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Abstract
The Great Lakes region of North America has warmed by 1–2 °C on average since pre-industrial times, with the most 
pronounced changes observable during winter and spring. Interannual variability in temperatures remains high, however, 
due to the influence of ocean-atmosphere circulation patterns that modulate the warming trend across years. Variations in 
spring temperatures determine growing season length and plant phenology, with implications for whole ecosystem function. 
Studying how both internal climate variability and the “secular” warming trend interact to produce trends in temperature 
is necessary to estimate potential ecological responses to future warming scenarios. This study examines how external 
anthropogenic forcing and decadal-scale variability influence spring temperatures across the western Great Lakes region and 
estimates the sensitivity of regional forests to temperature using long-term growth records from tree-rings and satellite data. 
Using a modeling approach designed to test for regime shifts in dynamic time series, this work shows that mid-continent 
spring climatology was strongly influenced by the 1976/1977 phase change in North Pacific atmospheric circulation, and 
that regional forests show a strengthening response to spring temperatures during the last half-century.
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Introduction

Great Lakes climatology during the seasonal 
transition from winter to spring

Across the Laurentian Great Lakes region, the most pro-
nounced changes in temperature in recent decades compared 
with the pre-industrial period have occurred during the 
winter and spring (Moss and Blumenfeld 2017; Wuebbles 
et al. 2017). Across the northern plains and Great Lakes, the 
frost-free season has lengthened by over 10 days on average 
since the beginning of the instrumental period, concurrent 
with the Northern Hemisphere warming trend (Kunkel et al. 
2004; Yu et al. 2014; Wuebbles et al. 2017). However, the 
“secular” warming trend is modulated by substantial inter-
nal, or natural, climate variability on time scales ranging 

from weeks to decades that may either dampen regional 
warming or amplify it to produce more extreme values (Ghil 
and Vautard 1991; Simolo and Corti 2022). Determining 
how interannual-to-decadal scale variability modifies or 
exacerbates the warming trend is an important step in char-
acterizing the full range of possible climate conditions for 
any given region.

Despite its continental location, central North America 
is influenced by atmospheric teleconnections from remote 
centers of ocean-atmosphere variability. The Northern 
Annular mode (NAM) and Pacific North-America (PNA) 
pattern, both major modes of decadal-scale variability cen-
tered over the Arctic and North Pacific oceans, respectively, 
influence the strength and direction of Rossby waves reach-
ing the continental interior (Trenberth and Hurrell 1994; 
Thompson and Wallace 1998, 2001; McAfee and Russell 
2008; Stendel et al. 2021). The phases of the NAM deter-
mine the strength and direction of zonal winds and winter 
storm tracks across Central and Eastern North America, 
affecting lake levels and ice-out dates on the Great Lakes 
(Assel et al. 2003; Ghanbari and Bravo 2008; Saber et al. 
2023). The PNA is the tropospheric expression of varia-
tion in the Aleutian low-pressure system which varies in 
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conjunction with sea surface temperature (SST) anomalies 
across the Pacific basin (Wallace and Gutzler 1981; Tren-
berth and Hurrell 1994; Trenberth et al. 1998; Deser et al. 
2004; Yu and Zwiers 2007). Evidence for the influence of 
Pacific atmospheric circulation on the Great Lakes is mixed: 
Yu et al. (2014) found that PNA variability explained 30% of 
the variance in the date of the region’s last spring frost. Ault 
et al. (2015) also examined links between spring timing and 
atmospheric modes of variability in the USA but concluded 
that the secular warming trend was likely responsible for the 
observed changes in spring, but that internal variability did 
not play a significant role. Reducing uncertainty around how 
climate dynamics influence seasonal temperatures on local-
to-regional scales is necessary to constrain future estimates 
of regional climate change (Deser et al. 2012; Yu et al. 2020; 
Maher et al. 2020).

Linking spring temperatures to forest phenology 
and function

Warming in spring affects plant life cycles, (i.e., phenol-
ogy), by facilitating earlier leaf-out dates and extending the 
number of possible days of photosynthetic activity (Easter-
ling 2002, Schwartz et al. 2006, 2012; Schwartz and Reiter 
2000: Cleland et al. 2007). Changes in spring phenology 
affect whole ecosystems by altering plant-animal interac-
tions and rates of carbon sequestration and storage (Piao 
et al. 2007; Polgar and Primack 2011; Hänninen 2016). In 
temperate mesic forests in the Northeast, the longer growing 
season has been associated with an increase in annual net 
primary productivity during the past half-century, although 
the effects on whole ecosystem carbon accumulation remain 
unclear (Piao et al. 2007; Xia et al. 2014; Finzi et al. 2020). 
Measuring the sensitivity of central North American forests 
to the range of temperatures produced by internal and forced 
variability is key to predicting how forests will respond to 
further anthropogenic warming.

In the absence of long ecological records, natural archives 
can be used to reconstruct past ecosystem processes (West 
et al. 2006; Evans et al. 2013). Tree rings represent an impor-
tant source of information on forest growth responses to cli-
mate variability over decades to centuries of time (Babst 
et al. 2013, 2014). Tree-ring analysis, or dendrochronology, 
can be used to interpret the impacts of a changing climate 
on forest health and growth (Babst et al. 2014; Klesse et al. 
2016; Wilmking et al. 2020). This study predicts that trends 
in spring temperatures will be reflected in tree-ring width 
records, as the longer growing season and greater number 
of days of photosynthetic activity lengthen the period of 
ring-width formation and lead to wider rings.

