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Abstract

Calving of iceberg at ice shelves and floating glacier tongues is a poorly understood
process, hence a physically motivated calving law is not yet existing. The demands
on developing appropriate models for calving is large, as calving rates are needed
for large scale ice sheet models that simulate the evolution of ice sheets. Here, we
present a new approach for simulating fracture in ice. Our model is based on a
finite strain theory for a viscoelastic Maxwell material, as the large simulation time
leads to high strains. The fracturing process is simulated using a fracture phase field
model that takes into account the elastic strain energy. We conduct simulations for
a typical calving front geometry, with ice rises governing the formation of cracks.
To represent the stress state adequately, we first conduct a spin-up to allow the
viscous contribution to develop before the fracture phase field is computed. The
analysis comprises the assessment of the crack path in comparison to observations,
the influence of the spin-up, as well as elastic versus viscous strain contributions
based on Hencky strain. Additionally, an estimate of released energy based on high
resolution optical imagery of a Greenlandic calving front is presented.
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1 Introduction

Ice at stresses and strain-rates typically occurring in ice sheets and ice shelves shows
a dominant brittle behaviour [1]. The fracture toughness of polycrystalline ice was
found in laboratory experiments to be KIc = 95.35 ± 16.69kPa m1/2 [2]. Cracks in
ice are evolving episodically. The length of such cracks is often on the order of
kilometers. They either intersect the ice in vertical (thickness) direction entirely (so
called rifts) when they propagate in horizontal direction, or they open up in vertical
direction (crevasses) with crack face distance in the order to 1-10’s meters. At calving
fronts, crack propagation is eventually leading to the detachment of icebergs. This is
a normal process of mass loss of floating ice masses. In contrast, ice shelf break-up
events or the disintegration of floating tongues represent instability of ice masses.
Understanding of fracture formation and evolution is thus of major importance for
projecting the future of ice sheets. Yet physically based calving laws are not existing.
In Fig. 1 the calving front situation at Greenland’s largest floating ice tongue called
Nioghalvfjerdsbræ is shown. The glacier tongue is grounded at several points which
are called ice rises and are marked in blue. At these points cracks emerge in the ice
shelf, as can be seen in the satellite imagery, Fig. 1b).

Glacial ice was found to be a viscolelastic fluid following a Maxwell rheology
[3, 4, 5]. The elastic behavior is assumed to be compressible, as it is common for
crystalline materials, while the viscous flow behavior originates from incompressible
inelastic processes. The viscosity is strongly influenced by the temperature which
varies in ice sheets primarily in vertical direction (cold at the top, warm at the base)

Fig. 1 Overview of a typical calving front situation. The left panel shows a Landsat-7 satellite image
of the calving front (black line) of Nioghalvfjerdsbræ, Greenland’s largest floating ice tongue. The
blue areas are ice rises. The right panel (Sentinel-2 imagery) is a zoom into a part of the ice front
(box in the left panel) where cracks around the ice rises and along the lateral margins of the ice are
visible.
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and in flow direction (cold in the high elevated interior of the ice sheet, warmer at
the lower ice sheet margins). In general, ice sheets and ice shelves are hot materials,
as their homologous temperature is extremely high. Its characteristic time ranges
from 30 days for 𝜂 = 1015Pa s to 8.4 years for 𝜂 = 1017Pa s assuming a Young’s
modulus of 1 GPa and 𝜈 = 0.325 This exemplifies that long computation times are
needed to solve the problems adequately and as a consequence, a non-linear strain
theory is required. For glacial ice a finite strain theory for a Maxwell rheology was
first formulated by [6] and applied to a realistic ice shelf geometry in [7].

In the present investigation a fracture phase field model is proposed to describe
the failure of ice due to crack formation and propagation. The general concept of
phase field models is the representation of a sharp interface, such as for example
crack surfaces or grain boundaries by means of a continuous scalar field 𝑠(𝑥, 𝑡). The
order parameter 𝑠 represents the ’phase’ e.g. the state of the material, where for frac-
ture the intact material is specified by 𝑠 = 1 and the fractured material by 𝑠 = 0. The
transition between these states is smoothed out leading to a diffuse representation of
the crack.

The benefit of the diffuse representation is the prevention of costly remeshing
during crack growth. Furthermore, the fracture phase field method is capable to
simulate crack propagation as well as crack initiation and crack branching. In the last
decade, the phase field method has become well established for fracture simulations
and was used for a variety of fracture processes such as brittle [8, 9, 10], dynamic
[11, 12, 13], fatigue [14, 15, 16] and hydraulic fracture [17, 18]. Moreover different
material behaviours for instance anisotropy [19, 20, 21], plasticity [22, 23, 24] and
viscoelasticity [25, 26, 27] were studied. In this contribution, we will focus on the
latter by combining the phase field model with a viscoelastic material description
to capture the long and short term deformation of ice adequately. Since large time
scales are considered in this study, the theory of small strains is no longer sufficient
and the framework of finite deformations is needed.

