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Abstract Living organisms control the formation of mineral skeletons and other structures
through biomineralization. Major phylogenetic groups usually consistently follow a single biomin-
eralization pathway. Foraminifera, which are very efficient marine calcifiers, making a substantial
contribution to global carbonate production and global carbon sequestration, are regarded as an
exception. This phylum has been commonly thought to follow two contrasting models of either

in situ ‘'mineralization of extracellular matrix’ attributed to hyaline rotaliid shells, or ‘mineraliza-
tion within intracellular vesicles' attributed to porcelaneous miliolid shells. Our previous results on
rotaliids along with those on miliolids in this paper question such a wide divergence of biomineral-
ization pathways within the same phylum of Foraminifera. We have found under a high-resolution
scanning electron microscopy (SEM) that precipitation of high-Mg calcitic mesocrystals in porcel-
aneous shells takes place in situ and form a dense, chaotic meshwork of needle-like crystallites.
We have not observed calcified needles that already precipitated in the transported vesicles, what
challenges the previous model of miliolid mineralization. Hence, Foraminifera probably utilize less
divergent calcification pathways, following the recently discovered biomineralization principles.
Mesocrystalline chamber walls in both models are therefore most likely created by intravesicular
accumulation of pre-formed liquid amorphous mineral phase deposited and crystallized within the
extracellular organic matrix enclosed in a biologically controlled privileged space by active pseudo-
podial structures. Both calcification pathways evolved independently in the Paleozoic and are well
conserved in two clades that represent different chamber formation modes.

elLife assessment

This manuscript provides important information on the calcification process, especially the prop-

erties and formation of freshly formed tests (the foraminiferan shells), in the miliolid foraminiferan
species Pseudolachlanella eburnea. The evidence from the high-quality SEM images is convincing
although the fluorescence images only provide indirect support for the calcification process.

Introduction

Over the past 500 million years, living organisms evolved different skeleton crystallization pathways.
Very popular in nature is the mineralization of the extracellular matrix, e.g., in crustacean cuticles,
mollusk shells, vertebrate bones, and teeth composed of dentin and enamel (Weiner and Addadi,
2011; Kahil et al., 2021; Ujiié et al., 2023). Radial foraminifera represented by rotaliids have been
traditionally interpreted to make use of this crystallization mode (Weiner and Addadi, 2011). The
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other two pathways are intravesicular and are characterized by either production of amorphous
unstable phase within a large vesicle, such as a syncytium, well documented for sea urchin larvae
(Beniash et al., 1997) or crystallization of calcite elements within smaller vesicles located in the intra-
cellular space, as seen in fish that form guanine crystals and coccolithophores to produce coccoliths
(Weiner and Addadi, 2011; Kabhil et al., 2021). This model has also been attributed to the forma-
tion of porcelaneous shells by miliolid foraminifera (Weiner and Addadi, 2011) based on the model
proposed by Berthold, 1976, and followed by .

As such, mineralization of shells in Foraminifera is believed to follow two highly contrasting path-
ways. The current theory states that Miliolida, characterized by imperforate, opaque milky-white shell
walls (porcelaneous) (Angell, 1980; de Nooijer et al., 2009), produce fibrillar crystallites composed of
Mg-rich calcite within tiny vesicles enclosed by cytoplasm. Miliolid shells are made of randomly distrib-
uted calcite needles that form a dense meshwork of chaotic crystallites that cause light reflection,
resulting in opaque (porcelaneous) milky walls (Hohenegger, 2009). Calcite needles are thought to be
precipitated completely within these vesicles and then transported to the site of chamber formation
to be released via exocytosis (Berthold, 1976; Angell, 1980; de Nooijer et al., 2009; de Nooijer
et al., 2008). The pre-formed needles or needle stacks are believed to be continuously embedded
in an organic matrix (OM) in the shape of the new chamber until the wall is completed. Although
this model is commonly accepted, it has never been sufficiently documented in vivo, and it does
not resolve several conflicting issues. First of all, the question is how pre-formed bundles of parallel
calcitic needles are transformed into randomly oriented needles within the shell wall. It is difficult to
explain, if there is no recrystallization process within the wall structure after discharging the calcite
crystallites. This problem was already emphasized by Hemleben et al., 1987. Second, why the newly
constructed wall is still translucent after deposition of random crystals. We would expect a thin milky
opaque layer of the new wall under normal transmitted light, as well as polarized crystals of calcite
under crossed nicols. Angell, 1980, on his plate 2 presenting porcelaneous chamber formation in