In order to scale estimates of forest growth sensitivity 
from the site-level to a regional basis, satellite observa-
tions can tie the results of field studies to remotely detected 

observations of forest growth (Babst et al. 2018; Seftigen 
et al. 2018). The most commonly used satellite index used 
to evaluate ecological changes over time is the Normalized 
Difference Vegetation Index (NDVI) (Tucker and Sellers 
1986; Myneni et al. 1997; Tucker et al. 2001; Kerr and 
Ostrovsky 2003; Pettorelli et al. 2005; Huang et al. 2021). 
Because NDVI follows a seasonal trajectory, previous stud-
ies have used threshold approaches wherein certain values 
correspond to the start of biological spring (White et al. 
2014; Wang et al. 2018; Kern et al. 2020). These threshold 
dates are phenological indicators that can be evaluated with 
respect to their climate sensitivity and compared directly 
with field observations (Kaufmann et al. 2008; Bunn et al. 
2013; Seftigen et al. 2018). In this study, tree-ring data and 
satellite observations were combined to measure the sen-
sitivity of forest growth and canopy phenology to spring 
temperatures variability.

Detecting regime shifts in climate and ecological 
time series

Whether the warming trend will progress linearly or whether 
there will be non-stationarity patterns of change that 
abruptly alter relationships between climate and ecosystems 
remains highly uncertain (Bueno de Mesquita et al. 2021). 
A method of identifying changes in climate time series is 
to model the presence of statistical departures from histori-
cal baselines (Reeves et al. 2007; Wilmking et al. 2020). 
Identifying regime changes can reveal links between major 
phase changes in atmospheric circulation and regional cli-
matology and ecosystem function. In this study, a class of 
Bayesian model known as a Hidden Markov Model (HMM) 
was implemented to detect state changes in spring temper-
ature and tree-ring records (Evin et al. 2011; McClintock 
et al. 2020). HMMs provide the ability to model transitions 
between states in time series by classifying the data into 
distinct regimes that can be evaluated with respect to major 
shifts in climate drivers (Mallya et al. 2013; Gennaretti et al. 
2014).

Research objectives and hypotheses

The objective of this research was to evaluate variability and 
trends in spring (March-April-May) temperatures across the 
Great Lakes region and to analyze the influence of changing 
spring climate on forest phenology and annual growth. In 
order to achieve this, (1) local temperature time series were 
compared with models of external (anthropogenic) forcing 
and decadal-scale modes of variability. (2) Abrupt shifts in 
time series data were identified and evaluated with respect 
to global warming and large-scale modes of atmospheric cir-
culation. Finally, (3) dendrochronology and remote sensing 
were leveraged to determine the sensitivity of forest growth 
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and phenology to variability and trends in spring tempera-
tures. We hypothesized (H1) that regional climate will 
exhibit a warming trend consistent with the rate of external 
forcing from greenhouse gas emissions, but that interannual 
variability will be strongly correlated with hemispheric pat-
terns of atmospheric circulation, (H2) that the rapid rate of 
warming has led to a state-change in the regional tempera-
ture regime, and (H3) that long ecological records will show 
similar trends and state changes to the regional temperature 
record.

Methods

Analysis of regional climatology

A variety of different datasets were employed to charac-
terize change in regional climate and ecosystem dynamics 
(Table 1). At the site-level, weather station data from two 
research sites in northern Minnesota—the Cloquet Forestry 
Center (CFC) and Marcell Experimental Forest South sta-
tion (MEF) (Gill 2020; Sebestyen et al. 2020, 2021)—were 
analyzed. Both stations record temperature and precipitation 
and provide continuous daily coverage for the period from 
1911–present and 1961–present, respectively. Station data 
at both sites conform to high standards of meteorological 
data quality and are part of the NOAA Global Historical Cli-
matology Network which conducts both automated quality 
assurance and works with station managers to ensure high-
quality data (Durre et al. 2010; Menne et al. 2012).

A suite of gridded data of both temperature and pre-
cipitation were analyzed, all available through the Univer-
sity of East Anglia Climate Research Unit (CRU) (Harris 
et al. 2020). All CRU datasets are on a 5°x5° grid, with 
a monthly temporal resolution and cover the period from 
1901 to 2020. The CRU Time Series (TS) 4.06 monthly 

gridded climate datasets for temperature and precipitation 
were used, as well as the CRU Self-calibrating Palmer 
Drought Severity Index (scPDSI) dataset (van der Schrier 
et al. 2013; Harris et al. 2020). The region encompass-
ing 80.25W to 96.75W longitude, and 40.25N to 52.75N 
latitude was included in the analysis. All climate vari-
ables were analyzed in this study, but given the emphasis 
on spring climatology, results for precipitation and other 
seasonal climate variables are reported in supplemental 
materials (Fig. S1). Single grid cells for the nearest to the 
weather stations were extracted for comparison, and grid-
ded data were used to evaluate spatial patterns of change 
across the Great Lakes region.