The first application of phase field modelling for fracture in ice was presented
by [28], with a focus on hydrofracture. This study assumed a linear elastic material
response of the glacier, disregarding any viscous deformation, and a 2D glacier
geometry. [29] presented a stress-based phase field fracture formulation, which
was used to simulate hydrofracture in 2D and 3D including a viscous rheology.
Crack initiation at ice rises was studied in [30] based on a viscoelastic phase field
formulation for Maxwell materials. All above mentioned studies were assuming
linear strain.
This text is organised as follows: First, the visocelastic material model at finite strains
is introduced before explaining the phase field for fracture. Subsequently, we present
the numerical aspects of the implementation and the simulation concept. Section 3 is
focusing on the simulation results. In a last part the energy release from observations
is estimated.
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2 Theory

2.1 Non-linear strain theory for viscoelastic material

The viscoelastic behaviour of ice can be described by the rheological Maxwell model,
where an elastic element is in series with a viscous element. The basics of such a
viscoelastic material description are briefly outlaid in the following.

In a finite strain formulation of a viscoelastic material a distinction between a
(stress-free) reference configuration 𝜅𝑟 and a current configuration 𝜅𝑡 at time 𝑡
is made. Both configurations as well as their corresponding quantities are sketched
in Fig. 2. A central quantity in the description of the kinematics is the deformation
gradient F, defined as

F(X, 𝑡) = 𝜕x
𝜕X

= 1 + 𝜕u
𝜕X

. (1)

It is noted that x describes the position of a material point in the current configura-
tion, whereas X describes the position of the same material point in the reference
configuration. The vector u = x − X is referred to as displacement vector. As the
deformation gradient also contains rigid body motion, it is not a useful measure for
strain. To this end the Green-Lagrange strain tensor E is introduced

E =
1
2
(C − 1) (2)

with the right Cauchy-Green tensor C

Fig. 2 Kinematics of the
problem in the reference
𝜅𝑟 (light grey) and current
configuration 𝜅𝑡 (dark grey).
For viscoelastic materials the
intermediate configuration
𝜅𝑖 (red dashed line) is the
configuration in which the
constitutive relation is derived.
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C = FTF (3)

as a strain measure in the reference configuration 𝜅𝑟 . Its counterpart in the current
configuration 𝜅𝑡 is the Euler-Almansi strain tensor e

e =
1
2
(1 − b−1) (4)

that contains the left Cauchy-Green tensor b

b = FFT. (5)

The kinematic equations are complemented by balance laws. To describe the motion
of an ice sheet/ice shelf the balance of linear momentum is considered. As the fo-
cus is on horizontal plane of the extent of the ice sheet/ice shelf/glacier gravitational
forces vanish. Furthermore, neglecting inertia terms the balance of linear momentum
reduces to the equilibrium condition, given by

Div P = 0 (6)

with the divergence in 𝜅𝑟 being denoted with Div(·) and P the first Piola-Kirchhoff
tensor, as a stress tensor referring to the reference configuration. The transformation
between P and the Cauchy stress tensor 𝝈 in the current configuration 𝜅𝑡 is given by

PN d𝐴 = 𝜎n d𝑎 (7)

with N, n the normal vectors and d𝐴, d𝑎 the infinitesimal area elements in the
reference 𝜅𝑟 and current configuration 𝜅𝑡 , respectively. Infinitesimal area elements
transform according to Nanson’s formula

𝐽F−TN d𝐴 = n d𝑎 (8)

with 𝐽 = det(F).

To take the viscous part into account the intermediate configuration 𝑘𝑖 (see Fig. 2) is
introduced. The key concept for modelling finite viscoelasticity is the multiplicative
decomposition of the deformation gradient into an elastic Fe and viscous Fv part

F = FeFv, (9)

which was introduced by [31] in the context of finite plasticity and first applied to
ice deformation by [6]. As a consequence, the strain tensor 𝚪 in the intermediate
configuration is also decomposed into an elastic 𝚪e and a viscous 𝚪v part, but the
decomposition is, comparable to the Maxwell model for small strains, additive
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𝚪 = Fv
−TEFv

−1 =
1
2

Fv
−T (FTF − 1)Fv

−1 (10)

=
1
2
(Fe

TFe − Fv
−TFv

−1) = 𝚪e + 𝚪v.

Accordingly the elastic strain is given by

𝚪e = (1/2) (Fe
TFe − 1) (11)

and the viscous strain in the intermediate configuration is obtained by

𝚪v = (1/2) (1 − Fv
−TFv

−1). (12)

It is important to note that the additive decomposition of the strain is only viable in
the intermediate configuration 1.

