CIS),

which is also supported with arctic paleoclimatic data (Otto-Bliesner et ai., 2006). More re-

cent data from a new Greenland ice core, the first from Greenland to cover the complete

Eemian, favours models with a contribution of about 2 m (NEEM Community Members,

2013). A probable source for the water, which contributed to the additional rise of 2.6-4 m sea

level, would be a destabilization of the West Antarctic ice sheet (WAIS) (Overpeck et ai.,

2006). As the Eemian may have had a similar climate situation, as developed by anthropo-

genie global warming, it is of high importance to check these models against global proxy

data, to search for any evidence, which could determine if this scenario may be realistic.

The amount of published SST-proxy data for the sub polar North Pacific and its marginal seas

is small, although there has been some improvement over the last few years (e.g. Temois et

ai., 2000; Kiefer & Kienast, 2005). Still this area lacks on data over longer terms. In the Ber-

ing Sea, there are five alkenone datasets available, none of them yet has a record reaching

longer than the last glacial maximum (LGM) (Max et ai., 2012; Caissie et ai., 2010). There is

no Eemian SST-data in the Bering Sea available yet, so this thesis will fill a gap in the data

records in order for a better oceanographic understanding regarding the Bering Sea and its
interactions with the North Pacific.
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Another key motivation is the understanding of climate interaction between North Atlantic

and North Pacific. Kim et ai. (2004) suggested a temperature seesaw between these two cli-

matic realms, based on late Holocene climate models and several proxy records from this pe-

riod, which showed rising temperatures in the North Pacific and decreasing temperatures in

the North Atlantic. This seesaw is thought to be driven by an atmospheric teleconnection be-

tween the North Atlantic Oscillation (NAO), and the Pacific-North America Oscillation

(PNA). A high NAO index, referring to a high pressure gradient between an Iceland low and

an Acores high, would therefore correspond to a PNA low and vice versa. Leduc et ai. (2010)

enhanced the GHOST database used by Kim et ai. (2004) which included supporting data in
the North Atlantic and mid-latitude North Pacific. However, recent Holocene SST data from

the subarctic Pacific and its marginal seas stand in contradiction to this theory and describe

parallel patterns between North Atlantic and subarctic Pacific during glacial termination I and

the Holocene (Max et ai., 2012). Recent modelling suggests that an Atlantic-Pacific seesaw is

related to meridional overturning circulation and only exists when the Bering Strait is closed

(Hu et ai., 2012). Comparison ofEemian SST temperatures from the North Atlantic and the

subarctic Pacific can show temperature teleconnections between both realms on a longer

scale. The Eemian period featured higher insolation values, leading to higher amplitudes in

climate signals. Therefore, the character of such a teleconnection might also be easier to iden-
tify.

The motivation, results in the following three general scientific questions:

Did the higher insolation during the Eemian interglacial lead to significant changes re-

garding interglacial S ST trends?

How do glacial termination I and II compare, regarding S ST and sea ice development?

Is there a relation between North Atlantic and North Pacific temperatures trends dur-

ing glacial termination II and the Eemian interglacial?
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2. Geographic setting

2.1. Current regime within the Bering Sea and its connection to adjacent areas

The surface circulation of the Bering Sea is dominated by a cyclonic gyre. It's boundaries are,

as shown in Figure 1, the Kamchatka current to the west, the Bering Sea slope current to the

north east and the Aleutian north slope current to the south. Within this gyre is a northward

flowing current, which enters the Bering Sea at Near Strait and joins the Kamchatka current at

the northern edge of the Shirshov Ridge (Takahashi, 2005; Stabeno et ai., 1999).

es'N

55°N

45°N

3S°N

^m 6.
100mso:

"9 •/^^^~~~ÖS0201-2-101KL'^
S0201-2-85KL

'S0201-2-85KL

•Aleutian North Slope Cu

:9^ *~^
y^'x / S»ä

500m^ -J Nt
<

t
nt/-^ ^

j.? 7 I • 1000mr-^f'e0.^-
v 00 ert^? Cuff?0SW"00P145-882

2000m

^ :^0
e s»-b<^ ^

Gyrer. Subarctic 4000m0s

e
^

s 6000m
>

Kuroshio Current

m

140°E 160°E 180°E 160°W 140°W

Figure 1: Current system in the modern Bering Sea and sub arctic North Pacific

The red circle indicates the location of the core analysed in this thesis, yellow circles show core locations ofSST
records from other studies, which were used for comparison in this thesis. Arrows show a schematic of the cur-
rent regime, based on Stabeno et ai. (1999). Bathymetric map was created using "Ocean Data View" (Schlitzer,
2012).

Gateways and interactions with adjacent areas

The Bering Sea is connected to the Pacific via few passages between the Aleutians. The most

important gateways are the Unimak Passage to the east, the Amchitka Passage to the South

and Kamchatka, and Near Strait to the West. Apart of the two western straits, the passages are

rather shallow, which led to changes of current patterns during glacials. Figure 2 outlines

modem flow volumes through the southern passages. The cold water mass passing through

Kamchatka Strait contributes to the Eastern Kamchatka-Oyashio-current system, which is

heading southward. These currents represent the western boundary of the North Pacific sub-
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arctic gyre. Along the southern side of the Aleutian Islands flows the Alaskan cun-ent, which
is the northern edge of the subarctic gyre.
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Figure 2: Profile of flows between Pacific and Bering Sea

Source: Takahashi (2005).

During interglacials there is also a connection to the Arctic Ocean via the Bering Strait, which

is rather small but important regarding the global conveyor belt. The Bering Strait transports

surface water, with a relative low salinity, from the Bering Sea to the more saline Arctic
Ocean (Stabeno et ai., 1999).

As stated in the motivation, models suggest a seesaw regarding thermo-haline circulation in

glacials. The glacial closure of the Bering Strait is thought to have disturbed the Atlantic me-
ridional overturning circulation (AMOC). This led to a cooler North Atlantic, but enhanced a

production of North Pacific intermediate water (NPIW) and created a Pacific meridional over-
turning circulation (PMOC) (Hu et ai., 2012). Recent neodymium isotope data brought evi-

dence for NPIW activity during early MIS 5d and the western Bering Sea is thought to be a
source region (Horikawa et al., 2010).

The glacial sea level drops led also to an exposure of the eastern shelf area and affected the

capacity of gateways between the eastern Aleuts and therefore decrease the incoming amount
of water so that the slope current is weakened (Tanaka & Takahashi, 2005).

2.2. Modern surface temperatures and sea ice condition

Figure 3 gives an overview about the distribution of September and March surface tempera-
tures in the North Pacific in 2009. During late summer there is a northward directed tempera-
ture gradient imtil latitudes of 45° N. Further to the North, the temperature distribution is in-

fluenced by the Aleutian Island, which leads to lower temperatures in the Bering Sea, com-
pared to the sea of Okhotsk, which lies at the same latitude.
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Figure 3: Sea surface temperature distribution in the Bering Sea and subarctic North Pacific in 2009

The surface color indicates (a) September and (b) March SST. Data source: Locami et ai. (2010). Map was
created using "Ocean Data View" (Schlitzer, 2012).

In March the latitude parallel temperature distribution is shifted southward. North of 40° the

gradient is turning anti clockwise, leading to cold temperatures to the west and slightly

warmer surface water to the east. This gradient intensifies towards north, leading to a tem-

perature difference above 5°C at 50° N, with very cold temperatures east of Kamchatka. In

8



the Bering Sea this temperature pattern is weakened and north of 57° the SST distribution is
latitude parallel.