The attribution of external anthropogenic forcing on 
regional climate change was done using an ensemble mean 
of 33 models contained within the Coupled Model Inter-
comparison Project Phase 6 (CMIP6) archive representing 
both anthropogenic and natural forcing for the historical 
period from 1850 to 2014 (Eyring et al. 2016) (list of mod-
els provided in Table S1). Single model grid cells near-
est to the weather stations were extracted for comparison, 
and given that the pixels were very large, both sites were 
represented by a single pixel. For comparison with the 
instrumental record, only the modeled period from 1901 
to 2014 was analyzed. The ensemble mean was compared 
with a single, 701 year-long pre-industrial control run rep-
resenting internal variations only covering the period from 
1850 to 2550 (Yukimoto et al. 2019). To produce a distri-
bution of values from the control run of the same length 
as the overlapping period between station and model data, 
one-hundred 50-year segments were randomly resampled 
from the control run, and mean temperature and standard 
deviations and trend estimates were generated from the 
resampled data (Karoly and Stott 2006; Dean and Stott 
2009). All model data were compared with the gridded 
and station data by comparing the absolute change, as well 

Table 1   Complete list of datasets used in this study. CFC, Cloquet 
Forestry Center; MEF, Marcell Experimental Forest; CRU TS, Cli-
mate Research Unit Time Series; PDSI, Palmer Drought Sever-
ity Index; CMIP6, Coupled Model Intercomparison Project; PNA, 

Pacific North America Pattern Index; NAM, North Annular Mode 
Index; MODIS, Moderate Resolution Imaging Spectrometer Normal-
ized Difference Vegetation Index. Additional information on tree-ring 
chronologies is included in Table S2

Dataset Time period Geographic extent Data type

CFC station 1911–2021 46.70 N, −92.52 W Daily temp, precip
MEF station 1961–2021 47.57 N, −93.48 W Daily temp, precip
CRU TS 4.06 1901–2021 −97.8 W, −80.3 W, 40.3 N, 52.8 N Monthly temp
PDSI 1901–2014 −97.8 W, −80.3 W, 40.3 N, 52.8 N Monthly soil moisture
CMIP6 ensemble mean 1850–2014 −93.5 W, −92.5 W, 47.0 N, 47.5 N Monthly temp
CMIP6 piControl 1850–2550 −93.5 W, −92.5 W, 47.0 N, 47.5 N Monthly temp
PNA index 1950–2021 Northern hemisphere Monthly indices
NAM index 1900–2021 Northern hemisphere Monthly indices
Tree ring data (five sites) Variable At CFC and MEF site locations Annual ring width
MODIS NDVI 2003–2021 −96.0 W, −82.0 W, 42.0 N, 50.0 N Daily NDVI
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as the strength of the decadal-scale trend over the com-
mon fifty-year period of 1961–2010 (Dean and Stott 2009; 
Hegerl and Zwiers 2011).

To ascertain the role of internal climate variability, the 
PNA and NAM indices were analyzed with respect to their 
relationships to spring temperatures. Both indices are calcu-
lated by taking the leading mode variability from an empiri-
cal orthogonal function (EOF) of monthly mean atmospheric 
pressure (Barnston and Livezey 1987; van den Dool et al. 
2000). The NAM index is defined as the first EOF of winter 
(Dec, Jan, Feb, Mar) sea level pressure across the Northern 
Hemisphere (20–90°N) from 1900 to 2020 (Thompson and 
Wallace 1998, 2000, 2001; Thompson et al. 2000, Hurrell 
and Deser 2009). The PNA index is based on a leading EOF 
at 500 mb centered over the North Pacific and covers the 
period from 1950 to 2020 (Trenberth and Hurrell 1994; Yu 
et al. 2007). For this analysis, mean December–March values 
of the PNA were analyzed for consistency with the NAM 
index. The PNA and NAM were spatially correlated with 
spring (March-April-May) temperatures using the CRUTS 
4.06 dataset (Harris et al. 2020).

Detecting state changes in temperature 
and ring‑width records

To test for state changes in climate and associated changes 
in ecological time series, Hidden Markov Models (HMMs) 
were used (Evin et al. 2011; Gennaretti et al. 2014). These 
models have been used in climatology (Evin et al. 2011; 
Mallya et al. 2013; Gennaretti et al. 2014) and are gaining 
popularity in ecology and population dynamics (Langrock 
et al. 2012; McClintock et al. 2020). The advantage of this 
type of model is that it makes few prior assumptions regard-
ing the timing of different transitions and yields a set of 
posterior probabilities of the likelihood of regime change, 
which can be used to ascribe confidence estimates to mod-
eled states. The basic structure of an HMM can be repre-
sented as a series of observations determined by underlying 
hidden states (Fig. 1):

The initial model distribution and parameters can be tai-
lored to fit the data itself. In this case, models were defined 
following the mathematical formula:

p
(
Xt|St = k

)
= N

(
Xt ∣ �k, �

2

k

)

(1)
where p is the probability that observation X falls into 

state S1 or S2 at time step t, where k describes an initial dis-
tribution, in this case a Gaussian function ( �k, �

2

k
 ). At each 

time step, the conditional distribution of the observation 
given a climate state P(Xt|St) is dependent on the previous 
climate state P(St|St−1) following a Markov process (Mallya 
et al. 2013). St is defined by a state-dependent distribution 
(k) which is unique to N number of different states. The 
probability of switching between state S at time t to state 
S+1 at time t+1 is referred to as the transition probability, 
which is represented using a matrix with N, in this case 2, 
dimensions.

(2)
The initial transition matrix for the Gaussian model 

specifies a high probability of being in the first state at 
the beginning and a low probability of switching between 
states at each time step, making it conservative with 
respect to predicting state changes. The Markov process, 
implemented by a forward algorithm through the depmixS4 
R package, calculates the step-by-step dependency of 
each observation on the previous one to determine the 
likelihood of transition at each time step (Zucchini and 
MacDonald 2009; Visser and Speekenbrink 2010). In order 
to determine whether the transitions between states were 
conditioned by other variables, co-variates for relevant 
predictors were added to the transition matrix to model 
the relationship among states. The Akaike Information 
Criterion (ΔAIC), Bayesian Information Criterion (BIC), 
and log-likelihood ratio tests were used to compare model 
performance between the one- and two-state models 
(Gotelli and Ellison 2013).