The introduction of an intermediate configuration can be seen as a constitutive
assumption. The stress tensor in intermediate configuration 𝚺 depends on the elastic
strain 𝚪e as 𝚺 = 𝑓 (𝚪e), which for an isotropic material is given by

𝚺 = 𝜆 tr(𝚪e)1 + 2𝜇𝚪e (13)

with the Lamé constants 𝜆 and 𝜇. This form of material law is known as St. Venant-
Kirchhoff material. Eq. 13 can be reformulated easily to

𝚺 = 𝜆 tr(𝚪 − 𝚪v)1 + 2𝜇(𝚪 − 𝚪v) (14)

with the viscous strain in the intermediate configuration 𝚪v.

Similar to the additive composition of the strain in 𝜅𝑖 , the strain-rates are decom-
posed. Dealing with finite strains, objective time derivatives are needed. To this end,
the lower Oldroyd rate is chosen.

△
𝚪e = ¤𝚪e + lTv 𝚪e + 𝚪elv (15)

is the elastic strain-rate, while

△
𝚪v = ¤𝚪v + lTv 𝚪v + 𝚪vlv (16)

is the viscous strain-rate in 𝜅𝑖 . The viscous deformation gradient lv is computed from

lv = ¤FvF−1
v . (17)

The transformation (push forward operation) of the Green-Lagrange strain tensor
into the intermediate configuration then reads

1 Later on, we will introduce a strain measure that allows to compute the elastic and viscous strain
components in the reference configuration.
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△
𝚪 = Fv

−T ¤EF−1
v = Fv

−T
( ¤

FT
v 𝚪Fv

)
F−1

v = ¤𝚪 + lTv 𝚪 + 𝚪 lv. (18)

To complete the viscoelastic constitutive model we need to define the stress in
conjunction with an evolution law of the viscous strain, described by the viscous
right Cauchy-Green tensor

Cv = FT
v Fv. (19)

We define a strain tensor in 𝜅𝑟 as the difference between total and viscous strains as

Ee =
1
2
(C − Cv) (20)

Setting the (deviatoric) elastic and viscous stresses equal

2𝜂
△
𝚪v = 2𝜇

(
𝚪 − 𝚪v −

1
3

tr(𝚪 − 𝚪v)1
)
= 2𝜇𝚪D

e , (21)

the evolution equation of the viscous part
△
𝚪v of the viscous strain tensor in the

intermediate configuration is obtained as a function of the total strain difference
𝚪 − 𝚪v. Note that in the above equation the deviatoric part of 𝚪 − 𝚪v = 𝚪e is used.
This establishes an isochoric viscous deformation. The evolution law can also be
expressed in terms of the right Cauchy-Green tensor Cv, resulting in

𝜂 ¤Cv = 𝜇

(
C − 1

3
tr(CC−1

v )Cv

)
. (22)

Details are omitted here for the sake of compactness, but can be found in [6, 32].
Finally for the implementation the second Piola-Kirchhoff stress tensor is needed. It
can be computed by a pull back of the stress 𝚺 from the intermediate configuration 𝜅𝑖
on the reference configuration 𝜅𝑟 with the help of the viscous part of the deformation
gradient Fv

S = F−1
v 𝚺F−T

v (23)

=
𝜆 + (2/3)𝜇

2
[
tr(CC−1

v ) − 3
]

C−1
v + 𝜇

[
C−1

v CC−1
v − 1

3
tr(CC−1

v )C−1
v

]
.

As the viscous deformation is isochoric the 𝐽𝑣 = det(F) does not appear in the above
pull back operation.
The above derivations are formulated for the general 3D case. The adjustments
for e.g. the computation of deviatoric tensor components in 2D have to be made,
accordingly.
In the formulation of the fracture mechanical model the elastic energy density is
needed. The elastic energy density of an isotropic St. Venant-Kirchhoff material in
𝜅𝑖 is given by
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𝜓𝑖
e (𝚪e) =

1
2
𝚪e : C𝚪e =

𝜆

2
tr(𝚪e)2 + 𝜇𝚪e : 𝚪e (24)

with C the elasticity tensor defined by the Lamé constants 𝜆, 𝜇 [33]. The elastic
energy density of a St. Venant-Kirchhoff material in 𝜅𝑟 is given by

𝜓𝑟
e (Ee) =

1
2

Ee : CEe =
𝜆

2
tr(Ee)2 + 𝜇Ee : Ee (25)

as 𝐽𝑣 = 1 due to 𝑑𝑉 = 𝑑𝑉 𝑖 .
Finally, the elastic energy density of a St. Venant-Kirchhoff material in 𝜅𝑡 is given
by

𝜓𝑡
e (e) =

1
2

ee : Cee =
𝜆

2
tr(ee)2 + 𝜇 (26)

.
In order to evaluate the elastic and viscous components of strain, we introdue a
logarithmic strain measure, the Hencky strain [34] that reads

𝜺H =
1
2

ln
(
FTF

)
=

1
2

ln(C) (27)

and an additive decomposition of the Hencky strain as

𝜺H
e = 𝜺H − 𝜺H

v =
1
2

ln(C) − 1
2

ln(Cv) (28)

With this the formulation of the finite strain theory for a viscoelastic Maxwell ma-
terial is complete. Next, we introduce the fracture phase field model for viscoelastic
materials under finite strains.