These great iimer annual S ST dynamics in the subarctic pacific regarding S ST are strongly
coupled to the Aleutian low pressure system, which is influenced by PNA and two other im-

portant oscillations, the Pacific Decadal Oscillation (PDO), and the El Nino Southern Oscilla-
tion (ENSO) (Max et ai., 2012; Niebauer, 1988). During winter the climate is dominated by
the pressure gradient between the Siberian high and the Aleutian low pressure system. This
leads to strong northerly winds and three to five storms per month, which transport cold air
masses from the arctic southward. 1 Nino events lead to a weakened Aleutian Low, which is

moved south east, and leads to warmer temperatures in the Bering Sea. In summer the Aleu-
tian Low is rather weak, leading to slow winds, which favours insolation as main driver for
summer climate (Niebauer et ai., 1999).

Today, during end of winter, sea ice coverage in the Bering Sea reaches its maximum exten-

sion, as depicted in Figure 4, in the shelf area to the east and the coastal regions to the north-

west (Niebauer et ai., 1999). Apart of the coastal regions, the western Bering Sea is ice free
throughout the year.
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Figure 4: Sea ice distribution variability in the Bering Sea

Ice extension is depicted during (a) summer and (b) winter (Niebauer et ai., 1999).
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2.3. Eemian climate in the subarctic

In many publications the Eemian and marine isotope stage 5e (MIS 5e) are used as synonyms
for the last interglacial (e.g. Rohling et ai., 2007; NEEM Community Members, 2013). How-
ever there are publications, using divergent definitions for both terms. MIS 5e is coupled to
global marine oxygen isotope stacks, while the Eemian sequences originally refer to changes
regarding European vegetation zones. Both intervals overlap mostly, but the base of MIS 5e is
ca. 5 ka older than the Eemian, which does reach well into MIS 5d (Shackelton et ai., 2003;

Kukla et ai., 2002). In this thesis both terms shall refer to the last interglacial and characterize
the time span between 130 and 115 ka BP.

As mentioned above, the last interglacial had a higher global mean temperature than today. To
focus on the northern North Pacific, Figure 5 compares MIS 5e and Holocene June insolation
at 60°N. Both curves describe a peak with about the same width, but differ in peak intensity.
Eemian insolation is more than 20 W/m2 increased. Another major difference is the end of the
warm period. Whereas the Holocene ends in an insolation state, which is a bit higher than
before the Holocene, the insolation after MIS 5e displays a large drop. As the Eemian peak
insolation is also stronger, while the period length is about the same, the increasing trend to-
wards the peak and the descending afterwards is clearly steeper during the Eemian.
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Figure 5: Eemian and Holocene June insolation

Insolation at 60°N is plotted against time. The red line indicates the Holocene insolation and is related to the axis
at the bottom of the graph. The blue line indicates the Eemian insolation and is related to the axis on the top of
the graph. Data source: Berger & Loutre (1991).
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Whereas the global mean temperature during the Eemian maxima was enhanced by 2°C, the

northern high latitudes were even wanner, due to amplification. This amplification takes place

through positive feedbacks, like for example ice-albedo feedback, which bases on the large

difference between the albedo values of water and sea ice. Proxy data shows evidence for at

least 4-5 °C increased summer temperatures in most of the arctic regions (CAPE-Last Inter-

glacial Project Members, 2006; Axford et ai., 2011). Fossils in northeast Siberia indicate, that

the tree line was shifted northward at least 270 km northward (Kienast et ai., 201 l). NEEM

Greenland ice core data state air temperatures that were even 8°C higher during the Eemian

interglacial compared to the last millennial average in Greenland (NEEM Community Mem-

bers, 2013). There are suggestions, which explain these high temperatures and climate

changes not only by polar amplification but also with intensified North Atlantic drift, leading

warm water into the Arctic Ocean (CAPE-Last Interglacial Project Members, 2006). On the

other hand, there are studies with evidence for relative cold Eemian SSTs from the Nordic

Seas (Bauch et ai., 2012). A warmer Arctic Ocean would probably lead to increased precipita-

tion over coastal Siberia, which is contraindicated by evidence for dry continental climate

(Kienast et ai., 2011). The coexistence of high northern land temperatures and a still large

Greenland ice sheet, as well as rather low sea temperatures, seem to stand in contradiction to

each other. This highly emphasizes the need for further proxy data, which is yet missing from

the Bering Sea.

3. Methods

3.1. Used samples and datasets

All samples were taken from core SO 201-2-85KL. This core was recovered using piston cor-

ing from the Shirshov Ridge (57°30.3080'N, 170°24.7700'E). Water depth at core location is

968 m, total core recovery 1813 cm (Dullo et ai., 2009). This area is applicable, because it has

a high sedimentation rate, which is necessary for a sufficient resolution. Another advantage of

the location is that it is not too far to the north and not too close to the shore, so that it is ice-

free throughout the year in the modem situation CFig.4, p.9). Proxy evidence in this core for

IP25 during glacial termination I (Max et ai., 2012) allows assuming that there was at least

seasonal sea ice during MIS 6 and glacial termination II. Therefore a change between occur-

rence and absence of sea ice between both stadiums can be expected, which helps interpreting

the process of glacial/interglacial transition. Additionally the area of the Shirshov Ridge is

affected by the western Bering Sea current, which leads water masses to the North-Pacific via
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the Kamchatka strait and may be involved by the formation of NPIW during glacials, which

emphases the oceanographic importance of this location (Fig.l, p.6). To compare the samples

with other data a variety of datasets were used. This includes mainly S ST reconstructions

from locations in the Bering Sea, North Pacific and North Atlantic. Additional the age model,

Total organic carbon (TOC) and color b* values were taken from external data for core SO
201-2-85KL. All used datasets are stated in Table 1.

Core Used Parameters Region Reference

S0201-2-85KL Age model, TOC, color b*; Shirshov Ridge (W Bering Sea)
•K'Holocene SST (U'" 37)

Riethdorfetal.(2012);

Max et ai. (2012)

S0201-2-77KL SST (UK'37)

S0201-2-101KL SST(UK'37)

Shirshov Ridge (W Bering Sea) Max et ai. (2012)

Shirshov Ridge (W Bering Sea) Max et ai. (2012)

M23414 SST (planktic foraminifera); Rockall Plateau (E North Atlantic) Bauch et ai. (2012)
age model

MD01-2444 SST(UK'37)

ODP 108-658 SST(UK'37)

ODP 145-882 SST(UK'37)

ODP 167-1018 SST(UK'37)

MD 97-2151 K'SST(UK37)

Iberian margin Martrat et ai. (2007)

W of Cape Blanc (W African coast) Eglinton (1992)

NW North Pacific

Californian margin

South China Sea

Martinez-Garcia et ai.

(2010)

Mangelsdorfetal.2000)

Zhao et ai. (2006)

Table 1: used datasets
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3.2. Extraction

For this thesis, 79 samples were analysed. The samples cover the time range over MIS 5 and

focuses on MIS 5e. The sample depth were chosen according to the age model, taking into

account global isotope records in order to have a better resolution during periods of climate
change.

Sample
(freezedried, grounded)

— Extraction (DCM)

Extract

Hexane

I—Liquid chromatography

Hexane/DCM |
1/1

Fractionl

—DCM

Fraction2 Fractions

Figure 6: Schematic of extraction procedure

Samples were freeze-dried and grounded. C:26 was used as internal standard. Lipids were

extracted using an accelerated solvent extractor (ASE) from Dionex type 350. Extraction was

done using dichloromethane (DCM) as solvent. Two samples were extracted in advance to

adjust the method to the requirements of the samples. Both test samples were cleaned from

organic compounds with high polarity like alcohols and fatty acids by liquid chromatography.