Figure 1. Specimens of miliolid foraminifera, identified as P. eburnea (d'Orbigny), used for experimental studies. (A, B) Scanning electron microscopy
(SEM), (C, D) transmitted light microscope, and (E, F) stereomicroscope images. White arrows show the outer organic sheath of a new chamber during
its gradual calcification expressed by its gradual appearance from complete transparency to milky and opaque aspect (E, F). Black arrows indicate a
small mass of cytoplasm extruded from the aperture of the existing chamber. Green arrows point to incorporated algae.
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miliolid Spiroloculina hyalina Schulze clearly documented the polarization front being shifted circa
a half of the length of the new chamber behind the leading edge of the forming chamber. This shift
represented more than an hour. Therefore, polarization was missing in the early and middle stage of
chamber formation. It means that Angell, 1980, time lapse micrographs of the chamber formation
were in conflict with the imaging under TEM. It seems that Angell, 1980, was aware of that problem
and stressed that calcification had to be “intense enough to show under crossed nicols lags behind
the leading edge of the forming chamber” (p. 93, pl. 2 figure 12/caption). In fact, all experiments that
show the ‘crystal vacuoles’ (sensu Angell, 1980) documented under TEM (Berthold, 1976; Angell,
1980) required fixation of the samples, which was prone to post-fixation artifacts of unwanted calcite
precipitation.

Our goal is to test whether the miliolid shell is produced by ‘agglutination’ of premade needle-like
calcitic crystallites, and in consequence, whether this large group of calcareous Foraminifera follow
crystallization within smaller vesicles located in the intracellular space. Therefore, we re-examined
the mineralization process in Miliolida based on experiments on a living species, Pseudolachlanella
eburnea (d'Orbigny) (Figure 1). This taxon was selected to facilitate replicated observations of
chamber growth under controlled culture conditions. We included observations of in vivo biominer-
alization using multiphoton and confocal laser scanning microscopy (CLSM) followed by analyses of
fixed specimens at different stages of chamber formation by high-resolution field emission scanning
electron microscopy (FE-SEM) coupled with energy-dispersive X-ray spectrometry (EDS). Our new
FE-SEM data challenge the current understanding of the biomineralization of miliolid foraminifera and
such a significant divergence of biomineralization pathways within the Foraminifera.

Results

All replicated in vivo experiments on P. eburnea facilitated by CLSM imaging with the application of
membrane-impermeable Calcein and FM1-43 membrane dyes (performed in separate experiments)
showed intravesicular fluorescence signals from groups of moving vesicles (1-5 um in size) inside the
cytosol (Figure 2A and B, Figure 2—video 1 and Figure 2—video 2). The fluorescent vesicles inside
the cytosol contained seawater, as documented by fluorescence of membrane-impermeable Calcein.
These vesicles were taken up by endocytosis indicated by FM1-43 staining. This dye stains the cell
membranes and indicates all endocytic vesicles by fluorescence, whereas the other intracellular vesi-
cles remain unstained (Amaral et al., 2011). Both dyes demonstrate the uptake of seawater via the
endocytosis of vesicles that are approximately 1-4 pym in diameter and move through the entire cell.