2.2 The phase field model of fracture

The general idea of the phase field method of fracture is based on Griffith’s theory of
fracture, in which failure occurs once a material specific critical value of the energy
release rate Gc is reached. It is a material parameter that is related to the fracture
toughness KIc by Gc = KIc

2 (1− 𝜈2)/E in the plane strain case. The energy available
for crack formation is given by the strain energy. Hence the energy potential Π of a
body Ω with a sharp crack interface Γf reads

Π =

∫
Ω\Γf

𝜓e 𝑑𝑉 +
∫
Γf

𝜓f 𝑑𝐴 −
∫
𝜕Ω

t0 · u 𝑑𝐴 (29)

with the first term describing the strain energy and the second term the energy re-
quired for fracture along the crack. The last term represents the traction boundary
condition with a traction in the reference configuration t0 = PN and u the displace-
ment. As mentioned above the sharp crack interface is smoothed out over a length



Phase field modeling of cracks in ice 9

scale l0 as sketched in Fig. 3. The phase field method is hence approximating the
energy for fracture as a volume integral over the critical energy release rate Gc
multiplied by the crack surface (density) 𝐴l0∫

Ω

𝜓f𝑑𝑉 =

∫
Ω

Gc 𝐴l0𝑑𝑉 ≈
∫
Γf

Gc 𝑑𝐴 . (30)

The crack surface density depends on the length scale l0 which describes the transition
width between intact and broken material as well as on the order parameter s. We
use the Ambrosio and Tortorelli approximation [35] which is given by∫

Ω

Gc 𝐴l0𝑑𝑉 =

∫
Ω

Gc

(
(1 − s)2

4l0
+ l0∇s · ∇s

)
𝑑𝑉 (31)

including a local part (1− 𝑠)2/4l0 and a non-local contribution l0∇𝑠 · ∇𝑠 of the crack
surface density. It satisfies the Γ-convergence criterion and converges for l0 → 0 to
a sharp crack in case of a brittle material [36, 37].
With increasing damage due to crack formation and propagation, the material stiff-
ness is reduced. This is introduced by a degradation function 𝑔(s) given as a quadratic
function 𝑔(s) = s2 + 𝜂RS in which 𝜂𝑅𝑆 ≪ 1 is a residual stiffness that ensures for
an entirely broken material a numerically well conditioned system. For a vanishing
residual stiffness 𝜂RS the degradation function satisfies 𝑔(s = 1) = 1 as well as

Fig. 3 Sketch of the concept of phase field modelling of fracture. The left panel resembles sharp
cracks, while the right panel highlights smeared out cracks represented by a continuous phase field.
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𝑔(s = 0) = 0 and
𝜕𝑔

𝜕s
≤ 0 ,

𝜕𝑔

𝜕s
|s=0 = 0. (32)

To ensure irreversibility of the crack, the phase field is set to 0 once it has reached
a critical value.
The regularised energy potential including the work of the surface tractions becomes

Π𝑟 =

∫
Ω

𝑔(s)𝜓e 𝑑𝑉 +
∫
Ω

𝜓f 𝑑𝑉 −
∫
𝜕Ω

t0 · u 𝑑𝐴 . (33)

Next 𝜓e is specified. Assuming a St. Venant-Kirchhoff material that was already
introduced above, the elastic strain energy is split into a volumetric and a deviatoric
part

𝜓e =
𝜆

2
tr(Ee)2 + 𝜇Ee : Ee =

1
2
𝐾tr(Ee)2 + 𝜇ED

e : ED
e (34)

with the bulk modulus 𝐾 = 𝜆 + 2
3 𝜇.

Crack evolution is assumed to occur under tension only, thus the volumetric strain
energy density is split into a positive and a negative part. To this end the (signed)
Macaulay brackets are defined as

⟨x⟩+ =

{
x for x ≥ 0
0 for x < 0 ⟨x⟩− =

{
x for x ≤ 0
0 for x > 0 (35)

and are applied to the elastic volumetric strain tr(Ee).
Incorporating all the above features the final version of the phase field potential is
given by

Πr =

∫
Ω

𝑔(s)
(

1
2
𝐾 ⟨tr(Ee)⟩2

+ + 𝜇ED
e : ED

e

)
𝑑𝑉 +

∫
Ω

1
2
𝐾 ⟨tr(Ee)⟩2

− 𝑑𝑉

+
∫
Ω

Gc

(
(1 − s)2

4l0
+ l0∇s · ∇s

)
𝑑𝑉 −

∫
𝜕Ω

t0 · u 𝑑𝐴 .
(36)

