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Abstract
Indoor radon exposure is a serious hazard to human health. The radon concentration in
surface air varies spatially as a result of the uranium content in the underlying rocks.
However, there exist also considerable knowledgegaps about temporal variations.Here
we document the high temporal variability of radon flux from exhalation in high-
resolution (hourly) time series from a site near Kleinneudorf, Schleswig-Holstein,
Germany. Bymeans of advanced techniques of statistical time series analysis, we show
a close association between radon and meteorological variables (air temperature and
air pressure). We identify four principal weather regimes that lead to different radon
exhalation modes. For each of the modes, we construct a statistical linear model for
radon prediction via the meteorological variables and their derivatives or time-lagged
versions. The model explains between 53 and 86 percent of the variance. Many model
deviations consist in excessively high measured radon values and hint at nonlinear
effects. Other model deviations hint at non-meteorological forcing.
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1 Introduction

The noble gas radon (Rn) has only radioactive isotopes, of which 222Rn has the longest
half-life (3.8 days, alpha decay). 222Rn is part of the decay chain of the uranium isotope
238U.

Inside the humanbody, the alpha radiation produced by 222Rn and its decay products
may damage body cells. Hence, 222Rn is considered as one of the main causes of
lung cancer (Yoon et al. 2016). Accordingly, the EU has launched an initiative to
map Rn concentrations in natural soils and rocks (Elío et al. 2019). The purpose is
to determine Rn risk areas, where newly built houses have to be protected against
infiltration from the subsurface strata into the basement. The problem is particularly
pressing for old houses without a baseplate, which were usually built directly on
bare soil. If additionally a strong thermal insulation is installed, then the indoor Rn
concentration for such houses can reach extremely high values, above 10,000Bq/m3

(Huber et al. 2001), a value otherwise observed only in mines. The WHO (Zeeb and
Shannoun 2009, p. xi therein) proposed a “reference level of 100 Bq/m3 to minimize
health hazards due to indoor radon exposure” and, “if this level cannot be reached
under the prevailing country-specific conditions, the chosen reference level should
not exceed 300 Bq/m3.” See also the EU’s Council Directive 2013/59/Euratom.

As a result of these policies, the natural Rn concentrations in soils and rocks have
to be analyzed. Pioneering work on this for Germany has been performed by Kemski
et al. (2001, 2005, 2009). For Germany, a map (Fig. 1b) was constructed on basis
of measurements done between 1992 and 2003, which is also available from the
website of the Bundesamt für Strahlenschutz (https://www.bfs.de/DE/themen/ion/
umwelt/radon/karten/boden.html, last access 15 October 2019). These maps show
large regions of increased Rn content in the southern parts of Germany and also in all
other regions where granite or metal ores (i.e., uranium) are found (Fig. 1b).

The noble gas Rn can be dissolved in groundwater or the open pore space of soils
and subsurface strata. The rate of production and venting from the water will usually
be in steady state, and accordingly the Rn content in the pore water (groundwater)
will be mostly constant over time. The Rn flux from the pore water, however, may
change when the water warms. This can mean up to several degrees between winter
and summer at a given location. In addition to this slow groundwater-related process,
the Rn can be released from the open pore space (often the upper metres of strata)
to the surface by thermal convection in the sediments, in particular along faults and
fractures. On the relation between Rn release from the groundwater and temperature,
see Akawwi (2014). On the influence of thermal convection in sediments, see Mogro-
Campero et al. (1980) and Burkhart and Huber (1993).

Rn concentrations in the Quaternary strata of Northern Germany are generally low
or intermediate. This is the case, for example, in the region of moraines from the
last ice age in Schleswig-Holstein. However, local maxima of Rn have been observed
intermittently at practically all places in Northern Germany. Such local maxima are
thought to be mainly caused by locally high concentration of Rn-bearing rocks (e.g.
granites, in particular those with abundant K-feldspar); see, for example, Kemski et al.
(2001).
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The data for themapping of theRn risk areas aremeasured in distinct timewindows.
The “normal” exposition time of a commercial exposimeter (the cheapest and most
effective Rn measurement device) is in the order of a month. However, this exposure
duration appears to be one of the main obstacles towards a consistent map because, as
long time series reveal, the seasonal structure of Rn concentration is rather complex.
For example, at ourmeasurement site (Sect. 2), themonthly average Rn concentrations
in February 2019 is 6183 Bq/m3, while that in June 2019 is just 1343 Bq/m3.

The availability of high-resolution time series of soil Rn concentrations has
increased over the past few years. This allows to study space-time variability for
critical geographical regions. For example, Moreno et al. (2016) study the Amer fault
zone in Spain at a resolution of one day (and higher) for a 4-year time span; Siino
et al. (2019) examine nine Rn stations from the Italian RadonMonitoring Network at a
resolution of 2 h (and higher) for time intervals between 1 and 5 years; and Tareen et al.
(2019) analyse a series fromMuzaffarabad, a town sitting on top of a fault zone in Iran,
at 40-min resolution (and downscaled) for a time span of 1 year. What distinguishes
the present study is the fact that our measurements directly reflect the outgassing Rn
(not the Rn in the soil), which makes it relevant from a health perspective.

The regular structure and the superimposed variations in the time series (Sect. 2)
hint at a meteorological (co-)explanation of the causes of the temporal variability.
Therefore, we measured surface-air temperature and surface-air pressure in the same
device as the Rn concentrations. This allows us to compare selected time windows
from the series by means of statistical methods (Sect. 3). The analytical results (Sect.
4) feed into the discussion (Sect. 5) of the separation of the weather regimes (i.e., Rn
exhalation modes) with the purpose of predicting the Rn concentrations over time.

This paper is about ongoing work within the project ANGUS II. The aims of
this paper are (1) to explore the above mentioned exhalation modes by means of
an advanced high-resolution, direct measurement technique and (2) to compare the
different modes by means of statistical time series analysis. The obtained results are
the basis for a successful prediction of the Rn exhalation. There are two companion
papers to be published elsewhere (Albert et al., manuscript in preparation; Sirocko et
al., manuscript in preparation), to which we briefly refer to in the text.