The data that were analyzed for the presence of major 
state changes in climatology were the mean spring tem-
perature time series from both meteorological stations and 
the nearest pixel from the CRU data for both meteoro-
logical site locations. Three models were fit to each time 
series: a null model with only one state, a simple two-state 
model with no covariates, and a full model with multi-
ple covariates on the transition probabilities. The CMIP6 
ensemble mean curve and atmospheric circulation datasets 
were included in the full model as covariates. Standard-
ized tree-ring width data from both site locations were 
also modeled using HMM models for the presence of state 
changes. Three models were fit in the case of the tree-ring 

P
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(
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(
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Fig. 1   Graphical representation of a basic Hidden Markov Model, in 
which Xt refers to the observed temperature or tree-ring records and St 
refers to the underlying climate state
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data; a null one-state model, a simple two-state model with 
no covariates, and a full model with spring temperature 
(from the CRU dataset) fit as a covariate. In order to iden-
tify transition years, the posterior states were examined, 
and if a single transition year was present in the data, this 
was reported as a transition year.

Tree‑ring data development

Tree-ring data co-located with local weather stations were 
collected at two sites in northern Minnesota (Fig. 2). The 
Cloquet Forestry Center (CFC) (46.70 N, −92.52 W) (Fig. 2, 
a) was established in the 1909 by the University of Min-
nesota Department of Forest Resources as an experimental 
research forest. The Marcell Experimental Forest (MEF) 

Fig. 2   Research sites where sampling took place, with locations and 
species of original tree-ring datasets indicated. a Cloquet Forestry 
Center (CFC) with two tree-ring sites indicated. b Marcell Experi-
mental Forest (MEF), the location of three study sites. Triangles indi-
cate black spruce (Picea mariana) sites, circles represent red pine 
(Pinus resinosa), and squares represent eastern Larch (Larix laricina) 

sites. Contour lines are draw at 3-m intervals from a LiDAR-based 
digital elevation model sourced from the MN DNR MNTopo pro-
gram, and geographic and hydrologic boundaries are from the Natu-
ral Earth database. c Geographic locations of research sites relative to 
the greater region
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(47.57N, −93.48) (Fig. 2, b) was established by the USDA 
Forest Service in the 1960s to study the hydrology and bio-
geochemistry of forested peatlands (Kolka et al. 2011). Both 
sites represent managed, mixed hardwood and conifer for-
ests on heterogeneous topography with soils ranging from 
well-drained sandy uplands to peat-dominated lowlands 
(Kolka et al. 2011; Gill et al. 2022). At CFC, black spruce 
(Picea mariana) and upland red pine (Pinus resinosa) were 
sampled. At MEF, red pine, black spruce, and Eastern larch 
(Larix laricina) were cored. Each site represents fifteen indi-
vidual trees, with two increment cores collected per tree.

Tree‑ring chronology development and climate 
response analysis

Standard dendrochronological methods were used to develop 
site chronologies for all five sampling locations across 
both research forests. Cores were dried, mounted on wood 
blocks, and sanded using successively finer-grit sandpaper, 
through to a 1000-grit polishing paper. Cross-dating and 
total-ring width measurements were done using a Velmex 
measurement system (Velmex Inc. 2009). Dating accuracy 
was assessed using the COFECHA cross dating software to 
identify and resolve dating issues (Holmes 1983). Expressed 
population signal (EPS) and RBAR were used alongside sta-
tistical cross dating to determine the strength of coherence 
among series in the chronologies, with an EPS cutoff of 0.85 
used to determine whether the chronology expressed strong 
agreement across series (Table S2) (Wigley et al. 1984). 
Average chronologies of dimensionless ring width indices 
were calculated using the dplR package in the R statistical 
programming environment (Bunn 2008). Ring-width indi-
ces were detrended using site-specific detrending choices, 
either using negative exponential curves or 100-year splines, 
depending on the site. Due to stand-wide disturbances, many 
ring-width series exhibited periodic growth releases in the 
middle of the series, such that negative exponential curves 
were not appropriate in all cases and rigid splines were pre-
ferred in most cases (Fig. S2).

Simple correlation analysis on the mean chronologies 
determined the relationship of annual growth to a variety 
of climate variables (Fig S1). To determine the changing 
relationship of tree-growth and spring temperature, running 
Pearson’s correlation analyses was used on the climate-
growth relationships, binned by decade. Running correla-
tions were done using the CRU TS 4.06 data. Running corre-
lations were calculated over 10-year periods using the gtools 
package (Bolker et al. 2022), and statistical significance of 
moving correlations was determined using a Mann-Kendall 
test for trends with a block bootstrapping to determine a 
null distribution of correlation values and to assess signifi-
cance and derive confidence limits (Önöz and Bayazit 2012; 

Kokfelt and Muscheler 2013). One thousand iterations were 
run on each time series, segmented by 10-year blocks.

Remote detection and analysis of canopy 
phenological responses to spring temperature

To track the sensitivity of canopy phenology to spring tem-
peratures, the Moderate Resolution Imaging Spectrometer 
(MODIS) daily Normalized Difference Vegetation Indices 
(NDVI) from 2003 to 2021were analyzed. These indices 
are produced using 16-day return images from the MODIS 
Terra/Aqua Daily Level 3 Global 500-m top-of-atmosphere 
irradiance images, from which daily surface reflectance 
composites have been produced that have been masked 
for cloud cover and corrected for atmospheric conditions 
(Vermote 2021). The data are provided by the United States 
Geological Survey and the NASA Earth Data program and 
accessed using the Google Earth Engine platform (Gore-
lick et al. 2017). Daily NDVI data are calculated for each 
pixel using the ratio of a near-infrared and infrared band, at 
wavelengths that capture major changes in the reflectance 
spectrum of green vegetation (Kriegler et al. 1969).