In the approach presented here, we only consider an elastic component to the strain
energy, disregarding a direct influence of the viscous component. In this way we
model elastic crack evolution in a viscoelastic material.
In order to solve the problem, Eq. 36 is minimized with respect to the displacement
field u by setting the variation with respect to u to zero: 𝛿uΠ = 0. This renders the
equilibrium conditions and the traction boundary conditions. To obtain an evolution
equation for the phase field a time dependent Ginzburg-Landau equation is used to
relate the change of the fracture field s to the variational derivative of the phase field
potential with respect to s

¤s = −M𝛿sΠr (37)

with M the mobility constant. The mobility constant M is introduced to ensure
numerical stability and acts as a rate dependent regularization in situations with
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Table 1 Model parameters

parameter value unit

𝜂 5· 1014 Pa s
E 1 GPa
𝜈 0.325
Gc (for an ice thickness of 100 m) 901 J m−2

l0 198 m
M 105

𝜂RS 0.001

rapid crack evolution, such as crack initiation.

2.3 Numerics

The model was implemented in the finite element framework FEniCS [38], more
specifically we implemented Eq. (36) and used the automatic derivative to obtain the
variations with respect to the displacement u and the phase field variable s. Setting
the variation with regard to u to zero renders the equilibrium condition. The variation
with respect to s provides the driving force, c.f. Eq. (37), where we have chosen a
mobility constant of M = 105. The rate of s in Eq. (37) is integrated in time using a
backward Euler scheme. The residual stiffness 𝜂RS in the degradation function has
been chosen to be 0.001 and s is fixed to zero for all further time steps if s ≤ 0.05.
All model parameters used throughout the simulations can be found in Tab. 1. To
solve the system of equations, a monolithic scheme is used and thus the displacement
field u and the fracture field s are calculated simultaneously. The internal variable
Cv is obtained from the evolution Eq. (38) where an forward Euler scheme is used
to approximate the rate ¤Cv

¤Cv =
Cv

𝑛+1 − Cv
𝑛

Δ𝑡
(38)

resulting in an equation for the Cv at time step 𝑛 + 1:

Cv
𝑛+1 =

𝜇

𝜂
Δ𝑡

(
C𝑛 − 1

3
tr
(
C𝑛 (Cv

𝑛)−1
))

+ Cv
𝑛 . (39)

The displacement field u and the fracture field s are interpolated linearly using
triangular elements. The internal variable Cv is constant in each element. Due to the
non-linear coupling of u and s a Newton-Raphson scheme is applied to obtain the
values at a new time step 𝑡𝑛+1 form the previous time step at 𝑡𝑛. The embedded linear
system is solved using the solver MUMPS [39]. Especially in cases with rapid crack
evolution, the Newton-Raphson scheme may not converge (relative and absolute
tolerance). Thus, in cases where the Newton-Raphson scheme does not converge
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in 15 iterations the time step is halved. If the Newton-Raphson scheme converges
less than 5 iterations the time step is doubled. This heuristic time step adjustment
improves the numerical stability and guarantees a certain efficiency.

2.4 Scenarios, setup and spin-ups

Different geometries are considered here, which are motivated by the typical calving
front situations as shown in the right panel of Fig. 1. At first (Case 1) a square ice shelf
area is used with inflow from left and a calving front on the right side as shown in
Fig. 4. Upper and lower boundaries are assumed to be ice shelf internal boundaries.
To mimic this situation vertical displacements are blocked while the horizontal
motion is not constrained. The ice rises are modelled as holes, with a homogeneous
Dirichlet boundary condition u = 0. At the inflow boundary the displacement is also
set to zero, whereas at the outflow a constant velocity of 0.2 m/day in horizontal
direction is applied, leading to an overall tension of the domain. This setup resembles
the situation at an ice shelf that is increasing in velocity towards the ice front.

In Case 2 a free floating ice tongue is anticipated. Thus from the inflow to the
ice rise identical boundary conditions as in Case 1 are used. The ice rise are again
modelled as fully attached ice by setting u = 0 along both quarter-circles. As in the
first example the lateral margins upstream of the ice rises are internal boundaries,
where the vertical displacements are set to zero. The lateral boundary conditions of
the ice tongue are traction free. The calving front is again loaded by a linearly in
time increasing displacement load of 0.2 m/day. Both meshes were created in Gmsh
[40] and have been refined towards the circles or quarter circles representing the ice
rises.

