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Large scale fracture event



What is sea ice? And why do we care?

Fractures influence:
Heat exchanges
Mass balance
Dynamics

Important to model
accurately

Credit: Nils Fuchs
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Sea Ice models

Bases in Elastic-Plastic (Coon et al., 1974)
Viscous-Plastic Material (Hibler, 1979)
Used in 30 of 33 models (Stroeve et al., 2014)
100 km → < 1 km
Angles : Modeled 6= Observed (Hutter et al., 2018)

ρ h∂~u
∂t = −ρ h f ~k × ~u + ~τair + ~τocean − ρ h∇φ(0) +∇ · σ

σij = 2ηε̇ij + (ζ − η) ε̇kkδij −
P
2 δij
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Sea ice model : Yield Curve

σI

σII σ1

σ2
e = a

b

P
ba

Standard: P = 2.75 · 103 N m−1 and e = 2



High resolution simulation

High resolution simulation



Idealized Experiment

2θ

Shoreline

Open boundary

Prescribed Strain

Sea ice

Open water

In MITgcm (Marshall
et al., 1997; Losch et al.,
2010)
Uniform thickness h = 1 m
Uniform concentration
C = 100 %



Results: 45 min

Initial fracture : after 5 seconds
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Results: Elliptical yield curve
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Results: Elliptical yield curve

θ|e=2 = 34◦



Results: Elliptical yield curve

θ|e=0.7 = 61◦



Results: Elliptical yield curve
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Results: Coulombic yield curve
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Results: Coulombic yield curve



Results: Coulombic yield curve
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Fitting modelled angles
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Summary

Elliptical yield curve :
No Fracture angles below 30◦

More shear strength → increase angle
Coulombic yield curve

Possibility of smaller angle
No kink in the yield curve!

Linked fracture angle/yield curve



We need a new yield curve and flow rule
to model sea ice at high resolution as a

granular material with fracture angles that
compare to observations.

More details in
Ringeisen et al. 2019



And now what?!

Surface forcing and
Material properties test
Sea ice models are different
Surface forcing tests:

The fracture angle is different than before
Because of gradients of stress in the ice

New Yield curve
Teardrop yield curve (Zhang and Rothrock, 2005)
Implementation pending:

Problems with the mathematical formulation



Surface forcing

Fracture with surface forcing



Resolution and scale



Confinement



Initial conditions
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