In order to create a model that could capture differences 
among cover types based on their unique phenological prop-
erties, each years’ time series for each pixel was fit with a 
unique harmonic curve function (Fig. 3). Harmonic curves, 
based on Fourier-transformed time series, represents each 
series as a wave defined by the unique amplitude and phase 
angle (Jakubaukas and Legates 2000). Thus, each curve has 
a peak, trough, and rate of change that reflect the unique 
phenological properties of that forest type (Kern et al. 2020; 

Fig. 3   Example NDVI time series, fitted with a harmonic curve for one 
pixel from northern Minnesota, from the Marcell Experimental Forest, 
in the year 2009. The NDVI time series is indicated in green circles. 
The horizontal dashed line indicates the 50% value between the mini-
mum- and maximum-modeled values, and the vertical dashed line indi-
cates the date at which the 50% value was reached. The grey-shaded 
area reflects the span of NDVI values between modeled min and max
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Wang et al. 2018). The method also forces potentially noisy 
data to conform to a theoretical model in which NDVI is 
lowest at the beginning of the growing season and peaks in 
late spring or summer. More information about harmonic 
curve fitting can be found in Shumway and Stoffer (2017).

Based on the harmonic curve fit for Julian days 1–212 (Jan 
1 through the of end of July), a threshold of 50% (hereafter 
referred to as NDVI50) was used as a threshold to establish 
the start of spring for each MODIS pixel, calculated as the 
midpoint on the curve between the min and max for each year:

(3)
Using CRU TS 4.06 gridded temperature record for the 

spring (MAM) months, point-by-point Pearson’s correla-
tion coefficient was calculated at the 500-m square MODIS 
pixel size for the correlation between NDVI50 and tem-
peratures for the 2003–2021 period. This resulted in a sin-
gle image of correlation values that could be segmented 
according to forest cover type. Using a high-resolution 

NDVI50 = NDVImin +
((
NDVImax − NDVImin

)
∗ 0.5

)

forest cover map from the USDA Forest Inventory and 
Analysis program resampled to the same resolution (500 
m) as the MODIS data, each pixel of correlation values 
were classified by forest type (USDA Forest Service 
2008), and then further aggregated into four rough forest 
type categories represented in the region: upland coni-
fer, lowland conifer, oak savannah, and upland deciduous 
(Table S2). The sensitivity of different forest types was 
assessed using linear regression with temperature, with 
sensitivity to warming indicated by the regression coef-
ficient (α).

Results

Contribution of internal and forced variability 
to trends in regional climate

Results from the attribution study indicated strong agree-
ment between the CMIP6 historical model ensemble 
mean and local temperature records (Fig.  4, Table 2). 

Fig. 4   Change in spring temperatures for the Cloquet Forestry Center 
(CFC) and Marcell Experimental Forest (MEF) compared with (1) a 
CMIP6 ensemble of historical model runs with all forcing included 
and (2) a CMIP6 pre-industrial (piControl) run representing only 
internal variations in climate. piControl-run model data represent an 
average of resampled data from the 701 year-long full model run. 

Site-level instrumental data were derived from averaging station and 
CRU records together for a cleaner visualization. CRU data begin in 
1901 and station data begin in 1911 for CFC and 1961 for MEF, years 
prior are represented by CRU data only. Time series have been fit 
with a local polynomial spline with 25 degrees of freedom

Table 2   Results from the 
comparison between station, 
instrumental and model 
data. Pre-industrial control 
(piControl) model data 
represent an average from 
resampling the data over 100 
random 50-year sections to 
represent the same length of the 
CRU time series. The trend and 
total warming are calculated for 
the 50-year period represented 
by all datasets (1961–2010)

Temperature dataset Time period Mean (°C) Standard 
deviation

Trend 1961–2010 
(°C/decade)

Total 
warming 
1961–2010

Instrumental
  CFC station 1911–2020 3.84 1.54 0.334 +1.64
  CFC CRU​ 1901–2020 3.79 1.62 0.311 +1.52
  MEF station 1961–2020 3.82 1.76 0.414 +2.03
  MEF CRU​ 1901–2020 3.82 1.62 0.311 +1.52
CMIP6 model
  Ensemble mean 1850–2014 4.01 0.51 0.339 +1.66
  PiControl 1850–2550 3.56 1.44 −0.01 −0.05
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Estimates of total warming over the 50-year overlapping 
period among all station, gridded, and modeled datasets 
(1961–2010) ranged between 1.5 and 2.1 °C depending on 
the record, and both stations yielded higher estimates of 
warming than the CRU-gridded data. The CMIP6 ensem-
ble mean fell in the middle of the range of estimates for 
rate of warming compared with gridded and station data. 
However, the CMIP6 temperature data had a somewhat 
higher baseline of around 4.0 °C on average compared 
with around 3.8 °C for the instrumental data, potentially 
dampening the rate of warming by comparison. The 
piControl model run showed slightly lower baseline tem-
perature and exhibited a slight cooling trend overall during 
this period.