Columns were conditioned with three columns hexane. Samples were transferred on columns

using hexane. Chromatography was done with 4 ml DCM. Columned samples were vaporised

via rotary evaporator with 120 rpm at 43°C. Pressure was 500 mbar and was reduced after

evaporation ofDCM to 325 mbar. Complete evaporation of solvents was achieved with nitro-

gen gas. After this samples were solved in hexane.

Both test samples showed distracting GC signals at the same retention time as alkenones from

an external standard. All samples including new samples from the same depth as test samples

were extracted as shown in Figure 6. Extracted lipids were vaporized and dissolved in hex-

ane, then separated in three fractions using liquid chromatography with silica gel columns.

Silica columns had a length of 5 cm. Columns were conditioned with two ml DCM and five

ml hexane. Separation was done by elation with hexane (5 ml as Fl), hexane-DCM (1:1, 5 ml
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as F2) and DCM (5 ml as F3). By this separation, the alkenones are dissolved in F3, and IPzs

is included in Fl. All fractions were vaporised via rotary evaporator with 120 rpm at 43 °C.

Pressure was 325 mbar (Fl), 500 mbar and after evaporation of DCM was reduced to 325

mbar (F2) and 730 mbar (F3). Complete evaporation of solvents was achieved with nitrogen
gas. After this samples were solved in hexane.

Fraction 3 was analysed using a gas Chromatograph (Agilent 7890A with cold injection sys-

tern) with flame Ionisation detector (GC-FID). Before measuring all samples were vaporized

and dissolved in hexane. Alkenone peaks were identified, by overlays with chromatograms of

an external standard, with an alkenone temperature of 10°C. GC was equipped with a DB IMS

fused silica capillary column (60 m x 0,25 mm inner diameter (i.d.), 0.25 [im film). The sam-

pies were injected at 60°C. After three minutes temperature was raised by 20°C per minute up

to 150°C, then up to 320°C at a rate of 6°C per minute and finally kept at 320°C for 40 min-

utes. Carrier gas was helium at a flow rate of 1:5 ml/min. Alkenones were not measured quan-

titatively, because the finally used method separated the available internal standard (C26, Fl),

from the alkenones. It would have been possible to mix again Fl and F3 in order to measure
the concentration, but only by taking a high risk of inaccuracy.

For IP25 analyses Fl was analysed with a gas Chromatograph coupled with a mass spectrome-

ter (GC-MS). GC was type Agilent 6850 (HP-5MS column, 30 m x 0.25 mm i.d., 0.25 ^m

film), coupled to an Agilent 5975 C VL mass selective detector. Temperature program started

at 60°C, held for three minutes. Then, temperature was raised by 15°C/min up to 150°C, then

up to 320°C at a rate of 10°C/min and kept at 320°C for 15 minutes. Carrier gas was helium.

Mass spectrometer was operated with an ion source temperature of 23 0°C and ionisation en-

ergy of 70 eV. IP25 was identified by comparison of retention time and mass spectra to pub-
lished data (Belt et ai, 2007).

In some cases the concentration of alkenones were insufficient, to integrate peaks, so that it

was necessary to measure samples again with less hexane, in order to increase peak intensity.

In most of the repeated measurements the alkenone concentration was too low, so that the

second measurement could not improve the signal. Three samples were controlled in F2 and

showed signals analogue to alkenones, according to external standard, but with several dis-

turbing signals surrounding them. All three samples were separated again with liquid chroma-

tography as described above and then measured in F3, but still showed no reliable signal.
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3.3. Used Proxies

Sea surface temperature (U 37)

Today there are several proxies, which allow reconstmctions of sea surface temperatures from

marine sediments. This includes Mg/Ca ratios and stable isotopes from planktic Foraminifera

as well as biomarker like U 37. During glacial termination the top layer of low salinity water
leads to a stratification of the water column (Katsuki & Takahashi 2005). Therefore SST re-

constructions via planktic Foraminifera, (for example Barker et ai., 2005), may lead to misin-

terpretation of the SST-signal, as it cannot be excluded, that the calculated temperatures re-

fleet the conditions below the thermocline. Furthermore recent published S ST data from the

Bering Sea is based on alkenones and there are still problems comparing SSTs which are re-

constructed via different methods (Leduc et ai., 2010). Due to this reasons, the Eemian SST

was reconstructed using the U 37 proxy.

The reconstruction of the sea surface temperature is done via the U 37 index. This index is the
ratio between three different species of alkenone C37, which differ from each other by their

number of double bonds (Brassel et ai., 1986). The ratio between the species is temperature

depended. But there are also other factors influencing the ratio, which should be considered,

like low abundance ofnutrience, or insufficient light (Prahl et ai., 2006). The species C37:4

mainly occurs at very cold temperatures (Prahl et ai., 1988) and is preferred target ofdecom-

position (Sikes et ai. 1997). Therefore, for comparison at global scale, normally the U 37 in-
dex is used, which ignores C37:4, as stated in Equation.l (e.g. Müller et ai., 1998).

JK1 =
'37 -

[37:2]
[37:2]+[37:3]

Equation l(Müller et ai., 1998)

To calculate the S ST via the U 37 index a calibration is used. There are calibrations varying
on temperature ranges or certain latitudes. In order to get the most accurate temperature, it

would be ideal to use a local calibration for the Bering Sea, derived from sediment tops. Such

a calibration is not available yet. Important calibrations are Prahl et ai. (1988), based on la-

boratory measurements, Müller et ai. (1998), based on global sediment tops (until ±60° lati-

tude), and Sikes et ai. (1997) which focuses on sediment samples from the Southern Ocean,

and represents late summer temperatures. In low and middle latitudes the calibrations after
15



Prahl et ai. (1988) and Müller et ai. (1998) represent annual mean temperatures. This depends

on the seasonality ofalkenone production. In the modern Bering Sea the main bloom of Emi-

liania huxleyi is during September which implies that calculated S ST are likely to reflect late

summer temperatures (Harada et ai., 2003).

In Figure 7 these three calibrations are used to calculate possible SST values. The calibrations

after Prahl et ai. (1988) and Müller et ai. (1998) are practically identical. SSTs calculated after

Sikes et ai. (1997) show similar behavior of the curve, but with general increased tempera-

tures of more than 2°C. Modem average September SST compared to surface sediment sam-

pies, showed the best correlation to Sikes et ai. (1997) calibration (Harada et ai., 2003).
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Figure 7: Calculated SST after different calibrations

SST calculated with UK'37 calibration after Sikes et ai. (1997) (blue line); Müller et ai. (1998), (green line); and
Prahl et al.(l 988) (red line).

Recent published paleo-temperatures from the Holocene in the Bering Sea were all calculated

using the calibration after Müller et ai., (1998) . Additional the most published alkenone de-

rived S ST data from the Atlantic and Pacific using either the calibration after Müller et ai.

(1998) or Prahl et ai. (1988). As one of the main scientific aims of this thesis is to compare the

reconstructed SSTs to these values, the Müller et ai. (1998) calibration was chosen (Eq.2).
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Lf; = 0.03 3T[°C]+0.044

Equation 2 (Müller et ai., 1998)

Solved towards T, the calculation results in Equation 3

T [»q=^0-044
0.033

Equation 3

Sea ice occurrence IP25

To reconstruct the occurrence of sea ice, the IP25 proxy is used. IP25 is a monounsaturated €25

highly branched hydrocarbon (Fig.8). It is produced by diatoms living within the lower side

of annual sea ice, which makes it a proxy for at least seasonal sea ice. IP25 producing diatoms

are depending on light, so they are not to be found during periods of thick perennial sea ice

covers (Belt et ai. 2007). To get more distinctive results Müller et ai. (2011) proposed to add

the concentration of brassicasterol, a biomarker for marine phytoplankton, to the proxy. This

allows a more detailed reconstruction regarding the sea ice cover, because it solves the prob-

lern which occurs with an absence ofIP25. which can indicate an ice free water surface as well

as thick multi annual ice cover. However in this thesis, only the qualitative analysis was tak-

en. This was done, because the main focus was laid on S ST reconstruction. Brassicasterol as

part of the alcohol fraction would have made the extraction and chromatography process more

complex and time consuming, leading to less SST results. The above mentioned problem of

the ambiguity of IP25 absence can be avoided otherwise. The presence of alkenones is an indi-

cator for at least seasonal ice free surface water (Armand & Leventer, 2010).