2 Data

We have monitored the Rn flux above a well, which was drilled into last glacial
meltwater sand and till down to a depth of 40 m. The location is near to the village of
Kleinneudorf, east of lake Plön, Schleswig-Holstein, Germany (Fig. 1).

The drilling at Kleinneudorf is located in a small depression of active subsidence
and highly permeable Quaternary sediments in the uppermost 40 m, which facilitates
high permeability and causes a local “hotspot” of Rn flux (Albert et al., manuscript in
preparation). To understand the role of this specific geological process atKleinneudorf,
we developed a fluxbox measurement system directly in the subsidence center. The
fluxbox presents a novel approach to measure continuously Rn concentrations in a
chamber, which allows a controlled gas flux from the soil to the air in a system of two
boxes (Fig. 2).
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Fig. 1 Study site and Rn map. a Map of Europe, with Germany indicated; b Rn map for Germany
with concentration levels (shaded) and indicated study area (inset box); also indicated is the Bundesland
Schleswig-Holstein (SH, north of the dashed boundary); c study area, with study site (redmarker) indicated.
Modified and reproduced with permission (aWikipedia; b Bundesamt für Strahlenschutz (German Federal
Office for Radiation Protection); c OpenStreetMap) (color figure online)

The schematic drill section (Fig. 2) shows that the groundwater level is at 8 m. The
surface of the well is open, but covered with two boxes, which protect against rain,
direct sun and wind. The casing of the well is solid plastic, so that the inner space of
the casing is filled with gas exhaled only from the groundwater. The gas exhaled from
the soil is trapped in the outer box, intrudes into the inner box, where it is shielded
from direct venting by wind, which is a serious methodological problem in studies of
Rn in houses, tunnels or direct air measurements.

We measured the Rn concentration in the inner box next to the bore hole. The two
boxes are closed, but allow slow convection to the outside. Thus, our measurements
reflect the Rn exhalation and not the soil Rn concentration. That means, the absolute
values of Rn concentration are a function of this setting and cannot be used directly
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Fig. 2 Schematic profile of well. Also shown are the two boxes for the detection of the exhalation flux

to compare to soil concentrations (as used for the mapping of the Rn risk areas).
Accordingly, the absolute values in this study are arbitrary, and the variability structure
of the time series (relative changes) is themain source of information. Itwasmandatory
to keep the boundary conditions constant during the entire time of the experiment,
which was run from April 2018 to September 2019.

The Rn measurements are done with a Canary Pro monitor (manufactured in 2017
by Corentium) (Radon Analytics 2020), modified for scientific use. The measurement
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principle of the Canary device is based on a Si photodiode. When 222Rn and its
progeny isotopes 218Po and 214Po decay within the instrument’s dome, a few of the
released alpha particles hit the open photodiode and the event, where the energy
is released during the impact, is counted. This allows the number of decays to be
measured. This measuring principle can be used to detect both Rn and its daughter
isotopes. However, only Rn can enter the measuring chamber, because the daughters
are electrically charged and get caught in the filters of the device. Themodified Canary
monitor has an application range from zero to 100000 Bq/m3. The efficiency for Rn
sampling specified by the manufacturer is one count per hour at a concentration of
33 Bq/m3. Additionally to hourly Rn sampling, the device can record temperature,
air pressure and humidity. However, due to repeated technical failure of the humidity
sensor, this variable was not considered in this survey.

The full series for the variables Rn concentration, air temperature and air pressure
are shown in Fig. 3. The nominal time spacing is d(i) = t(i) − t(i − 1) = d = 1
hour, however, there exist two major gaps for Rn and a few other, minor gaps.

The time series (Fig. 3) shows pronounced Rn maxima for June 2018 and January
2019, that means, during rather different seasons. The processes controlling the Rn
flux are best visible in shorter (about one week) series. Four different modes can be
deciphered. Mode II (Fig. 4) is characterized by a Rn maximum during the night.
Mode III (Fig. 5) exhibits two maxima, one during the night and one in the afternoon.
Mode IV (Fig. 6) has the maximum in the late afternoon. Mode I (Fig. 7) has no
relation to temperature but to decreasing surface air pressure. Apparently, surface air
temperature and surface air pressure are the main control variables for the Rn flux in
our monitoring system.

Hence, we selected four time intervals (Table 1) as representatives of the different
weather regimes (i.e.. Rn exhalation modes)

3 Methods of data analysis

The general aim of climate data analysis is to make an inference about the data gen-
erating system (i.e., the climate) on basis of a set of data values. The data for the Rn
project are in the form of time series. Let t(i) denote the time value and x(i) denote
the value of a climate parameter (e.g., Rn concentration). The time values may in prin-
ciple be unevenly spaced, although here in the project the case is even spacing (Table
1). Let n denote the sample size. The compact notation for a univariate time series
is {t(i), x(i)}ni=1. Even spacing means that t(i) − t(i − 1) = d(i) = d = constant
for i = 2, . . . , n. For multivariate time series, we have additional time series, and
we write either x(i), y(i) (bivariate) or x1(i), x2(i), . . . , xp(i) (p-dimensional). The
inference consists (1) in the estimation of values of parameters of a statistical model
for the climate and (2) in the testing of hypotheses about the climate. The models rel-
evant for the project (cross-spectra, trend and regression) are detailed in the following
subsections.