Analysis of two different modes of winter ocean-atmos-
phere climate variability indicated that teleconnections to 
the North Pacific strongly affect spring temperatures across 
this region (Fig. 5). The PNA, which has been shown else-
where to influence spring temperatures across this region 
(Yu et al. 2014), is here shown to be an important driver 

of spring climatology in the continental interior (Fig. 5a). 
The influence of the PNA pattern appears here to extend 
to the eastern edge of the Great Lakes region, with the two 
tree-ring study sites located with the area most strongly 
influenced by PNA variability. By contrast, the NAM did 
not show strong correlations with spring temperature 
variability (Fig. 5b). Because of the strong relationship 
between the PNA and temperature, the PNA index is used 
to model state changes in regional temperature (below) 
where the NAM is not investigated further.

Hidden Markov modeling of spring temperatures

The HMM procedure performed over the full period of 
record identified regime shifts in local climatology at both 
site locations for all records with the exception of the short 
MEF station record (Table 4). The state change is indicated 
by a decrease in AIC, BIC, and a significant difference 
in log-likelihood. Evaluation of the model posteriors indi-
cated that the shift from the first to second state was stable 

Fig. 5   Relationship of winter multidecadal variability to spring tem-
peratures. The a Pacific-North American pattern (PNA) and b (NAM) 
Northern annular mode correlation spring temperature across the 
Great Lakes and upper Midwest regions. Spearman’s rank correlation 

test was used, with 95% confidence level indicated with black hatch-
ing. Grid cells with black x’s are not significant. The two tree-ring 
study sites are shown as black dots
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and that a transition occurred after 1976. The addition of 
two covariates (the warming curve from the CMIP6 ensem-
ble mean and the time series representing the PNA) to the 
models reduced the length of the time series in most cases 
from over 100 years to just over 50 years. The shorter time 
series presented with greater stochasticity and only in one 
case was the same 1976 state change identified as a single, 
stable transition year. In other cases, the models had the 
tendency to shift between states (Table 3). However, the 
addition of covariates improved model performance some-
what by decreasing model AIC and resulting in a margin-
ally significant difference in log-likelihood (p < 0.1).

Characteristics of the 1976 shift in spring 
temperatures

Analysis of change in means and variance demonstrate 
that the local climate at both the CFC and MEF indicates a 
change in the mean state of climate following 1976. Results 
of the Mann-Kendall indicate that the warming trend is 

highly significant in all time series (p < 0.001) (Table 4), 
except the MEF station data which was likely due to the 
shorter period of record (1961–present). F tests comparing 
pre- and post-1976 variance in the data were marginally or 
non-significant, indicating that the HMM model result is 
likely being driven more by changes in the mean values than 
the variance across years. In particular, the records indicate 
that spring 1977 was substantially warmer than any previ-
ous year (Fig. 3), which is likely why 1976 was consist-
ently identified by the models as a state change year. On a 
regional basis, examination of changes in mean and variance 
of temperatures indicated that the region has experienced 
an increase in average temperatures (Fig. 6, left panels), 
with a significant increase in variance (Fig. 6, right pan-
els). Increase in average temperatures across the region was 
approximately 1.5 °C, and significance tests on the regional 
data indicate that the trend in mean temperatures was sig-
nificant at a 95% confidence level or greater for the entire 
region.

Table 3   Hidden Markov Model results for regime change in spring 
climatology at the Cloquet Forestry Center (CFC) and Marcell Exper-
imental Forest (MEF) for both station and Climate Research Unit 
(CRU) climate data. Model performance for the one-state and two-
state model was evaluated by the change in Akaike Information Cri-

terion (Δ AIC). Model log-likelihood is also indicated for all models 
and is compared among models using a log-likelihood test (• = p < 
0.1, *p < 0.05, **p < 0.01). The transition year (T) is indicated if a 
single transition year was identified. The superior model is in bold

Record n state = 1 n state = 2 Model selection

AIC BIC Log L AIC BIC Log L Δ AIC T Year

CFC station 385.7 390.97 −190.85 374.07 392.52 −180.04** −11.63 1976
MEF station 221.62 225.6 −108.81 224.63 238.56 −105.32 3.01 –
CFC CRU​ 438.54 444.01 −217.27 423.06 442.21 −204.53** −15.48 1976
MEF CRU​ 452.89 458.36 −224.44 444.66 463.81 −215.33** −8.23 1976
Models with CMIP6 + PNA covariates (1961–2014)
Record n state = 2 n state = 2 + covariates

AIC BIC Log L AIC BIC Log L Δ AIC T Year
CFC station 259.45 274.67 −122.72 258.17 277.74 −120.08 • −1.28 1976
MEF station 224.63 238.56 −105.32 226.42 244.32 −104.21 1.79 –
CFC CRU​ 261.97 277.19 −123.99 260.45 280.02 −121.22 • −1.52 –
MEF CRU​ 273.95 289.17 −129.98 273.32 292.89 −127.66 • −0.63 –

Table 4   Change in mean and variance at the Cloquet Forestry Center 
(CFC) and Marcell Experimental Forest (MEF) in the pre- and post-
1976 time periods, as well as the results of the Mann–Kendall test for 

the significance of trends in time series data, and F test to test differ-
ences in variance between the two time periods. Mann–Kendall and F 
test p-values and test statistics indicate model significant and fit

Pre-1976 Post-1976 Mann–Kendall F test

Record Mean °C Variance Mean °C Variance P T P F

CFC Station 3.33 1.33 4.60 3.00 <0.001 0.230 0.14 0.79
CFC CRU​ 3.21 1.60 4.78 2.83 <0.001 0.282 0.10 0.78
MEF Station 2.70 1.54 4.23 3.01 0.469 0.001 0.08 0.72
MEF CRU​ 3.21 1.06 4.78 2.89 <0.001 0.282 0.80 0.96
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Sensitivity of regional forests to spring temperature

Results from the analysis of the relationships between climate 
and tree growth in northern Minnesota showed a significant 
positive response to spring temperatures (Fig. 7). The 10-year 
running correlation analysis indicated that the relationship 
between growth and spring temperatures increased signifi-
cantly over time, but that the majority of individual years 
were not significant when evaluated against a null distribu-
tion simulated using a Monto Carlo method. For both lowland 
species, the correlation started around zero and strengthened 
the most over the course of the period of record.