^^^
:1.

Figure 8: Chemical structure ofIP25 (Belt et ai., 2007)

3.4. Age model

Though for the core SO 201-2-85KL, an age model already existed, it was still a matter of

discussion during the creation of this thesis especially regarding glacial termination II. In this

thesis the newest available age model after Riethdorfet al. (2012) was used. The part for MIS
17



5 before 122 ka BP is based on correlation of color b* values to the SO record ofNGRIP ice

core. Below that color b* and Ca/Ti log ratios (XRF scanning) were correlated to the Sanbao

stalagmite S180 record (Riethdorf et ai., 2012). The given age model was adjusted to each
sample depth by linear interpolation of the closest surrounding points (Fig.9).

1400 -]

I
I

1200 -^

1000 —I

80 100 120
Age [ka] BP

140

Figure 9: Depth to age correlation of core SO 201-2-85 KL

Data source: Riethdorfet al., (2012).

3.5. Linear sedimentation rate

The linear sedimentation rate (LSR) depends amongst other factors on terrigenous sediment

input and biogenic production (Futterer, 2006). Combined with other proxies (e.g. TOC and

carbonate) it allows reconstruction of the magnitude of both factors. It was calculated for each

cm from the age model according to Equation 4

LSR Adepth [cm]
Aage [ka]

Equation 4
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4. Results

4.1. SST reconstruction

In 56 out of 79 analyzed samples from this study, alkenones could be detected and SSTs were

calculated. In 23 Samples either alkenones were not detectable or the concentration was too
low to calculate a reliable U sy-index.

The calculated sea surface temperatures are plotted in Figure 10. In general the SST curve

correlates with global trends, indicated by the Greenland Ice core record NGRIP (Rasmussen

et ai., 2006) and the marine isotope stack by Lisiecky and Raymo (2004) (LR04). So the ma-

rine isotope sub-stages 5a to 5e can be identified clearly. Before glacial termination II at

135 ka BP the temperature oscillates around 5°C with a peak up to 7°C at 140 ka BP and is

followed by a drop to temperatures below 3.5°C. During the transition between MIS 6/5e and

in early MIS 5e, there is a saw tooth shaped increase up to 8°C at 128 ka BP. The latter half of

MIS 5e is dominated by a steep decreasing trend towards MIS 5d, intermpted by an outlying

high temperature of 8.5°C at 124 ka BP, directly surrounded with samples, which have tem-
peratures well below 7°C.

The decline at the transition between MIS 5e and d, which results in a temperature minimum

of3° at 115 ka BP, is accompanied with an absence of alkenones. Therefore it was not possi-

ble to reassure this trend with supporting data-points. Towards the slightly warmer stage 5c

the temperature curve again follows a saw tooth shaped increase. It is supported by few data

only, because nine samples within this time period do not contain sufficient concentrations of

alkenones. Therefore, the cold phase at the beginning of MIS 5c around 105 ka BP, which is

observed in the NGRIP isotope curve and the color b* dataset from core S0201-2-85KL, is

not represented in the S ST data. In MIS 5c the temperature climaxes with 7.1°C at 97 ka BP.

After this, during sub-stage 5b, the temperature curve describes a long moderate drop down to

4.5°C at 85 ka BP. A short warm phase during this period, indicated by NGRIP and color b*

data, is not observed in the temperature record, but can also not be excluded due to low reso-

lution. The warm sub-stage MIS 5a is rather short and correlates well to the LR04 Stack, the

NGRIP isotope curve and the color b* data. MIS 5a culminates around 83 ka BP at a tempera-

ture of about 7°C, which corresponds to the maximum during 5c.
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Figure 10: MIS 5 SST, reconstructed with UK'.37-

Red diamonds at the bottom represent samples with insufficient alkenone content (d); spectro-photometric mea-
surements (c) (color b*, Riethdorfet ai. (2012)), from core SO 201-2-85 KL plotted against the NGRIP isotope
record (b) (Rasmussen et ai., 2006) and the benthic isotope stack LR04 (a) (Lisiecki & Raymo, 2005). Blue stars
indicate presence, red stars absence ofIP25 in core SO 201-2-85 KL. Question marks represent samples with IPz5
Concentration close to detection limits. Warm periods are marked orange cold periods ice blue.
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Towards IVtlS 4 the S ST decreases strongly towards the lowest calculated value in this thesis,

2.2°C at 77 ka BP. The samples which contained too low alkenone concentrations to calculate

accurate SSTs concentrate on MIS 5d and early 5c and in smaller amount during MIS 6/5e

transition and in MIS 5b.

4.2. Reconstruction of sea ice occurrence

IP25 could be found in 12 samples, whereas four samples contained only quantities near detec-

tion limits and 4 samples were free ofIP25. All samples during MIS 6 and in the beginning of

glacial termination II contained  35 (Figure 10). At the ages of 130 and 132.5 ka BP the  25

concentration was near detection limits, but in between at 132 ka BP IP25 could be detected.

During MIS 5e, only at 128 ka BP, parallel to the first SST peak during this sub-stage, IP25

can be observed. During the short cold phase in early MIS 5d IPi5 was only found near detec-

tion limit, followed by a complete absence at 113 ka BP. In late MIS 5d  25 is present also

during the temperature increase at the 5d/5c transition. IPz5 was also detected at the tempera-
ture minima before and after MIS 5 a.

4.3. Error analysis

Improper lab procedures during column chromatography could have disturbed the segregation

process, so that alkenones might end up in fraction II. In three samples, with very low alke-

none concentration, fraction II was checked and showed alkenone like signals, with strong

disturbances. All three samples went again through column chromatography but did not show

any improvement. The GC analysis was done in 7 sessions. In each session an external stan-

dard was measured as first and last sample, with a standard alkenone temperature of 10°C,

which was not only used to identify alkenones, but also to check technical drift. Additional

errors can be generated during manual signal integration, which is depending on signal inten-

sity. Samples with very low intensities were therefore measured again with less hexane, in

order to increase alkenone concentration, and so to manage this error source. In most cases the

intensified signal, could not be integrated though, because disturbing signals were also inten-

sified or made identification of alkenones impossible. Samples where this method worked are

marked in the annex (Table 2). Checking the external standard temperature, analytical errors

could be determined between ± 0.2 and 0.6°C which lies within the standard deviation for the

Calibration after Müller et ai. (1998) of ± 1°C.
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5. Discussion

5.1. Possible reasons for low alkenone abundance

To put the results into context and to be able to assess causes of low alkenone concentration,

total organic carbon (TOC), the linear sedimentation rate (LSR) and Color b* are taken into

account. Color b* is a photometric value, which can be used to identify variations in diatom-

derived opal content and in terrigenous organic matter (Debret et ai., 2006). The total organic

carbon content (TOC), combined with the sedimentation rate, helps to make assumptions

about the source of organic matter (Rullkotter, 2005).
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Figure 11: Additional data from core S0201-2-85KL sediments.