Since n < ∞ and the data are affected bymeasurement noise (Sect. 2), the inference
shows uncertainties. For parameter estimation, the uncertainties are expressed as error
bars, confidence intervals, and so forth. For hypothesis testing, the uncertainty is
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(a)

(b)

(c)

Fig. 3 Data, time series of a Rn concentration, b air temperature and c air pressure for the full time interval
(03-04-2018 02:16 to 07-08-2019 10:47). Also indicated (shaded) and numbered are the four intervals used
for statistical analysis (Table 1)
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(a) (b) (c)

Fig. 4 Data, time series of a Rn concentration, b air temperature and c air pressure for the time interval 1
(Table 1). This series represents exhalation mode II (“night mode”); see Sect. 5

(a) (b) (c)

Fig. 5 Data, time series of a Rn concentration, b air temperature and c air pressure for the time interval 2
(Table 1). This series represents exhalation mode III (“day mode”); see Sect. 5
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(a) (b) (c)

Fig. 6 Data, time series of a Rn concentration, b air temperature and c air pressure for the time interval 3
(Table 1). This series represents exhalation mode IV (“day + night + air pressure mode”); see Sect. 5

(a) (b) (c)

Fig. 7 Data, time series of a Rn concentration, b air temperature and c air pressure for the time interval 4
(Table 1) This series represents exhalation mode I (“air pressure mode”); see Sect. 5
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Table 1 Database, selected time intervals. Also shown (roman numbers) are the corresponding Rn exhala-
tion modes

Interval Mode Start End n d (h)

Air measurement data

Interval 1 II 26-04-2018 02:16 06-05-2018 01:16 240 1

Interval 2 III 18-07-2018 02:16 27-07-2018 01:16 216 1

Interval 3 IV 01-09-2018 02:51 11-09-2018 01:51 240 1

Interval 4 I 10-02-2019 01:55 22-02-2019 00:55 288 1

Groundwater measurement data

Interval 1 II 26-04-2018 08:00:00 06-05-2018 00:00:00 117 2

Interval 2 III 18-07-2018 13:58:59 26-07-2018 23:58:59 102 2

Interval 3 IV 01-09-2018 09:23:42 11-09-2018 01:23:42 117 2

Interval 4 I 10-02-2019 08:33:29 22-02-2019 00:33:29 141 2

Rn regression model data

Interval 1 II 26-04-2018 14:16 06-05-2018 00:16 114 2

Interval 2 III 18-07-2018 14:16 27-07-2018 00:16 102 2

Interval 3 IV 01-09-2018 15:51 11-09-2018 01:51 114 2

Interval 4 I 10-02-2019 14:55 22-02-2019 00:55 138 2

h hour

expressed as P-value, also denoted as false-alarm probability. To allow the assessment
and climatological interpretation of the inferential results, the uncertainties have to be
reported. Estimates without error bars are useless. For more background on climate
and statistical inference, see, for example, the textbooks by von Storch and Zwiers
(1999) or Mudelsee (2014).

3.1 Cross-spectral analysis

Consider a stationary process in continuous time, X(T ), which has a spectral repre-
sentation (Priestley 1981). This means,

XT ′(T ) = (2π)1/2
∫ ∞

−∞
GT ′( f ) e2π i f T d f , (1)

where XT ′(T ) is the truncated process (i.e., XT ′(T ) = X(T ) for −T ′ ≤ T ≤ T ′ and
XT ′(T ) = 0 elsewhere),

GT ′( f ) = (2π)−1/2
∫ ∞

−∞
XT ′(T ) e−2π i f T dT (2)
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and f is frequency. Then the one-sided nonnormalized power spectral density
function—shortly denoted henceforth as autospectrum—is given by

h( f ) = lim
T ′→∞

{
E
[
2π
∣∣∣GT ′( f )2

∣∣∣ /T ′]} , (3)

where E[·] is the expectation operator. The autospectrum is the Fourier transform of
the autocovariance function (Priestley 1981). It measures the variance contribution
of a certain frequency to the overall variance, S2, of the process. Other roads to the
definition of a spectrum exist.

Given a discrete, possibly unevenly sampled time series of size n, {t(i), x(i)}ni=1,
the task is to estimate the autospectrum. The Lomb–Scargle periodogram (Lomb 1976;
Scargle 1982) is given by

ILS( f j ) = d̄ ·

⎧⎪⎨
⎪⎩

[∑n
i=1 X(i) cos

(
2π f j [T (i) − τLomb]

) ]2
∑n

i=1

[
cos

(
2π f j [T (i) − τLomb]

)]2

+
[∑n

i=1 X(i) sin
(
2π f j [T (i) − τLomb]

) ]2
∑n

i=1

[
sin
(
2π f j [T (i) − τLomb]

)]2
⎫⎪⎬
⎪⎭ , (4)

where

tan
(
4π f j τLomb

) =
∑n

i=1 sin
(
4π f j T (i)

)
∑n

i=1 cos
(
4π f j T (i)

) , (5)

the search frequencies are f j = 1/(nd̄), . . . , 1/(2d̄) and the average temporal spacing
is given by d̄ = [t(n)− t(1)]/(n−1). In the case of even spacing, where d(i) = t(i)−
t(i − 1) = d = d̄ = const., the Lomb–Scargle periodogram corresponds to the usual
periodogram (Mudelsee 2014). The frequencies f j are employed to search for peaks
of ILS( f j ). One drawback of the periodogram is that it is an inconsistent autospectrum
estimator (Bartlett 1955), which means that with increasing n the estimation variance
of the autospectrum does not decrease.

For autospectrum estimation, we therefore followed the common practice (Schulz
andMudelsee 2002) and employed time series segments (with 50% overlap), segment-
wise linear detrending, segment-wise tapering and averaging of the Lomb–Scargle
periodograms for the segments. We also corrected for autospectrum estimation bias
via Monte Carlo simulations of an AR(1) noise process. The idea is to compare the
theoretical AR(1) spectrum (Priestley 1981) with the average autospectrum over the
simulations in order to obtain a frequency-dependent bias correction factor (Schulz and
Mudelsee 2002). The existence of peaks in the spectrum was tested via the upper 95th
percentile of the distribution for the AR(1) red-noise alternative (Schulz andMudelsee
2002), which was determined by means of 1000 Monte Carlo simulations. We addi-
tionally assessed peaks by means of Siegel’s test at the 95% confidence level on the
Lomb-Scargle periodogram (Schulz and Stattegger 1997). In the case of a strongly
dominating peak in the estimated autospectrum, Schulz and Stattegger (1997) recom-
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mended to first subtract this spectral component by means of a filter (Ferraz-Mello
1981) and only then to estimate the AR(1) parameter. We followed this recommen-
dation since Rn concentration and air temperature exhibit strong daily components
(Sect. 4.1). Multitaper estimation may for even spacing provide a superior estimation
since it employs optimal tapers (Mudelsee 2014).