In many engineering applications a load is applied to an initially unloaded body.
The task is to simulate changes in stress, strain and associated crack formation
during the application of a time dependent load. In the case under consideration

Fig. 4 Geometry setup of the numerical experiments, circles resemble ice rises.
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here, a natural system is analysed that has undergone a long load and deformation
history. Therefore, the viscous strain field is already well developed, while the
elastic component is becoming more important in the vicinity of the calving front.
This becomes more evident when considering the characteristic time again, as the
viscous component only evolved over larger time scales of month to years. To capture
this in this contribution, so called spin-up simulations were performed. In the spin-
up the fracture phase field model is switched off, but the viscoelastic deformation
is allowed to develop. As an order of magnitude for the time scale, the time span
between the fracture formation of the lateral cracks visible in Fig. 1 is considered,
which is about one year. As the fracture phase field is not solved for, only slow
viscoelastic processes occur and the time steps in the spin-up runs can be larger, but
due to the explicit time scheme a maximum time step of a day is allowed. After the
completion of the spin-up runs, the displacement u and viscous strain field Cv are
used as the initial state for subsequent fracture phase field simulations.

3 Results

3.1 Crack evolution and strain for ice rises within the ice shelf

We present the fracture phase field of Case 1 in Fig. 5 for different initial conditions.
We investigate the case of no spin-up and several spin-up simulations with different
time periods varying between 10 up to 40 weeks. The crack paths differ in all
experiments. In all cases the crack evolution starts at the downstream (lee) side of
ice rises and then propagates along the circles until it deviates from the ice rise
margin and cracks in the area between the ice rises are formed. Once the cracks are
unified the fracture evolves towards the boundaries of the domain. For the experiment
without spin-up the crack path is a nearly straight line between the ice rises and the
lateral margins of the ice body. The crack paths for experiments with spin-up runs
differ strongly from the experiment without spin-up. With shorter spin-up times,
thus less viscous deformation, the crack path is more branched then with longer
spin-up times. More than one crack forms at the ice rises. All cases with spin-up
lead to a final crack path between the ice rises of a bow-like shape. Also between
the ice rises and the lateral margins, the crack path is more inclined as compared
to the experiment without spin-up. In the downstream part of the ice body, the
phase field is also reduced for all pre-deformed cases, while the phase field without
spin-up remains fully intact in almost all areas around except the main crack. While
conducting the simulations, we observe that the transition between spin-up to the
full problem including the fracture phase field is prone to numerical difficulties. The
time step is becoming very small, as the spreading of the crack is very quick. This
behaviour is referred to as model shock in the following.

In order to quantitatively capture the influence of elastic and viscous strain we
resort to the additive decomposition of the Hencky strains as introduced in (28). For
this purpose, Fig. 6 presents the ratio 𝜺H

e /(|𝜺H
e | + |𝜺H

v |) and 𝜺H
v /(|𝜺H

e | + |𝜺H
v |) for
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selected experiments: (a) no spin-up, (b) with 15 weeks spin-up and (c) with 40 weeks
of pre-loading. The Hencky strains are shown at the same time as the phase field s
in Fig. 5 It can be observed that elastic strains occur primarily as an instantaneous
reaction to crack propagation and are thus very large in the area of the crack and at
the crack tip. It is worth to note that this concentration of the elastic strains occurs
more pronounced in the simulations with spin-up. This is an indication of the model
shock. The system can only account for the stress redistribution by elastic responses.
In the situation with no spin-up, elastic strain forms a compression arc to support
the applied external load. In the simulations without spin up, the crack is almost
invisible in the strain distributions, elastic or viscous, see Fig. 6a,b. In situations
with spin-up the viscous strain contribution vanishes in the crack region, see Fig. 6
d,f. This is due to the longer viscous time scale, indication again the feature referred
to as model shock.

To better understand the temporal evolution of the fracture process, Fig. 7 reports
the fracture phase field and the elastic Hencky strain contribution for a spin-up of
10 weeks. The system is so highly stressed that not only one, but three cracks from
at each ice rise (hole), see Fig. 7c. The two cracks towards the middle of the domain
converge into one crack at each ice rise which afterwards grows further into the area
between the ice rises. The two cracks this middle area unify and form a large crack
that connects the two ice rises. Later the lateral cracks grow towards the boundaries
resulting in a final splitting of the ice block. Again the different time scales of the
crack propagation and the viscous flow are worth mentioning. Compared to the ’slow’
flow process the crack propagates almost instantaneously. There is again a strong
correlation between the elastic strain distribution and the crack path. To support
this statement the arc-like tensile elastic strain distribution in Fig. 7d is mentioned.
Later, see Fig. 7f, the crack path follows this arc-like distribution. In regions with
compressive elastic strain, such as the upstream boundary of the ice rise, cracks are
suppressed.