The HMM models, applied to the tree-ring data, also 
indicated sharp breakpoints in the tree-ring records—evi-
dence that non-stationarity of the tree-ring chronologies 
(Table 5). In all cases, the two-state model was superior 
to the null (one-state) model, and in two cases, adding a 
covariate for temperature improved model performance as 
evaluated through change in AIC and log-likelihood ratio 
testing. Visual examination of the posterior probability 
time series indicated that the two-state models were unsta-
ble through time and highly likely to shift back and forth 
between states.

Fig. 6   Changes in the mean and variance in spring temperatures and 
their significance. Clockwise from top left: a difference in the mean 
(pre- and post-1976), b change in the variance (pre- and post-1976), 

c Mann–Kendall trend test for entire time series, and d F test for sig-
nificant difference in variance (pre- and post-1976)
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Sensitivity of canopy phenology to spring 
temperatures

The correlation between forest canopy phenology and spring 
temperatures was strong across the region, varying from 
−0.3 to −0.9, with an average correlation value of 0.69 for 
the entire domain (Fig. 8a). Classifying the pixels by cover 
type yielded differences by category, with lowland coni-
fers in general showing more sensitivity than broadleaves 
(Fig. 8b).

Discussion

The timing of the transition from winter into spring has far-
reaching implications for society and nature. In central North 
America and the Great Lakes, spring temperatures affect 
agricultural production and ice-out dates for lakes shipping 
routes (Millerd 2011; Hatfield 2020). The timing of warm 
weather also has cascading effects on the function and pro-
ductivity of terrestrial ecosystems (Cleland et al. 2007; Pol-
gar and Primack 2011; Vitasse et al. 2009). Phenological 

Fig. 7   Results of the running 
correlation analysis of the 
relationship between spring 
temperature and tree-ring 
indices. a Larix laricina (one 
site), b Picea mariana (2 sites), 
and c Pinus resinosa (2) sites. 
Colored lines represent running 
correlations between decadally 
averaged ring width and tem-
perature, with a 90% confidence 
threshold indicated by the black 
dashed horizontal line. The sig-
nificance of the change in sen-
sitivity was established for each 
species using a non-parametric 
Mann-Kendall test for the sig-
nificance of autocorrelated time 
series, with block-bootstrapping 
with 10-year blocks. Model 
p-values and test statistics (T), 
as well as the slope and shaded 
confidence intervals, are derived 
from the bootstrapped models

Table 5   Hidden Markov Model results for tree ring indices, with 
spring temperature from the CRU record added to the model as a 
covariate. Model results are included for the Cloquet Forestry Center 
(CFC) and Marcell Experimental Forest (MEF) for three species, 
Pinus resinosa (PIRE), Picea mariana (PIMA), and Larix laricina 
(LALA). Model performance for the one-state, two-state, and two-

state + covariate models were evaluated by the change in Akaike 
Information Criterion (Δ AIC and Δ BIC). Model log-likelihood is 
also indicated for all models and is compared among models using 
a log-likelihood ratio test (• = p < 0.1, *p < 0.05, **p ≤ 0.01). The 
superior model is indicated in bold

Models with no covariates Models with CRU temperature covariate

n state = 1 n state = 2 Model selection n state = 2 + temp Model selection

Record AIC BIC Log L AIC BIC Log L Δ AIC AIC BIC Log L Δ AIC
CFC PIMA −90.73 −85.25 47.36 −122.58 −103.43 68.29** −31.85 −121.69 −97.07 69.85 0.89
MEF PIMA −32.27 −26.8 18.14 −56.49 −37.33 35.24 −24.22 −59.3 −34.67 38.65* −2.81
CFC PIRE −88.66 −83.19 46.33 −115.22 −96.07 64.61** −26.56 −113.75 −89.12 65.87 1.47
MEF PIRE −15.65 −11.24 9.83 −20.17 −4.74 17.09** −4.52 −16.25 3.59 17.13 3.92
MEF LALA 113.29 118.44 −54.65 82.91 100.93 −34.45 −30.38 77.57 100.74 -29.79** −23.36
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mismatches between species that rely on each other for food 
or pollination have negative consequences for the reproduc-
tion and survival of both plants and animals, restructuring 
ecosystems over time (Inouye 2008; Polgar and Primack 
2011; Kudo and Ida 2013; Renner and Zohner 2018). The 
lengthening of the growing season can also affect net pri-
mary production (NPP), although the effects of the advance 
in spring on whole ecosystem carbon budgets appears to 
vary substantially by forest type, species composition, and 
age structure (Piao et al. 2007; Richardson et al. 2009; Hän-
ninen 2016; Dow et al. 2022). In this study, pronounced 
changes in Great Lakes regional spring temperatures were 
produced following a major shift in ocean-atmosphere 
variability, which has been sustained over the past several 
decades.