Next, consider two stationary processes, X(T ) and Y (T ), with autospectra hX ( f )
and hY ( f ). The coherency (Schulz and Stattegger 1997) is defined as

c2XY = |hXY ( f )|2
hX ( f ) · hY ( f )

, (6)

where hXY ( f ) is the cross-spectrum, that is, the Fourier transform of the cross-
covariance function (Priestley 1981). The coherency is a dimensionless measure
between 0 and 1, which quantifies the degree of the linear relation between two pro-
cesses in dependence on frequency.

Given two discrete, possibly unevenly sampled time series, {tX (i), x(i)}nXi=1 and
{tY (i), y(i)}nYi=1, the task is to estimate the coherency. Note that the set of time values,
{tX (i)}nXi=1, needs not to be equal to {tY (i)}nYi=1. The Lomb–Scargle periodogram can
also be used for the estimation of the cross-spectrum (Schulz and Stattegger 1997).

For coherency estimation, we employed segmenting (50% overlap), segment-wise
linear detrending, segment-wise tapering, averaging of periodograms and tests against
the AR(1) red-noise alternative (Ólafsdóttir et al. 2016). The upper percentile for the
red-noise alternative was determined by means of 1000 Monte Carlo simulations. The
interpretation of coherency estimates is only meaningful for frequencies where both
X(T ) and Y (T ) have a significant peak in the autospectrum.

In the case of a meaningful and significant coherency estimate at a certain fre-
quency, the estimate of the phase may shed light on lead–lag behaviour between the
two processes at that frequency. We estimated also the phase via the Lomb–Scargle
periodogramand the estimated cross-spectrum (Ólafsdóttir et al. 2016, Eq. (9) therein).
The 95% confidence interval for the phase estimate was determined by means of 1000
Monte Carlo simulations.

For tapering in the estimations,we consistently employed theWelch I type, a number
of seven overlapping segments and an oversampling factor (which corresponds to
interpolation in the frequency domain in order to better visualize spectrum curves) of
16. The resulting spectral bandwidths (which determine the frequency resolution) for
the Rn concentration and air temperature spectra (Sect. 4.1) is between 2.21 ·10−2 h−1

(n = 288) and 2.94 · 10−2 h−1 (n = 216). See Schulz and Mudelsee (2002) for more
detailed technical explanation.

We used the software REDFIT-X (Ólafsdóttir et al. 2016) for autospectrum,
coherency and phase estimation. We used the software TAUEST (Mudelsee 2002)
for the estimation of the AR(1) parameter in the presence of uneven spacing, which
includes a bias correction after Kendall (1954).

123



GEM - International Journal on Geomathematics            (2020) 11:23 Page 13 of 33    23 

3.2 Kernel trend and derivative estimation

Consider a nonstationary process in continuous time, X(T ), which can be decomposed
into trend, extremes and noise components,

X(T ) = X trend(T ) + Xext(T ) + S(T ) · Xnoise(T ). (7)

Mudelsee (2014) calls this the climate equation. The noise, Xnoise(T ), is a zero-mean,
unit-standard deviation process, which may have a spectral representation (Sect. 3.1).
The noisemay also describe thememory (i.e., autocorrelation, red noise) of the climate.
The climate variability, S(T ), is a positive function. The trend component, X trend(T ),
is the long-term, possibly time-dependent climate mean. The terms X trend(T ) and
S(T ) · Xnoise(T ) represent the definition of climate in terms of mean and variability
(Brückner 1890; Hann 1901; Köppen 1923). The extreme component, Xext(T ), was
added by Mudelsee (2014) to allow for a separate analysis of climate extremes and
related parameters (e.g., risk).

Given a discrete, possibly unevenly sampled time series, {t(i), x(i)}ni=1, the task is
to estimate the trend component. In many situations, the data analyst aims for trend-
model flexibility and avoids the restriction imposed by parametric models (e.g., linear)
by means of a kernel smoothing technique. The approach by Gasser andMüller (1979,
1984) is:

X̂GM
trend(T ) = h−1

n∑
i=1

[∫ s(i)

s(i−1)
K

(
T − y

h

)
dy

]
X(i), (8)

where T (i − 1) ≤ s(i − 1) ≤ T (i). (The integration bounds, s(i), are described in a
subsequent paragraph.)

The kernel is a continuous and usually positive and symmetric function, it inte-
grates as

∫
K (y)dy = 1. The kernel function employed by us is the Epanechnikov

kernel, K (y) = 0.75 · (1 − y2). Another common choice is the Gaussian, K (y) =
(2π)−1/2 exp(−y2/2).

Whereas the choice of K (Epanechnikov, Gaussian, and so forth), is more of
“cosmetic” (Diggle 1985) interest, the bandwidth parameter, h, is crucial because
it determines the uncertainty measures for the trend estimate. Although there exist
bandwidth selectors for optimal smoothing (Mudelsee 2014), we prescribed h = 1
day in order to smooth over the daily cycle.

Note that the selection of the sequence s(i) in particular, and the Gasser–Müller
smoothing procedure in general, can be performed on unevenly spaced time series. The
trend can be estimated for all time points within the observation interval, [t(1); t(n)].
The kernel functions are modified near the interval boundaries (Gasser and Müller
1979, 1984), so that the trend can be estimated also there.

KERNEL (https://www.manfredmudelsee.com/soft/kernel/index.htm, 30 August
2019) is a Fortran software based on routines originally developed by Theo Gasser. It
places the integration bound, s(i), in the middle between two time points. KERNEL
further sets

s(0) = 1.5 · t(1) − 0.5 · t(2) (9)
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and
s(n) = 1.5 · t(n) − 0.5 · t(n − 1). (10)

Also the first derivative of the variable, dX(T )/dT , and its long-term time depen-
dence, can be studied bymeans of the kernel technique. This goes via the first derivative
of the kernel function (Gasser and Müller 1984).