3.2 Crack evolution and strain for floating tongue

Here we present the results of a more realistic calving front geometry (see also
Fig. 1). The evolution of the phase field is displayed in Fig. 8 for four instances in
time without a spin-up run. The cracks emerge downstream of the ice rises and grow
from the transition between ice rise and calving front in lateral direction. In the early
stages of crack propagation the direction is more or less straight, while the crack
path is slightly diverted as the cracks get closer to each other. The final stage is a
slight bow form. The crack width grows wide at the calving front. In contrast to the
case in which the ice rises are situated in the center of the ice body, the phase field
downstream the crack is not impacted, as the ice does not have to detach form the
ice rise.
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Fig. 5 Phase field of the experiments with ice rises in the center of the ice shelf. (a) no-spin up,
(b-e) 10, 15, 20, 40 weeks spin-up respectively.
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Fig. 6 Hencky strain in 𝑥-direction for different experiments. (a,c,e) display 𝜺H
e /( |𝜺H

e | + |𝜺H
v | ) for

no spin-up, 15 and 40 weeks respectively. (b,d,f) display 𝜺H
v /( |𝜺H

e | + |𝜺H
v | ) for the same situations.
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Fig. 7 Temporal evolution of the phase field s in the left panels and the corresponding elastic part of
the Hencky strain 𝜺H

e xx in the right panels for a pre-loading of 10 weeks. The Hencky strain is plotted
relative 𝜺H

e /( |𝜺H
e | + |𝜺H

v | ) . Upper row is for Δt = 0, middle row for Δt = t− tSpinUp = 1.9215 · 10−9𝑠
and bottom row for Δt = 3.9343 · 10−9𝑠
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Fig. 8 Temporal evolution
of the phase field of the
experiments with a floating
tongue.
.
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4 Released energy estimate based on observations

Satellite and airborne imagery, both optical and radar, can be used to identify cracks
in ice. Although this provides only information of the position of the crack at the
surface, either via the crack characteristics or additional airborne radar data, an
estimate of the vertical dimension can be obtained. We use this to determine the area
of the crack faces and to compute the released energy. The satellite imagery we use
here is Sentinel 2 (band 2,3,4) in 10 m (medium) resolution. In addition, we use high
resolution (0.3 m) optical data (RGB) from the onboard MACS camera system on
AWI’s polar aircraft. More on the data and its processing is given in [41]. From this
imagery we use data along one crack tip to constrain how much energy is released at
a typical crack tip. In both cases, we use an energy release rate of Gc = 8.071 𝐽 𝑚−2.

The medium resolution is used to measure the individual crack length of all
rifts visible in the right panel of Fig. 1. The entire length of all cracks at the
surface is 26 387 m. With an ice thickness of 90. . .100 m in this region, an area of
2.4. . .2.6 106 m2 and hence an energy of ΔE = 19.2-21.3 MJ is released during the
formation of the cracks.

The high resolution imagery in the right panel of Fig. 9 is used to measure the
crack length of each individual crack face. To this end, the length of the crack at the
ice shelf surface was determined and the ice thickness based on ice penetrating data
was used to compute the newly formed area. The ice thickness is the same as above.
The summing up the length of all individual cracks, we find with a total length of
767 m length and energy of 557.1. . .619.0 kJ.

Fig. 9 The left panel displays an image of the onboard Canon camera from 2013-08-08 showing
the calving front at the lower ice rise visible in the right panel of Fig. 1. In the right panel a high
resolution optical image obtained with the MACS camera system in 30 cm ground resolution of a
rift tip is shown.
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Comparing to Sentinel-2 imagery in 10 m resolution at the same location and time
of Fig. 9b, the crack ends 242 m further in the high resolution MACS imagery than
in Sentinel-2 scenes. Next we use the estimated energy of such a rift tip field and
add it for each rift in Fig. 1 (right panel). This leads to a total energy of all 15 cracks
in this particular calving front situation of 19.2. . .21.3 MJ + 15·(557.1. . .619.0) kJ
= 27.6. . .30.6 MJ, which is 44% more released energy than estimated without high
resolution imagery.

5 Discussion

In the simulations of Case 1 the crack path is leading to a separation at the downstream
side of the ice rises, which is also found in nature. However, at typical calving
front situations, the cracks form slightly further upstream than the simulations are
showing. The simulated crack propagation in Case 2 is in very good agreement with
observations (see Fig. 1 and Fig. 9).

The choice of the boundary condition is affecting the simulation results signif-
icantly. Currently, we are fixing the upper and lower boundary at their in vertical
direction by choosing a zero displacement condition in vertical direction at those
boundaries. This potentially leads to effects at the ice rise margins that are not in-
tended. In future the computational model will be applied to more realistic, and thus
irregular, geometries of ice rises. To do so, an extension of the boundary condition
along the margin of the ice rise is necessary to prevent penetration, but to similarly
allow the ice to disconnect from the grounded ice rises downstream. To this end a no
penetration condition as is common in contact mechanics and ice sheet modelling
has to be considered. The present investigation represents an extreme case, in which
the ice is ’laterally frozen’ (kinematically fixed) to the ice rise.