Additional LysoGlow84 staining revealed numerous acidic vesicles in the cytosol (Figure 2C,
Figure 2—video 3 and Figure 2—video 4). Acidic vesicles were accompanied by other vesicles
(approximately 1-2 pm in size) that show autofluorescence upon multiphoton excitation at 405 nm
(emission 420-480 nm), shown in red in Figure 2C. This wavelength partly permeates the shell to
excite autofluorescence interpreted as associated with ACCs (see Dubicka et al., 2023). The autoflu-
orescence of the shell itself is also present (Figure 2D), however, it is not clearly visible because the
fluorescence of ACCs is much stronger. The intensity of the laser light is reduced because the multi-
photon light has to pass through a thick three-dimensional carbonate wall of the foraminiferal shell.
Further experimental studies are needed to confirm the ACC source of this autofluorescence and thus
definitively eliminate potential organic sources of AF emissions.

In addition, typical chlorophyll autofluorescence (excitation at 405 or 633 nm, emission 650-700 nm,
Figure 2C, Figure 2—video 3 and Figure 2—video 4 highlighted in green) was detected, which indi-
cated the presence of chloroplasts in microalgae cells. These algal cells have been found to move
within the cytosol of the observed specimens, in proximity of acidic vesicles and vesicles characterized
by autofluorescence upon UV light (exc. 405 nm). These algal cells may represent facultative endo-
symbionts, as they were observed only during the chamber mineralization process in specimens with
carbonate-bearing vesicles likely detected by in vivo CLSM experiments. They were documented
just below the OM of the newly formed chamber, as seen in the FE-SEM observations as well as just
below the OM of the newly created chamber as seen in the FE-SEM observations (Figure 3—figure
supplement 1G and H). Specimens of P. eburnea, which displayed vesicles showing autofluorescence
under UV light inside the cytosol, were fixed using Method B (see Materials and methods) coated with
a few nanometers of carbon and analyzed by SEM-EDS. The main elements detected in the area of the
fixed cytoplasm (Figure 3—figure supplement 4) were C, O, Na, Mg, P, S, Cl, K, and Ca (of particular
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Figure 2. Fluorescence images of living P. eburnea conducted by confocal laser scanning microscopy. (A)
Cell-impermeable Calcein (cyan) indicating endocytotic seawater vesicles, see Figure 2—video 1. (B) FM1-43
membrane dye indicating endocytotic vesicles (red), see Figure 2—video 2. (C) LysoGlow84 indicating acidic
vesicles (navy blue), autofluorescence of chloroplasts (green), and Mg-ACC pools (red), see Figure 2—videos 3

Figure 2 continued on next page
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Figure 2 continued

and 4 (note the overlap of ACC and acidic vesicles is marked in lilac). (D) Autofluorescence image with reduced
threshold of the studied Miliolida species (exc. 405 nm) showing algal chlorophyll (blue) and CaCOs (red), both
ACC and calcite shell.

The online version of this article includes the following video(s) for figure 2:

Figure 2—video 1. Living P. eburnea showing cell-impermeable Calcein (blue, exc. 488 nm, em. 505-555) in a
series of 107 overlaid images taken during 428 s.

https://elifesciences.org/articles/91568/figures#fig2video'

Figure 2—video 2. FM1-43 membrane probe fluorescent signals (red, exc. 488 nm, em. 580-620 nm) emitted by
intracellular vesicles within cytosol of P eburnea.

https://elifesciences.org/articles/91568/figures#fig2video2

Figure 2—video 3. Living P eburnea showing fluorescence signal inside the cytosol: autofluorescence of Mg-ACC
pools (red, exc. 405 nm, em. 420-490 nm) and algal chloroplasts (green, exc. 633 nm, em. 640-690 nm), fluorescent
signal of LysoGlow84 pH-sensitive dye (exc. MP 720 nm, em. 440-470 nm) indicating acidic vesicles.
https://elifesciences.org/articles/91568/figures#fig2video3

Figure 2—video 4. Living P eburnea showing fluorescence signal inside the cytosol: autofluorescence of Mg-ACC
pools (red, exc. 405 nm, em. 420-490 nm) and algal chloroplasts (green, exc. 633 nm, em. 640-690 nm), fluorescent
signal of LysoGlow84 pH-sensitive dye (exc. MP 720 nm, em. 440-470 nm) indicating acidic vesicles.
https://elifesciences.org/articles/91568/figures#fig2videod

interest were the high contents of Mg and Ca), whereas the main elements detected within the area
of the new chamber in the form of a gel-like matter filled with dispersed nanograins were C, O, Na,
Mg, S, Cl, and Ca (Figure 3—figure supplement 4). The shell content was strongly enriched with Ca
relative to the cytoplasm, which showed a much higher Mg/Ca ratio.