An uncertainty measure for the estimated trend or derivative curves is essential
for assessing the significance of the ups and downs in the estimate, whether these
variations constitute real features or are generated by noise.

Let x̂GMtrend(i) be the estimate (sample level) at time t(i). Date minus trend estimate
define the unweighted nonparametric regression residuals, e(i) = x(i)− x̂GMtrend(i). The
time series of residuals is {t(i), e(i)}ni=1.

The moving block bootstrap (MBB) resampling procedure (Künsch 1989) draws
random blocks of length l (0 < l < n) from the residuals. Mudelsee (2014) presents l-
selectors, which are based on the autocorrelation properties of the data. TheMBB then
concatenates the blocks until a series of size n is obtained. The random series, denoted
as {t(i), e∗(i)}ni=1, preserves the statistical properties of the random component of the
data generating process. These are distributional shape and serial dependence (over
l).

The so-called replication of the trend estimate is obtained via re-application of the
kernel technique. This procedure resampling–estimation is repeated B times (we use
B = 400). The bootstrap standard error, se(T ′), of the trend estimate at a certain time
point, T ′, is defined as the standard deviation over the B replications at T ′.

A pointwise standard-error band can be constructed from the standard-error inter-
vals for the trend estimate as follows. The standard-error interval for the timevalue T ′ is
givenby [X̂GM

trend(T
′)−se(T ′); X̂GM

trend(T
′)+se(T ′)]. Theband is obtainedbyconcatenat-

ing the upper bounds, X̂GM
trend(T

′)+ se(T ′), for the full time interval, t(1) ≤ T ′ ≤ t(n),
and by concatenating the lower bounds, X̂GM

trend(T
′) − se(T ′). For the Rn project,

we show in a conservative approach the wider two-standard-errors bands, which are
obtained from the interval [X̂GM

trend(T
′) − 2 se(T ′); X̂GM

trend(T
′) + 2 se(T ′)].

The book byMudelsee (2014) contains more details about kernel estimation, MBB
resampling, block length selection and the construction of uncertainty measures.

3.3 Multiple linear regressionmodel

Let Y (i) denote Rn concentration in discrete time. Let X1(i), X2(i), . . . , X p(i) denote
a number of p air and groundwater variables. Assume that there exists a simple linear
relation,

Y (i) = β0 + β1 · X1(i) + β2 · X2(i) + · · · + βp · X p(i) + SY (i) · Ynoise(i) (11)

for i = 1, . . . , n. This is a multiple linear regression model (Montgomery and Peck
1992), where Y (i) is the response variable and X1(i), X2(i), . . . , X p(i) are the predic-
tor variables. The term SY (i) ·Ynoise(i) is the noise component. The model can be used
to predict unobserved Rn concentrations on basis of observed air and groundwater
data.
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In order to derive theoretical properties of estimates obtained by means of the
regression model, the assumptions are often made that SY (i) = SY is constant
(homoscedasticity) andYnoise(i) is a purely randomGaussian stochastic process. How-
ever, in practice the model may be useful also in the presence of (1) heteroscedasticity,
(2) autocorrelation and (3) non-Gaussian distributions. Indeed, for practical purposes
the linearity of the model may also be sufficiently accurate in the presence of mild
forms of nonlinear dependence. To quote Box and Draper (1987, p. 424 therein): “
Essentially, all models are wrong, but some are useful. However, the approximate
nature of the model must always be borne in mind.”

Given a discrete, possibly unevenly sampled time series of size n, {t(i), y(i), x1(i),
x2(i), . . . , xp(i)

}n
i=1, the task is to estimate the regression parameters, β0, β1, β2,

. . . , βp. This can be achieved byminimizing the sum of squares of deviations between
data and linear fit. The formulas for this least-squares estimation (Montgomery and
Peck 1992) are as follows. Let

y =

⎡
⎢⎢⎢⎣

y(1)
y(2)

...

y(n)

⎤
⎥⎥⎥⎦ (response vector), (12)

x =

⎡
⎢⎢⎢⎣

x1(1) x2(1) · · · xp(1)
x1(2) x2(2) · · · xp(2)

...
...

. . .
...

x1(n) x2(n) · · · xp(n)

⎤
⎥⎥⎥⎦ (data matrix), (13)

then

̂β =

⎡
⎢⎢⎢⎣

β̂1

β̂2
...

β̂p

⎤
⎥⎥⎥⎦ (parameter estimate vector) (14)

is given by

̂β = (
x′x
)−1 x′ y. (15)

In this matrix notation (Dahlquist and Björck 2008, Appendix A therein), if A is a
matrix, then A′ is its transpose and A−1 is its inverse. We used the lm function within
the R computing environment (Dalgaard 2008) for the calculations.

The “classical” uncertainty measures (Montgomery and Peck 1992) for the param-
eter estimates are based on assumptions such as a purely random Gaussian noise. In
case of autocorrelated noise, the estimates can be obtained via the effective data size
Mudelsee (2014, Chapter 2 therein), the determination of which can be achieved via
the time series of the residuals and AR(1) fits (Mudelsee 2002). If there are indications
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that also the distributional assumption is violated, then bootstrap uncertainty measures
(via the MBB) can be determined.