The natural system has a stress boundary condition at the calving front, with water
pressure below sea level and traction-free at the ice-atmosphere boundary which was
investigated in 2D vertical simulations by [6]. In future, a stress boundary condition
along the calving front shall be considered too.

A comparison of the no spin-up simulations of Case 1 and the simulations of
Case 2 shows a strong similarity between the crack paths. Both are nearly straight
between the ice rises as we expected due to the same boundary conditions. Their are
in good agreement with small strain results [30]. Further simulations especially for
different spin-up times of Case 2 have to be carried out.

The spin-up runs were conducted to obtain an initial state that represents the
stress and strain fields well prior to crack formation. Although this has been a useful
method for the problem under consideration, it also caused issues in the transition
between spin-up and solving the full problem including the fracture phase field.
The pre-loading is so substantial, that the crack formation and propagation sets in
nearly instantaneous after the spin-up. This needs further treatment in future, in
order to better resemble the natural process. For the situation displayed in Fig. 1
the time between crack formation is about one year. In contrast, in our situation
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even after only five weeks of spin-up cracks form instantaneously. It is worth to
note, that crack formation in ice shelves is happening extremely fast, with the time
scale being narrowed by satellite observations to appear between two subsequent
acquisitions, which may in summer be as close as within one day. That the crack
propagation within the model is nearly instantaneous is consistent with observations,
only the time period between two crack formation events is currently not matching
observations.

In our approach a viscoelastic Maxwell material is applied, but we reduced com-
plexity by assuming only an elastic fracture phase field model for crack formation,
which can be extended in future to incorporate other crack driving mechanisms.
Furthermore, a St. Venant-Kirchhoff material was used primarily for the sake of
simplicity. This material law is a widely used, but has issues for large compressive
strains. Other material models such as neo-Hooke material formulations can be used
as well, leading to a other constitutive relation for the second Piola-Kirchhoff stress
tensor S and consequently to a different evolution equation for the internal variable
Cv [42]. An investigation of the different material models and their influence on the
spin-up and fracture phase field are very interesting.

In general, an incorporation of the phase field model of fracture approach into
large scale ice sheet models is very favourable, as no adequate formulation of calving
is currently incorporated in those models. There are two routes to consider here: (i)
to use this approach in a micro-macro coupling, in which at local scale a fracture
phase field model is applied. The micro scale fracture phase field model will than
be used to derive calving rates, which are incorporated into the level-set method of
calving front motion or (ii) to extend the phase field model into an ice sheet wide
model with a high resolution mesh in calving front areas and to couple both models
directly. In both cases, a velocity formulation of the phase field model for fracture
is required, as ice sheet models are in velocity formulation. Both approaches are,
however, quite challenging and remain subject of future research.

Comparing the estimate of released energy in medium and high resolution imagery
makes evident, that it can only be estimated reliably when using high resolution
imagery, as one may underestimate it massively. This highlights the need for high
resolution airborne or satellite-borne data for fracture mechanical estimates.

Last but not least, the simulations depend on material parameters that are not
well documented and constrained. The basis for Gc is only KIc [2], while cracks
around the ice rises may also be mode II cracks in some occasion. In addition, the
laboratory tests were not conducted for fully consolidated ice, but for very dense firn
(experiments: 844.5 to 870.3 kg m3, consolidated ice: 917 kg m3). For polycrystalline
ice Gc may thus be smaller than the value used here. Conducting laboratory tests
to constrain the material parameters of polycrystalline ice further, would be highly
beneficial.
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6 Conclusions and future direction

We proposed a viscoelastic phase field method for fracture at finite strains and
studied the influence of the loading history on the crack initiation and propagation.
The influence of the viscous pre-loading is pronounced and shows the need of a
carefully considered spin-ups as glaciers and ice shelves have a long deformation
history, which is why large viscous strains occur. Comparison with simulations using
small strain reveal that the crack path is similar if no pre-loading is considered, as
the crack sets in quite rapidly.

All simulations show crack onset at the downstream side of ice rises. In reality,
the downstream side of ice rises is often ice free, which is consistent with our
simulations. The crack onset is in observations slightly further upstream, which is
likely an effect of the choice of boundary conditions used here.

Ice shows a rate-dependent flow behavior, known by Glen’s flow law, which
should be incorporated in the future. Also a feedback between the phase field and
the viscous deformation is to be evaluated and benchmarked against observations of
crack formation.

Since this is the first work of a fracture phase field model for ice considering
finite viscoelasticity a lot of open questions regarding the spin-ups and boundary
conditions remain. More advanced treatment of the boundary condition is needed to
resemble realistic ice shelf situations. Furthermore, a concept to combine large scale
ice sheet simulations with fracture phase field simulation needs to be developed in
future.
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