Color b*, total organic carbon and linear sedimentation rate against age. Red diamonds indicate samples with no
or very low alkenone concentrations. Numbers on top indicate marine isotope stages. Red stars and question
marks display samples with no or very low IPz5. Content Light blue background color indicates cold phases,
orange warm phases. Data source: Riethdorfet al. (2012)

These sediment parameters are plotted over time in Figure 11. Color b* and TOC values

show a good correlation throughout MIS 5. Both parameters generally show high values dur-

ing warm periods and low values during cold periods, and mn mostly parallel to the SST

curve. The sedimentation rate is anti-correlated to these patterns, except for the begin of Til,
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the beginning of the MIS 5e and 5d/5c transition, where the behavior is similar to the other

proxies.

Samples with no or very low alkenone concentrations mostly correlate with low TOC values,

especially during glacial termination II, during the beginnings of MIS 5d and 5c and the end

of5b. In the first two cases this applies also for  25.This correlation indicates that the absence

ofalkenones and IP25 is probably neither caused by a specifically low abundance of Emiliana

huxleyi or  25 producing diatoms, nor a specific degradation of alkenones or IP25, but by fac-

tors affecting all kinds of organic structures. This can include biologic reasons like low pro-

auction in general. Another cause can be factors that affect the composition of the sediment.

High terrestrial input with low organic carbon content can lead to elusion of organic matter

(Rullkötter, 2005). This is also visible in Figure 11 and the correlation of high LSRs, small

color b* values and low TOC content. Terrigenous material in core S0201-2-85KL is found

mainly during cold periods and in the beginning of deglaciation phases (Til, MIS 5d and 5b).

The suggested main source is sea ice rafted debris from the north (Riethdorfet al. 2012). Dur-

ing warm periods like MIS 5e, the proxies show an opposite behavior indicating low terrigen-

ous and high marine sediment input.

Another important factor concerning the TOC concentration of sediments is organic decay.

Decay rates of organic material are strongly controlled by the oxygen content of the upper-

most part of the sediment and therefore influenced by the oxygen content of the bottom water

(Hensen et ai., 2005). Phases with low TOC contents, parallel to a low sedimentation rate to

exclude elusion, are a possible indicator for improved bottom water ventilation, which can be

caused by deep or at least intermediate water formation. The most prominent examples of this

condition in core S0201-2-85KL are obser/ed during glacial termination II and in early MIS

5d (115-110 ka BP) which is also a period with very low alkenone concentration. This corre-

lates well with a suggested onset ofNPIW formation during early MIS 5d in western Bering

Sea (Horikawa et ai., 2010).

There are two samples at 89 and 101 ka BP and three samples between 116 and 118 ka BP,

where very low alkenone abundance coincides with high TOC. This might be explained by

factors which affect the production ofhaptophytes or specific degradation ofalkenones. Poss-

ible errors in lab results could also provide an explanation for this discrepancy.
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5.2. Origin of measured alkenones

One factor which can lead to misinterpretation of biomarkers can be allochthonous organic

matter. In this study, that would be the case if alkenones found in the samples, were originally

produced in a distant area or deposited in other layers. Then, the reconstructed temperature

would not reflect the environmental condition at the core location in the age determined by

the age model. The two main sources for allochthone sediment are terrigenous input and the

redeposition of eroded sediment (Rullkotter, 2005). Apart from processes which affect the

sediment, the transport of organic matter through the water column might play the major role

in a dislocated temperature signal.

As already stated, terrigenous material probably originates from sea ice rafted debris from the

north and is most abundant at the end of glacial periods. These phases go along with low TOC

contents (see Fig.ll, p.22). Riethdorf et ai. (2012) recently published C/N ratios in MIS5,

which mostly varied between 1 0 and 11. One maximum was reached during the beginning of

the last interglacial (ca. 125 ka BP), with smoothed C/N values up to 15. Ratios of 10 are typ-

ically a sign for marine-derived matter, while average terrigenous organic matter has C/N

ratios of 20 or higher (Rullkotter 2005). This means that over the most part of MIS 5, the or-

ganic matter is primarily of marine sources and the most possible time slice for possible con-

fusing terrigenous organic matter is around 125 ka BP.

The other possible source for dislocated organic matter could be redeposition. Turbidity cur-

rents can be excluded, because neither were there turbidites in the core, nor were there discon-

tinuities in the age model. However, at the beginning of glacial termination II (ca. 134 ka BP)

there is a high sedimentation rate which goes along with high TOC and color b* values

(Fig.ll, p.22). Therefore, alien marine organic matter cannot be completely excluded at this

age without stable isotope measurements.

A shift of organic matter via horizontal transport through the water column might be the high-

est uncertainty. As already mentioned, the main direction of water currents at the core loca-

tion is northward. The velocity of bottom currents can be regarded as low, due to repeated

occurrence of laminated sediments (Dullo et ai., 2009). The Holocene SST curves of cores

S0201-2-77KL, S0201-2-85KL and 80201-2-101 KL as plotted in Figure 12(p. 26), show a

south to north transect. The SST curves have almost the same patterns, but differ regarding

absolute temperature, with lower temperatures in northern locations. Taking all these argu-

ments into account, the possibility of shifted material cannot be excluded, but rather regarded
as low.
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5.3. Comparison of Eemian and Holocene surface temperature

As mentioned in the introduction, Holocene and Eemian insolation follow the same temporal

patterns, but with different intensities (Fig.5, p.10). To compare Eemian and Holocene SST, it

is important to choose an applicable synchronization of both timescales. In order to avoid

stretching or compression of the datasets, time strips with the same length were chosen. To

achieve the best possible comparison regarding the state of the climate, both time scales are

arranged, as visible in Figure 12a, according to the best congruence of the summer insolation

curve. Holocene SST records were taken from core S0201-2-85KL as well as from cores

S0201-2-77KL and S0201-2-101KL (core details Tab.l) (Max et ai., 2012). These three

cores are part of a North-South transect on the Shirshov Ridge. The Holocene record is li-

mited because of low alkenone abundance before 14 ka BP. for better comparison, only the

comparable part of the MIS 5 record was plotted.

Both records from core 85 show values within the same variability range, between 3 and 9°C.

Parallel to B0lling/Aller0d, a warm phase at the end of the last glacial, a warming trend is

visible. However, the first Eemian temperature peak corresponds to the minima of the Young-

er Dryas (YD), which looks like anti-correlated behavior. The time lines were shifted

(Fig.l2b) in order to archieve the best possible correlation of both S ST curves without stret-

ching or compressing the time lines. The new Eemian section lies 2 ka earlier, the new Holo-

cene sectrion one ka later, resulting in an insolation curve phase shift of 3 ka.

Comparing the S ST curves according to this arrangement, the trends are similar. The Eemian

curve has corresponding temperature maxima to the Bölling/Allered (B/A) and the Holocene

thermal maximum and there is a large temperature drop, which correlates to the Younger

Dryas (YD). However, the congruence of both curves is still a bit displaced, so that an actual

phase shift of 2.5-3 ka can be assumed.

One possible explanation for this shift is stratigraphic inaccuracy. This inaccuracy is probably

concentrated on the Eemian dataset, because the Holocene age model of all three cores is well

backed up by absolute C14 ages (Max et ai., 2012). The length of warm and cold phases dur-
ing glacial termination II and the early Eemian generally fits with the length of corresponding

phases during the Holocene. Therefore, the error seems to originate mainly in absolute age,

not in the time relation of the curve itself. There is another possible factor which might be

responsible for the phase shift, additionally to a stratigraphic inaccuracy. Insolation is thought

to be one of the main climate drivers of both interglacials within the Bering Sea (Riethdorfet

ai., 2012). After 136 ka BP. the Eemian summer insolation has a steeper increase than the
25
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Holocene at the same stage (Fig.12). This might result in an accelerated deglaciation process.