However, the actual parameter estimates (and their uncertainties) are less of interest
in the present paper. The focus is on a strategy for prediction and the selection of
predictors. For this, a measure of the quality of the fit of the model (Eq. 11) to the
data is relevant. Literature (Montgomery and Peck 1992) recommends to calculate the
adjusted coefficient of multiple determination, R2

adj, as follows. Let

ȳ =
n∑

i=1

y(i)/n, (16)

Syy =
n∑

i=1

y(i)2 − n · ȳ2, (17)

yfit(i) = β̂0 + β̂1 · x1(i) + β̂2 · x2(i) + · · · + β̂p · xp(i), i = 1, . . . , n, (18)

SSE =
n∑

i=1

[y(i) − yfit(i)]
2 , (19)

R2 = 1 − SSE/Syy, (20)

then

R2
adj = 1 −

(
1 − R2

)
· (n − 1)/ (n − p − 1) . (21)

The advantage of using the adjusted measure, R2
adj, instead of R

2 is that this penalizes

overfitting with too many predictors. R2
adj and R2 are both between 0 and 1. The values

can be used as a measure of the data variance explained by the model.
We made an extension of the model to take into account prior knowledge, namely

that the Rn concentration cannot be less than zero. Hence, we augmented the model
(Eq. 11) as follows: if yfit(i) < 0, then set yfit(i) = 0. This augmented model has one
extra parameter (which has a value of zero). The calculation of R2

adj in Eq. (21) has to
take this into account by an increase of p by one.

4 Results

4.1 Cross-spectra

The results of the cross-spectral analyses for Rn concentration and air temperature in
the various intervals are presented in numerical form (Table 2) and as plots (Figs. 8,
9, 10 and 11). The phase estimate for the relation between Rn concentration and
air temperature for the daily cycle (Tperiod = 1.0 days) can be used to support the
regression model (Sect. 4.3) via the inclusion of lagged predictor variables. The other
air or groundwater variables do not exhibit strong daily cycles (results not shown).

For interval 1, bothRn concentration and air temperature show a clear, highly signif-
icant daily cycle (Fig. 8a, b). The coherency for that cycle is also significant (Fig. 8c).
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Table 2 Results, cross-spectral analyses. Tperiod, period (one over frequency) of themajor spectral peak; â′,
bias-corrected AR(1) parameter estimate; Φ̂, phase estimate with 95% confidence interval (Φ̂ > 0 means
that air temperature leads over Rn concentration)

Interval Mode Rn concentration Air temperature Φ̂

Tperiod â′ Tperiod(d) â′

Interval 1 II 1.0 d 0.44 1.0 0.61 141◦[96◦; 183◦]
Interval 2 III 1.0 d 0.13 1.0 0.69 19◦[−4◦; 44◦]
Interval 3 IV 8.0 h 0.66 1.0 0.54 NA

Interval 4 I 7.2 h 0.56 1.0 0.08 NA

Also shown (roman numbers) are the corresponding Rn exhalation modes. Units: d day; h hour. NA not
applicable

This allows to study the phase, which is estimated (with 95% confidence interval) as
141◦[96◦; 183◦] (Fig. 8d). This means that for the daily cycle, air temperature leads
over Rn concentration by an estimated time lag (with 95% confidence interval) of
(141/360) · 24 h = 9.0 h [6.4 h; 12.2 h].

Also for interval 2, both Rn concentration and air temperature show a clear, highly
significant daily cycle (Fig. 9a, b). The coherency for that cycle is also significant
(Fig. 9c). The phase is estimated as 19◦[−4◦; 44◦] (Fig. 9d). This means that for the
daily cycle, air temperature leads over Rn concentration by an estimated time lag of
1.3 h [−0.3 h; 2.9 h]. Since the confidence interval includes zero, the time lag is not
statistically significant.

For interval 3 (Fig. 10) and interval 4 (Fig. 11), Rn concentrations do not show a
significant daily cycle. Hence, phase estimation is not applicable here.

On basis of the phase estimates, we included lagged temperature as predictor vari-
able. To accommodate for estimation uncertainties in the phase, and perhaps also of
the peak period, a liberal approach (i.e., many time lags and for all intervals) was taken.
That means, air temperature before 0 h, 1 h, 2 h, . . ., 12 h were used as predictors for
Rn concentrations.

4.2 Trends and derivatives

The results of the analyses of time-dependent trends and time-dependent first deriva-
tives of the air pressure are shown as plots (Figs. 12, 13, 14 and 15). Air pressure and its
changes may constitute relevant meteorological control variables of Rn concentration.
Therefore, they are included as predictors in the regression model (Sect. 4.3).

The shown time intervals in the plots are those for the Rn regression model data
(Table 1). Note that the predictors include air temperature lagged by up to 12 h (Sect.
4.1). This means that the air-pressure data that are available for trend and derivative
estimation (shown as filled symbols in Figs. 12a, 13a, 14a and 15a) extend somewhat
beyond the shown interval boundaries. This explains, for example, the trend estimate
at the earlier interval boundary (10-02-2019 08:55) for interval 4 (Fig. 15a).

The estimated persistence times, τ̂ , with standard errors for the fits of an AR(1)
autocorrelation model under uneven spacing (Mudelsee 2002), obtained on the resid-
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Fig. 8 Cross-spectra, interval 1
(mode II). See Sect. 3.1 for
methodical details and Table 2
for result numbers. The vertical
bar in panel (d) shows the 95%
confidence interval for the phase
estimate at the daily cycle

(a)

(b)

(c)

(d)
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(a)

(b)

(c)

(d)

Fig. 9 Cross-spectra, interval 2 (mode III). See Sect. 3.1 for methodical details and Table 2 for result
numbers. The vertical bar in panel (d) shows the 95% confidence interval for the phase estimate at the daily
cycle
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(a)

(b)

(c)

(d)

Fig. 10 Cross-spectra, interval 3 (mode IV). See Sect. 3.1 for methodical details and Table 2 for result
numbers
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(a)

(b)

(c)

(d)

Fig. 11 Cross-spectra, interval 4 (mode I). See Sect. 3.1 formethodical details andTable 2 for result numbers

123



   23 Page 22 of 33 GEM - International Journal on Geomathematics            (2020) 11:23 

(a)

(b)

Fig. 12 Kernel trend and derivative estimation, interval 1 (mode II). Shown are data (a; filled symbols),
estimation curves (a, b solid, wiggly lines) and two-standard-errors bands (a, b; shaded). See Sect. 3.2 for
methodical details

uals, e(i), are: interval 1, τ̂ = 4.8 ± 1.0 h; interval 2, τ̂ = 1.1 ± 0.2 h; interval
3, τ̂ = 2.1 ± 0.3 h and interval 4, τ̂ = 19.8 ± 5.4 h. The variations among these
numbers indicate that the memory of air-pressure fluctuations depends on the general
weather situation. The persistence time estimates, together with samples sizes (Table
1), translate after Mudelsee (2014, Eq. 3.28 therein) into following block lengths, l,
for the MBB: interval 1, l = 20; interval 2, l = 7; interval 3, l = 11 and interval 4,
l = 55.