Attribution of the warming trend to external forcing 
indicated strong agreement between the CMIP6 historical 
ensemble mean and local station and gridded instrumental 
data (Eyring et al. 2016). Analysis of the CMIP6 ensem-
ble for this region yielded an estimate of regional warming 
for the overlapping period from 1961 to 2010 of +1.66 °C, 
which was in range with the instrumental data, (+1.52–2.03 
°C). The station data exhibited a higher rate of warming than 
the CRU data, possibly due to local effects biasing the sta-
tion records. However, the CMIP data had a higher baseline 

temperature estimate prior to the start of the period of 
anthropogenic forcing, such that total magnitude of change 
in the recent period was reduced. Greenhouse gas emissions 
account for the total warming fraction in CMIP6 models, so 
even though the specific forcings (e.g., solar and volcanic 
forcing, aerosols, greenhouse gases) were not individually 
examined in the course this study, anthropogenic greenhouse 
gas emissions are the only factor that could have caused this 
trend (Tokarska et al. 2020).

Internal climate variability interacts with anthropogenic 
forcing on interannual to decadal time scales, contribut-
ing to uncertainty in regional climate change projections 
(Maher et al. 2020; Yu et al. 2020). The detection of abrupt 
departures from historical mean states can reveal informa-
tion about underlying climatology by relying solely on 
observational data (Hansen et al. 2016). In this study, 1976 
marked a transition from a cooler spring climate into a 
warmer one. The addition of covariates for external forc-
ing and PNA circulation improved model performance, 
indicating a contribution of both factors to the observed 
state change. The winter of 1976/1977 is known in the 
climate literature as the timing of a regime shift in North 
Pacific sea surface temperatures (Miller et al. 1994; Man-
tua and Hare 2002; Bond et al. 2003; Deser et al. 2004; 
Yeh et al. 2011). The following years were marked by a 

Fig. 8   Correlation between date at which NDVI for  forested pixels 
achieved a threshold value of 50% of peak and average spring temper-
atures (in degrees Celsius) from 2002 to 2021. Analysis was done on 
a point-by-point basis between 500 m2 MODIS pixels and 0.5-degree 
CRUTS 4.06 temperature data. a Map showing spatial patterns of 
negative correlation between average (monthly) spring temperatures 

and forest phenology (measured in change in NDVI by Julian day). b 
Histogram showing the variation in sensitivity to spring temperature 
variability by cover type. Boxplots indicate the regression coefficients 
from a linear model describing the sensitivity of green-up to change 
in temperature
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prolonged warm period across the tropical Pacific basin, 
which contributed to the maintenance of the PNA posi-
tive phase until 1988 (Trenberth and Hurrell 1994). The 
shift back to a negative phase after 1988 is not reflected in 
regional climatology, suggesting that the secular warming 
trend played a role in the recent changes in spring tim-
ing (Ault et al. 2015). This highlights the integration of 
internal and forced variability on decadal time scales and 
illustrates the crucial role of internal variability in modu-
lating regional temperature regimes.

Tree-ring width chronologies exhibited an increasing 
sensitivity to spring temperatures over the same period, 
although visual and statistical examination of the tree-ring 
time series and model posteriors indicated heterogeneous 
climate responses and non-linear growth patterns, evi-
dence that warming signals are being modified by other 
factors such as precipitation or stand-wide disturbances 
(Thom et al. 2018). In temperate, mesic forests such as 
those in northern Minnesota, variability in ring widths 
is often driven by stand dynamics more strongly than by 
climate (Foster 1988; Rollinson et al. 2021). At multiple 
sites, evidence of disturbance-related growth releases was 
found during the twentieth century (Fig. S2). In the low-
land sites as a likely effect of draining forested wetlands 
to increase tree growth rates (Kolka et al. 2011; Gill et al. 
2022). A possible extension of this research would be to 
use an HMM framework to model disturbance-related 
growth patterns alongside changes in the climate system 
(McClintock et al. 2020).

Satellite phenological observations indicated strong 
regional relationships between green-up dates and spring 
temperatures, consistent with other studies (Richardson et al. 
2006; Piao et al. 2007; Schwartz et al. 2012; White et al. 
2014). Segmenting by forest type suggested that phenology 
in lowlands and conifer stands was particularly sensitive to 
variability in spring temperatures, contrasting with research 
indicating that broadleaf forests were more sensitive to 
warming than conifers (Richardson et al. 2006; Montgom-
ery et al. 2020). All of the tree-ring datasets were collected 
from conifers, and the lowland sites also showed a greater 
response than the upland sites, across all datasets and ana-
lytical approaches. Other studies have made direct compari-
sons between NDVI and tree-ring width measurements as 
both are theoretically measurements of forest growth (Kauf-
mann et al. 2008; Bunn et al. 2013; Seftigen et al. 2018). 
Experimenting with comparison of site-level NDVI and 
tree-ring widths did not yield strong relationships for these 
sites, potentially due to the mixing of cover types within the 
large satellite pixels (Fisher et al. 2006; White et al. 2014). 
Despite the challenges of linking tree-ring data directly with 
satellite records, the results of our analysis suggest a region-
wide trend towards earlier leaf-out correlated with higher 
radial growth rates in conifer-dominated systems.

Conclusion

Trends in spring temperatures stemming both from anthro-
pogenic forcing and internal climate dynamics exert a 
combined influence on regional climate and ecosystems 
over time. This study identified a regime change in the 
mean state of spring climatology across the Great Lakes 
region following a major shift in North Pacific atmos-
pheric circulation, which was sustained across subsequent 
decades due to global warming. The effects of warming 
were evident in tree-rings as an increase in ring width, and 
in satellite observations phenology as an advance in the 
timing of spring greening. In the second-growth forests 
of the upper Midwest decoupling the effects of internal 
and forced climate variability from forest management and 
disturbance regimes require novel, dynamic methods of 
change detection.
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