Apart from the cause of the shift in insolation-temperature relation, the S S T curves show a

very similar behavior. The glacial tennination begins with a short but intense temperature

increase, followed by a rapid temperature drop back to the glacial level for a period of less

than 2 ka, resulting in a prolonged warming trend. In the Eemian pattern, this second warm

phase does not reach much higher temperatures than the first one, while the Holocene shows

peak temperatures during the Holocene thermal maximum (HTM) that are more than 1°C

higher than during the first warm phase, the B0lling/Aller0d (B/A).

Surprisingly, the higher Eemian peak insolation did not lead to higher SST in the Bering Sea.

This is more surprising considering the assumed global mean temperature increase of 2°C.

Recent studies like Axford et ai. (2011) and NEEM (2013) presented proxy data with Eemian

peak air temperatures in the arctic that were 8°C higher than the preindustrial values. These

high temperatures are explained not only by the higher insolation, but by the resulting induced

polar amplification like ice-albedo feedback and an increased meridional heat transfer from

the sub-polar North Atlantic into the Arctic sea (CAPE, 2006). (Bauch et ai., 2012)

5.4. MIS 5 temperature development in the North Pacific

As stated in the introduction, the Bering Sea is not only affected by the Pacific Ocean via cur-

rents, but mainly via atmospheric telecorunections that control the strength and position of the

Aleutian low. Figure 13 compares SST curves from the North Pacific with the Bering Sea

record. For the purpose of comparison, three SST records that cover the North Pacific were

chosen. The most northern data set is from core ODP 145-882 located off Kamchatka Penin-

sula (Martinez-Garcia et ai., 2010). Despite its rather poor resolution it was chosen, because

the core location is influenced by the Kamchatka current. The mid-latitude core ODP 176-

1018, lies west of California (Mangelsdorf et ai., 2000) and MD97-2151 lies in sub-tropic

South Chinese Sea east of Vietnam (Zhao et ai., 2001). All three records are derived from

alkenones, using the Prahl et ai. (1988) calibration and do not represent summer, but annual

mean temperatures. Core details are stated in Table.l. In the two northern N-Pacific cores the

resolution during Termination II is too low for comparison. The core MD97-2151 shows far

less variability than core SO 201-2-85KL, with a temperature range within 1°C. This stable

phase begins and ends with a temperature rise. A high temperature dynamic, such as the S ST

rise and a subsequent drop at 131 ka BP which is very prominent in core SO 201-2-85KL,
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Figure 13: MIS 5 SST from the Bering Sea and the North Pacific.

The red graph indicates Bering Sea temperature curves, whereas green lines show Pacific temperature curves.
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85KL: Max et ai. (2012)). For core details see Table I. Numbers on top indicate marine isotope stages. Light
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cannot be found. The Eemian is represented in the Bering Sea SST record by a steep increase

followed by a moderate descending trend. Except core ODP 145-882, this pattern is reversed

by the Pacific temperature curves. After MIS 5e, the northern and the southern Pacific tem-

perature records follow generally the same temperature patterns as core SO 201-2-85KL. Dur-

ing the transition between MIS 5c and 5b where the data point density of core ODP 145-882

is comparable to the Bering Sea record, both curves show a very parallel trend. Except the

mid latitude core ODP 176-1018, where MIS 5d and 5c reflect reversed trends. No evidence

of increased SST during MIS 5a can be seen in any of the plotted Pacific SST curves.

Figure 13 also contains the Holocene SST records of each core. Time lines are synchronized

as in Figure 12a (p. 26). As during MIS 5e resolution ofODP 145-882 during glacial termi-

nation I and the early Holocene allows only a superficial analyses. Clearly visible is the YD

which seems to be parallel to SO 201-2-85KL. The Holocene temperatures stay well below

the Eemian level. The maximum Holocene SSTs from core ODP 167-1018 are ca. 2°C higher

than the Peak in MIS 5e. According to the chosen comparison of time lines, Glacial termina-

tion II is delayed towards termination I.

S ST development of core MD97-2151 during termination I is parallel to termination II, with

the difference that in termination I there is a cool event (YD) before the warming trend. In

general the correlation of this core compared to the Bering Sea SST curve is better during the

Holocene than during the Eemian interglacial. MIS 5e shows an enhanced temperature of 1-

2°C compared to the Holocene.

5.5. MIS 5 temperature development in the North Atlantic

During interglacials, the North Atlantic Ocean is indirectly connected, via the Arctic Ocean,

to the Bering Sea. A more important role, is suspected to lay in atmospheric teleconnections.

As mentioned before, climate models suggest a temperature seesaw between the North Atlan-

tic and North Pacific during the late Holocene (Kim et ai., 2004) while recent Holocene SST

records from the Bering Sea and the sub-arctic N-Pacific found evidence of parallel tempera-

ture development in both realms. Figure 14 compares SST curves from the North Atlantic

with the Bering Sea record. For the purpose of comparison three SST records that cover the

North Atlantic were chosen. The most Northern data set is from core M23414, which origi-

nates from Rockall Bank, NW of Ireland (Bauch et ai., 2012). The mid latitude-core MD01-

2444 lies off the Spanish west coast Martrat et ai. (2007), and core ODP 108-65 8 lies west of
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Figure 14: MIS 5 SST from the Bering Sea and the North Atlantic.

The red graph indicates Bering Sea, temperature curve, whereas the purple lines show Pacific temperature
curves. Grey lines show Holocene SST records to each core, which are related to the grey axis at the bot-
tom(S0201-2-85KL: Max et ai. (2012)).. For core details see Table.l. Numbers on top indicate marine isotope
stages. Light blue background color indicates cold, orange warm phases.
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NW Africa Eglinton (1992). Core details are stated in Table 1. SST values from core M23414
are derived from planktic foraminifera and represent summer temperatures (Bauch et ai.,
2012). Comparison of calculated SST derived from different methods is still problematic, as

can be seen in diverging records from the same samples. This can be caused by diverse fac-
tors, such as different depth of habitats or seasonal production peaks (Leduc et ai, 2010).
Never the less, this record was chosen because the number of northern N-Atlantic alkenone

S ST records, with a sufficient resolution is limited. All other records are alkenone based and

use the Prahl et ai. (1988) calibration and do not represent summer, but annual mean tempera-
tures.

In the deglaciation phase, the southern cores show temperature peaks which, unlike in core

SO 201-2-85KL, do not reach the interglacial SST level. The temperature minima at 131 ka

BP can be also identified in core MD01-2444 and ODP108-658, but it is not followed by the
onset of the rising trend towards the interglacial maximum. In both cores there is a short peak

and another temperature fall after the 131 ka BP temperature low. At core M23414, the tem-

perature stays cold, with a low variability until a very strong rise of more than 9°C at 125 ka
BP. In all N-Atlantic locations, the temperature at the last interglacial is delayed compared to

the Bering Sea record. During other MIS 5 sub-stages all cores correlate with the general cli-

mate patterns. There is one exception, that of core ODP108-658, where high temperature va-
riability without a clear trend is visible. The other sub-stages and the Holocene are not
represented in this record. Beginning in MIS 5c, the northern SST record M23414 shows a
higher variability compared to other records. This includes temperatures during the cold phas-
es (MIS 5b, 4) reaching levels as high as during the warm stages 5c and 5a. The difference at
the early Eemian between the 2 southern cores and core S0201-2-85KL is less than 3 ka.
Therefore, this might also fall in the possible stratigraphic inaccuracy of core S0201-2-85KL.