The MBB confidence bands attest that there occurred significant changes in air-
pressure trends and derivatives on daily and longer timescales (Figs. 12, 13, 14 and
15). This features are taken into account for the regressionmodel of Rn concentrations.
In addition to the smoothed series (h = 1 day) of trend and first derivative, we employ
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(a)

(b)

Fig. 13 Kernel trend and derivative estimation, interval 2 (mode III). Shown are data (a filled symbols),
estimation curves (a, b solid, wiggly lines) and two-standard-errors bands (a, b shaded). See Sect. 3.2 for
methodical details

as predictors also the original air-pressure data, x(i), and the first differences, x(i) −
x(i − 1), that means, versus before 1 h.

4.3 Regressionmodel

Table 3 shows the description of the 19 predictors for Rn concentration. Since the
model is constrained to yfit(i) ≥ 0, the calculation of R2

adj in Eq. (21) employs a value
of p = 20. The results of the regression model fits are shown as plots (Figs. 16, 17,
18 and 19).
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(a)

(b)

Fig. 14 Kernel trend and derivative estimation, interval 3 (mode IV). Shown are data (a filled symbols),
estimation curves (a, b; solid, wiggly lines) and two-standard-errors bands (a, b; shaded). See Sect. 3.2 for
methodical details

The overall visual appearances of the fits for the four intervals is good. This is
reflected in the high numerical values of R2

adj, which are not verymuch smaller than the
theoretical maximum of one. The constraint yfit(i) ≥ 0 brought a slight improvement
of fit quality (in terms of R2

adj) for intervals 1 and 4. It is remarkable that the rather
simple linear regression model yields such good fits for the four different weather
situations reflected in the four intervals.

Still, there are deviations between data and model. These deviations appear espe-
cially prominent in cases where the data exceed the model fits. One example of such a
prominent peak is between days 8 and 9 for interval 3 (Fig. 18). These peaks of “excess
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(a)

(b)

Fig. 15 Kernel trend and derivative estimation, interval 4 (mode I). Shown are data (a; filled symbols),
estimation curves (a, b; solid, wiggly lines) and two-standard-errors bands (a, b; shaded). See Sect. 3.2 for
methodical details

Rn” (i.e., higher Rn than assumed on basis of the weather conditions) are subjected to
further consideration (Sect. 5).

Another point for further discussion is the separation of the different weather
regimes. This is important for “out-of-sample” prediction. This point is further pursued
in Sect. 5.

5 Discussion

The fits of the relatively simple regression model to the Rn concentration data for the
four time intervals (Figs. 16, 17, 18 and 19) enjoy rather high R2

adj values, between 0.53
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Table 3 Regression model
predictors for Rn concentration
(in units of Bq/m3)

Number Description Unit

1 Air temperature ◦C
2 Air temperature before 1 h ◦C
3 Air temperature before 2 h ◦C
4 Air temperature before 3 h ◦C
5 Air temperature before 4 h ◦C
6 Air temperature before 5 h ◦C
7 Air temperature before 6 h ◦C
8 Air temperature before 7 h ◦C
9 Air temperature before 8 h ◦C
10 Air temperature before 9 h ◦C
11 Air temperature before 10 h ◦C
12 Air temperature before 11 h ◦C
13 Air temperature before 12 h ◦C
14 Air pressure hPa

15 Air pressure, first difference hPa

16 Air pressure, trend hPa

17 Air pressure, first derivative hPa/d

18 Groundwater level m

19 Groundwater temperature ◦C
d day

Fig. 16 Rn concentration data and regression model fit, interval 1 (mode II). Also shown (shaded) are the
deviations between data and fit. See Sect. 3.3 for methodical details
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Fig. 17 Rn concentration data and regression model fit, interval 2 (mode III). Also shown (shaded) are the
deviations between data and fit. See Sect. 3.3 for methodical details

Fig. 18 Rn concentration data and regression model fit, interval 3 (mode IV). Also shown (shaded) are the
deviations between data and fit. See Sect. 3.3 for methodical details

and 0.86. Also if judged per eye, the fitted models appear to have a good descriptive
power. An interesting methodical extension would be to consider fit measures other
than R2

adj, that means, measures that take into account the persistence in the time series
data. This can be achieved bymeans of the effective data sizeMudelsee (2014). For the
present paper, however, this extension seems to be beyond the scope, and we believe
that the fit assessments would not strongly change.
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Fig. 19 Rn concentration data and regression model fit, interval 4 (mode I). Also shown (shaded) are the
deviations between data and fit. See Sect. 3.3 for methodical details

The largest deviations between model and data (indicated by the shaded areas in
Figs. 16, 17, 18 and 19), are the excess Rn peaks, for which the Rnmeasurement values
clearly exceed those of the weather-derived model fits. Many of those measurement
peaks appear at timeswhen also themodel has a peak (but not so high), as, for example,
around day 8.75 in Fig. 18. This hints at amplifying mechanisms, which may be taken
into account by means of adding nonlinear terms to the regression model. However,
some of the excess Rn measurement peaks may have no counterpart in the model, as,
for example, around day 5.5 in Fig. 18. An explanation of such excess Rn peaks may
be the occurrence of sporadic events affecting the ground, where a kind of “bypass”
is formed to Rn stored in the depth. Microearthquakes can be one type of such an
event (Al-Hilal et al. 1998; Steinitz et al. 2003; Walia et al. 2010). Therefore it would
be interesting to compare the series of excess Rn peaks to seismic time series for
the region. This will be done in a future paper. Other driving factors may be events
of high precipitation and high wind speed (Schumann and Gundersen 1996; Martin
et al. 2004; Gregorič et al. 2014). Furthermore, the series of excess Rn peaks may
also be analysed by means of statistical tools from climate risk analysis (Mudelsee
2014, Chapter 6 therein). One typical inference would be the estimation of the return
period of excess peaks, and another inference the analysis of the time-dependence in
the occurrence rate of such events.