Neither in the Holocene records of core M23414 nor in core MDO 1-2444 can the B/A thermal

peak or the YD low be identified. Instead both records show a rising trend in two steps, with a
steady phase at 13 ka BP. In both cores the difference between the early Holocene and the
Eemian maximal temperatures is more than 2°C. The enhanced temperature during the Ee-
mian period, compared to the HTM is also observed further to the north in a core from the
South Icelandic Basin (Eynaud et ai., 2004).
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5.6. SST comparisons in context

The peaks in summer insolation at MIS 5c and 5a are both less intense than the MIS 5e (see

Fig.16, p. 34). This is reflected in the temperatures in all MIS 5 SST records (except for ODP

145-882, probably due to scarce data over MIS 5e), which is an additional indicator, that inso-
lation is the main climate driver throughout MIS 5.

Comparing differences between Holocene and Eemian SSTs of North Atlantic and North Pa-

cific it can be observed, that all records show 1-3°C warmer temperatures during the Eemian.
This temperature difference cannot be found in the Bering Sea. This discrepancy is especially

important regarding core ODP 145-882, where the temperature difference between both pe-

riods is high compared to other shown records, although this location, at least after modem

current pattern, is strongly influenced by water masses originating from the Bering Sea.

Similar results to those of the Bering Sea were published by van Nieuwenhove & Bauch

(2008), who compared last interglacial and Holocene surface water conditions in the Norwe-

gian Sea and found the MIS 5e climatic optimum comparable with the average Holocene.

However the comparison showed also a late optimum in the last interglacial in contrast to an
early one in the Holocene. The delay is explained by a weakened North Atlantic drift (Bauch
et ai., 2012).

Such a delay is not revealed in the Bering Sea. Five of the six shown records from Atlantic

and Pacific, have delayed temperature rises towards MIS 5e compared to the Bering Sea. Part-

ly this still may be due to stratigraphic inaccuracies, but three records have main temperature

rises during the last interglacial more than 3 ka later compared to the Bering Sea. This could

indicate that the glacial/interglacial transition began at least slightly earlier in the Bering Sea,

which would mean that this area was more sensitive regarding the increasing insolation.

Therefore, though both regions do not show increased Eemian temperatures compared to the

Holocene, it does not seem probable that the Nordic Sea and the Bering Sea were parallel

coupled. Otherwise one would expect a more similar development of temperature trends.
However it cannot be excluded that the influence of the Arctic Ocean to Adjacent seas may

have been during the last interglacial than today.

Considering other sub stages of MIS5 the Bering Sea does correlate better with the North At-

lantic records, where similar to core S0201-2-85KL all stages are distinctive. However the

northern North Pacific records lack in their resolution during the late MIS5, which makes
comparisons more difficult.
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5.7. Comparison of Holocene and Emmian sea ice condition

Max et ai. (2012) published qualitative Holocene  25 data taken from cores from the western
Bering Sea. This data revealed a strong dynamic in annual sea ice extend, as depicted in Fig-

ure 15. During warm periods like HTM or B/A, no IPzs could be detected, indicating sea ice
retreated to the shelf area. In the colder periods YD and Heinrich Event 1,  25 was even de-
tected in a core located at the southern edge of the Shirshov Ridge. In these periods, the an-
nual maximum sea ice edge moved at least 250 km southward (Max et ai., 2012).
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Figure 15: Sea ice extend in the Western Bering Sea and Sea ofOchotsk during early Holocene and Ter-
mination l (Max et ai., 2012).

In general, the sea ice situation in MIS 5 seems similar. Cold phases go along with  25 ap-
pearance, while MIS 5e is mostly accompanied by IPis absence. Comparable to the SST de-
velopment, the glacial-interglacial transition is not a simple change between a condition with
sea ice and one without, but a dynamic process that involves changing a few times between
both states. Due to the lack of comparable datasets from nearby sites, it is not possible to
make assumptions about a possible shift of the annual maximum sea ice extend. Considering
the modem genesis of sea ice in the Bering Sea, and the described situation during Younger
Dryas and Heinrich l, the sea ice is generated at the coast north of the Shirshov Ridge. There-
fore, the assumed sea ice extend could be an analogue to the glacial extend as shown in Fig-
ure 15, reaching at least as far south as site S0201-2-85KL.

Riethdorfet ai. (2012) proposed a possible perennial sea ice cover in the NW Bering Sea dur-
ing termination II, which might explain existence of exceptionally coarse material during this
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period in core 85. This would be correspond to parallel suggested patterns from the Sea of

Ochotsk (Nürnberg et ai., 2011). During wide parts of late MIS 6 and glacial tennination II,
alkenones could be detected in more than minimal quantities, which strongly suggest at least
ice-free summer seasons. The coexistence of I?25 in this period indicates seasonal sea ice oc-

currence. A thick lasting sea ice cover would lead to an absence of IP25, and alkenones. Still

the question of the origin from off coarse material remains.

5.8. Sea Ice and winter insolation

Sea ice occurrence and summer S ST as plotted in Figure 12 (p. 26) seem to contradict sam-

pies, in which high temperatures do coincide with ice occurrence as well as samples with low
SST and no IP25. These anomalies identify changes in the inner annual temperature dynamics.

A possible explanation for this contradiction may be given by the comparison of Eemian win-

ter and summer insolation, as done in Figure 16. The high summer insolation at 115 ka BP is

accompanied by very low winter insolation, while the low summer insolation at 130ka BP

correlates to a maxima in winter insolation. According to the IP25 data the summer insolation
is not a critical factor concerning Bering Sea ice extend.
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limits. Data source: Berger & Loutre (1991)
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6. Conclusion

The results of this thesis can be summarized shortly in the following statements:

Eemian peak SSTs, were not higher than Holocene maximum temperatures

Development of surface temperature and sea ice occurrence in the Bering Sea during

glacial termination II show many similarities to glacial termination I.

The SST reconstruction from the Bering Sea does not reflect a thermal dipole relation

between North Atlantic and Bering Sea during glacial termination II or MIS 5.

Temperature Comparison

In the geographic setting and discussion, evidence was shown that insolation was probably
one of the main climate drivers throughout MIS 5. Therefore, the high insolation during MIS
5e would be expected to cause a warmer climate in the Northern hemisphere when compared
to early Holocene times. With respect to sea surface temperature this period of warm climate
is observed in the North Atlantic as well as in the open North Pacific, but not in the Bering

Sea. This implies that there was obviously an additional cooling factor during MIS 5e in the
Western Bering Sea. Such a cooling factor could be an enhanced transport of relatively cold

air or water masses into the Bering Sea, or an increased outflow, or decreased inflow of rela-
tively warm water. A similar phenomenon, with equal temperatures during MIS 5e and the

early Holocene, is visible in the Northern Sea and is explained there with a weakening of the

North Atlantic Drift, decreasing the input of warm water masses (Bauch et ai., 2012).

During the Eemian temperature high, the summer temperature is enhanced severely in Siberia.
Kienast et ai. (2011) also showed that the Siberian coast line was shifted northwards in this

period, despite the high sea level. Both factors may have led to a stronger Siberian high,
which enhanced the southward transport of cold arctic air masses over the Western Bering
Sea, during summer.

Another possible cooling factor could be a change of the Bering Sea current system. Although
it is very unlikely that the Bering Strait led cold surface water masses southwards, it may still

35



have influenced the Bering Sea S ST. Due to a higher Eemian sea level, the Bering Strait was
wider, which amplified the outflow of relatively warm surface water from the Bering Sea to
the Arctic Ocean. This resulted in an eiihanced energy transfer to the Arctic Ocean, slowing
down the warming of the surface water within the Bering Sea. On the other hand, the rising
sea level affected also the gateways in the Aleutian Arc at the southern edge of the Bering
Sea, increasing the amount of incoming warm surface water from the Pacific. To evaluate the
dimension and importance of each of those factors, further scientific work in this direction is
necessary. The most promising approach is probably climate modelling. It should focus on
heat transfer through the Bering Strait and atmospheric exchange between the Arctic Ocean
and the Bering Sea, in order to be able to explain the somewhat unexpected temperatures
similar to the Holocene maximum despite the increased insolation.

Parallels regarding glacial termination

The comparison of Holocene and Eemian S ST from Atlantic and Pacific cores, respectively,
revealed that at most core locations the final temperature rise towards the interglacial maxi-
mum evolved parallel in both periods. The glacial terminations however, showed differences
in most cases. In core S0201-2-85KL both glacial terminations look very much alike. A pe-
nod of cold is ended by a short warm period, followed by a steep temperature decrease, which
prevailed for a short period and was in turn followed by the final rise in temperature. The
short warm period has about the same temperature as the interglacial high while the following
cool phase is accompanied by temperatures at the glacial level.

These steps are similar to glacial termination I (Max eta 1., 2012), supported by  25 data
showing sea ice occurrence during cold and no ice in warm phases. The main difference be-
tween the two terminations lies in their relation to summer insolation. The observed shift in

temperature patterns, when both records are aligned according to their insolation curves,
could not be observed in other records. This is probably due to stratigraphic uncertainties.
Another explanation would be an accelerated deglaciation mechanism due to steeper increase

in insolation. Considering all other Eemian SST curves presented in this thesis, this seems
very unlikely and should have been visible also in other records. To improve the stratigraphic
correlation, comparison of the data of this thesis to other MIS5 cores from the Bering Sea may
be helpful. However, the closely located cores S0201-2-77KL and S0201-2-101KL probably
won't be able to improve depth-age correlation, as their age model so far is, amongst other
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factors, based on correlation on color b* to core S0201-2-85KL (Riethdorf et ai., 2012). A
suggested perennial sea ice cover (Riethdorfet al., 2012) during MIS6, which would explain
very coarse ice rafted debris, seems rather unlikely, considering the new data of this thesis.
The major argument against such a lasting ice cover is the presence ofalkenones, which could
be confirmed throughout the investigated core parts representing MIS 6.

Over regional teleconnections

The results of this thesis neither indicated an Atlantic-Pacific temperature seesaw, nor an in
phase temperature trend relation between both oceans. The Eemian SST development from
the Bering Sea, especially the equality to Holocene maximum temperatures, shows different
behaviour compared to the Pacific, as well as to the Atlantic Ocean. Additional the uncertain-

ty regarding the stratigraphy over MIS5e in core S0201-2-85KL, visible from comparison to
the Holocene record, prevent a reliable comparison to temperature trends from other regions
during high dynamic phases, like glacial termination II. To clarify, if North Atlantic and
North Pacific had parallels in temperature trends during MIS 6/5e transition, like it has been
suggested for glacial termination I (Max et al., 2012), would need further S ST data preferable
also from the northwestern North Pacific. However, the lack of alkenones and TOC during
MIS 5d and during late glacial termination II, fits within the suggested seesaw regarding me-
ridional overturning circulation, indicating NPIW formation (Horikawa et ai., 2010). This also
confirms model results suggesting a meridional overturning circulation seesaw during phases
when the Bering Strait is closed (Hu et ai., 2012).
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Appendix

Age
(ka BP)

Depth
(cm bsf)

Sea

Prahl et ai.
(1988)

surface temperature
Müller et ai.

(1998)

calibrations

Sikes et ai.
(1997)

IP25 remarks

77.6
78.6
80.9
83.1
84.2
85.2
85.9
86.7
88.6
90.0
91.3
92.6
93.9
95.3
97.8
100.9
103.2
103.6
104.1
105.0
106.6
107.8
108.5
109.0
109.2
109.9
110.5
110.8
111.5
111.9
112.6
112.9
113.6
113.8
113.9
114.7
116.0
116.5
117.6
118.2
119.6
120.2
121.6
122.2
123.6
124.2
125.8
126.3

873
883
903
923
933
943
953
963
983
993
1003
1013
1023
1033
1052
1076
1093
1096
1100
1111
1131
1146
1156
1163
1166
1176
1183
1186
1193
1196
1203
1206
1213
1215
1216
1223
1233
1236
1243
1246
1253
1256
1263
1266
1273
1276
1283
1285

2.2 2.2 5.2
5.8 5.8 8.4
6.1 6.1 8.6
6.9 6.9 9.3
6.6 6.6 9.1
4.6 4.5 7.3

no alkenones
no alkenones

concentration too low
6.1 6.1 8.6

no alkenones
concentration too low

9.1 9.2 11.3
6.6 6.7 9.1
7.0 7.1 9.5

no alkenones
no alkenones
no alkenones

no alkenones
no alkenones

6.6 6.7 9.1
5.0 5.0 7.7

no alkenones
no alkenones

concentration too low
4.5 4.5 7.2
4.8 4.8 7.4

concentration too low
concentration too low
concentration too low
concentration too low
concentration too low

6.4 6.5 8.9
concentration too low

9.6 9.8 11.8
3.0 2.9 5.8

concentration too low
concentration too low
concentration too low

6.0 6.0 8.5
4.6 4.6 7.3
6.3 6.4 8.8
6.0 6.0 8.5
5.6 5.6 8.2
6.1 6.1 8.7
5.6 5.6 8.2
6.4 6.4 8.9
8.4 8.5 10.7

+

+

+

+

?

2xGC

2xGC
2xGC

2xGC

2xGC
2xGC
2xGC
2xGC
2xGC
2xGC
2xGC
2xGC

2xGC

2 x columned
2 x columned

2 x columned

2xGC
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Age
(ka BP)

Depth
(cm bsf)

Sea

Prahl et ai.
(1988)

surface temperature
Müller et ai.
(1998)

calibrations
Sikes et ai.
(1997)

IP25 remarks

126.3
126.5
128.3
128.8
129.0
130.3
130.5
130.6
131.0
131.30
131.60
132.07
132.13
132.20
132.40
132.80
132.87
133.00
133.07
133.40
133.47
133.53
133.73
134.07
134.40
134.73
135.10
135.58
136.07
137.04
137.52
138.49

1285
1286
1293
1295
1296
1303
1305
1306
1310
1313
1316
1321
1322
1323
1326
1332
1333
1335
1336
1341
1342
1343
1346
1351
1356
1361
1366
1371
1376
1386
1391
1401

8.4 8.5
6.7 6.7
6.7 6.8
8.1 8.2
8.0 8.1

no alkenones
concentration too

4.9 4.9
4.6 4.6
4.7 4.7

concentration too
4.3 4.3
10.6 10.7
6.5 6.6
7.8 7.9
3.8 3.8
4.9 4.9
5.5 5.5
5.4 5.5
3.4 3.3
3.9 3.8
5.3 5.3
5.8 5.8
5.3 5.3
4.7 4.6
4.2 4.2
4.1 4.1
7.0 7.0
4.2 4.1
5.1 5.1
4.7 4.7
4.8 4.8

low

low

10.7
9.1
9.2
10.4
10.4

7.6
7.3
7.4

7.0
12.6
9.0
10.2
6.6
7.6
8.1
8.0
6.2
6.6
8.0
8.4
7.9
7.3
7.0
6.8
9.4
6.9
7.7
7.4
7.5

+

?
2xGC

2xGC
+

?
?

+

+

+

+

+

+

Table 2: Results ofSST calculation derived from UK'37, and IPz.s analyses. 2 x GC indicates samples
with low alkenone concentration, which were measured a second time in the GC with less hex-
ane.'+' indicates IPzs in sample,'-' indicates no IP2s in sample and '?' indicates IPzs neardetec-
tion limit.
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