A hint for the reader who searches for literature on nonlinear models and data anal-
ysis. Standard references on nonlinear time series analysis are provided by Priestley
(1988) from a statistical viewpoint and Kantz and Schreiber (1997) from a nonlinear
dynamical system viewpoint. Tong (1990, 1992) took the notable approach to build a
bridge between the two areas. Although these research areas are in development, it is
probably a good learning strategy to start with the mentioned works.
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The four time intervals (Table 1) have been selected as representatives of the differ-
ent weather regimes (i.e., Rn exhalation modes). The “in-sample” model fits (Figs. 16,
17, 18 and 19)were on the one hand “necessarily good.”On the other, the good descrip-
tive power of weather has a root in physics. The Rn flux is to a large extent controlled
by only two weather parameters, the surface air pressure and surface air temperature,
which explain a large fraction of the Rn variance (indicated by the R2

adj values). The
physical processes that govern these patterns are likely related to convective meteo-
rological processes. These may influence the partial pressure of a gas above a liquid
(Henry’s law), see, for example, Westphal (1970, p. 245 therein). In particular, it is the
thermal convection in the open pore space in the loose Quaternary sediments above
the groundwater level, from which the Rn is released.

For the practice of prediction, however, it has to be decided on basis of the weather
data which regime, which Rn exhalation mode prevails. What are the defining weather
properties for our site (Fig. 1)?

Exhalation mode I. The effect of the air pressure becomes best visible during the
weeks of reduced temperature variations, that means, during days of minimal tem-
perature gradients between day and night in October or March. However, particularly
the October is associated with strong air-pressure gradients. This situation leads to
increased flux from the strata into the air during times of rapid pressure reduction (as
the opening the cover of a pot with hot water). The weather regression model for this
exhalation mode explains 86% of the variance.

Exhalation mode II. The maximum of Rn is during the night, when air temperature
falls below the temperature in the borehole, that is, when air temperature is below the
groundwater temperature. This process (called chimney effect) dominates the Rn flux
during winter and can be used as an indirect measure of groundwater temperature.
This process works perfectly in a borehole chimney, but is less effective in normal
soil/strata. Despite this limitation, the Rnmaximumduring the night is a typical feature
at many other locations outside a borehole (Sirocko et al., manuscript in preparation).
The weather regression model for this exhalation mode explains 53% of the variance.

Exhalation mode III. This regime is a mixture between mode II and mode IV. It
characterizes the transition between these two primary modes. The transition time is
in the order of a few weeks. The weather regression model for this exhalation mode
explains 68% of the variance.

Exhalation mode IV. The precise synchronicity between (1) the maximum Rn flux
during the late afternoon and (2) the beginning of the decrease of air temperature is
typical for the months from May to August (Fig. 17). It can be best explained by
the warming of the subsurface strata during a sunny day, and the onset of thermal
convection/expansion of the soil gas in the open pore space of the upper subsurface
strata. The daily warming of the upper soil strata must lead to convective processes in
the sediments as soon as the direct insolation begins to cease, that is, when the soil at
about 2m depth is warmer than at the surface. This is the same process as the formation
of fog in a cold air overlying a heated substrate. This explains the Rn maximum in
the late summer afternoon. The weather regression model for this exhalation mode
explains 67% of the variance.

The variations of the Rn concentration in the fluxbox system are apparently strongly
related to changes in air pressure and air temperature, which explain 53–86% of the
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total measured Rn variance. Accordingly, the largest proportions of degassed Rn is
related to meteorological processes. Our fluxbox system, however, shows that this is
not caused by venting of the detection system (as often occurs inmeasurement systems
within houses or tunnels), but is indeed related to thermal convective gas flux from
the permeable sediment pore space.

Ongoing work on a 2-year-long time series indicates that the majority of the unex-
plained variance is due to changes in the speed of the wind, which can “suck” gas out
of the ground at high velocities. This third meteorological process will be presented in
an ongoing project, and will likely explain most of the—yet—unexplained variance.

In the statistical area, we are currently experimenting with more or less direct
implementations of theweather regime segmentationvia the temperature–air pressure–
season approach described above (Sirocko et al., manuscript in preparation). More
advanced options via machine learning (Breiman 2001; Deloncle et al. 2007) will
eventually also be explored in the future.

6 Conclusions

The flux of Rn from soil to air exhibits considerable time-dependent variability during
the course of a year. This is documented by our new high-resolution measurement
series from a well drilled near Kleinneudorf in the Bundesland Schleswig-Holstein,
Germany.

Statistical time series analysis reveals that the variability is dominated by the daily
cycle and weather variations (temperature and air pressure). It is possible to construct
a Rn prediction model on the basis of weather variables and a segmentation into
four principally different weather regimes (Rn exhalation modes). Still, there remains
additional Rn variability,mainly in the formof excessRn peaks. Thiswill be pursued in
future papers. Certainly the presented statistical approach can also be applied to other
observed series that record a system with high variability and nonlinear interactions.

Since high Rn concentrations in the surface air are dangerous to human health, risk
analyses of the excess Rn peaks have a high socioeconomic relevance. This type of
analysis can deliver information about the return period of the excess peaks and the
time-dependent occurrence rate of such dangerous events. This allows to better assess
health impacts for a study site.

Our conclusions are based on fundamental process from geology, physics andmete-
orology. Therefore, we expect that the time-dependent variability of Rn is observable
not only at our site but also at other places in Germany and the EU.

The current programmes for spatially mapping the long-term Rn concentrations
in high resolution across the EU are important. However, this endeavour should be
augmented by plans to alsomonitor theRn concentrations over time. Such high-quality
spatiotemporal Rn data, analysed by state-of-the-art statistical methods, will provide
a basis for making better Rn risk predictions.
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