FE-SEM observations of the fully mineralized test walls displayed the porcelaneous structures (see
Parker, 2017; Dubicka et al., 2018), which are made of three mineralized zones, i.e., (1) extrados that
represents an outer mineralized surface (approximately 200-300 nm in thickness; Figure 3—figure
supplements 1C and 2C); (2) porcelain that denotes the main body of the wall constructed from
randomly oriented needle-shaped crystals (up to 1-2 pm in length and approximately 0.2 pm in width).
No gel-like matter was observed between the needles of the porcelain structures that appeared in
the early stages of wall formation (Figure 3E, E1; Figure 3—figure supplements 2C and 3A); and (3)
intrados that represents an inner mineralized surface (approximately 200-300 nm in thickness) made
of needle-shaped crystallites (Figure 3E, E1 and Figure 3—figure supplement 1A).

Growing chambers, captured at the various successive stages of chamber formation in different
specimens, have revealed the following morphological features: (1) a solitary, thin organic sheath
(approximately 200-300 nm thick) that represents the most distal part of the new chamber and is
anchored to the older, underlying solid calcified chamber (Figure 4A); (2) a solitary, outer organic
sheath (OOS) filled with spread calcifying nanograins (Figure 4B; Figure 3—figure supplement 2);
(3) a gel-like matter (4-5 pm in thickness) with a granular texture, bounded on two sides by intrados
and extrados, and containing relatively widely spaced, randomly dispersed carbonate nanograins
(Figure 3A, B; Figure 4C; Figure 3—figure supplement 1A-D); (4) the test inside made of chaotic
meshwork of carbonate nanograins partly transformed to short needles with a small amount of gel-
like OM in-between (Figures 3C, D and 4D); (5) the test inside composed of needle-shaped crystals
with planar faces and no apparent remaining gel-like matter (Figures 3E, E1 and 4E). Carbonate
nanograins at the shell construction site were well documented in our SEM-EDS studies (Figure 3—
figure supplement 4). Both fixation methods (see Materials and methods) yielded highly consistent
results.

Discussion

Porcelaneous shell formation

Comparative analysis of the nanostructures of the newly built chambers combined with the
elemental composition obtained from SEM-EDS, as well as the data from CLSM, allowed us to iden-
tify important steps in the accretive formation of P. eburnea shells. The formation of a new chamber
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Figure 3. Scanning electron microscopy (SEM) images of the major steps of the formation of P. eburnea shell-building components. Test cross-section
showing: (A, B) carbonate nanograins within organic matrix, (C, D) nanograins merging into needle-like mesocrystals, (E) fully developed needle-shaped
elements; pn — nanograins partly transformed to short needles.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. SEM images of fixed P. eburnea.

Figure supplement 1. Scanning electron microscopy (SEM) images of the new shale formation site of P. eburnea.

Figure supplement 1—source data 1. SEM images of fixed P. eburnea.

Figure supplement 2. Scanning electron microscopy (SEM) images of fixed P. eburnea during calcification process.

Figure supplement 2—source data 1. SEM images of fixed P. eburnea.

Figure supplement 3. Scanning electron microscopy (SEM) images of newly built chamber and previous chambers of one specimen of P. eburnea.
Figure supplement 3—source data 1. SEM images of P. eburnea.

Figure supplement 4. Energy-dispersive X-ray spectrometry (EDS) analysis.

Figure 3 continued on next page
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Figure 3 continued

Figure supplement 5. Scanning electron microscopy (SEM) images of miliolid Agathamina pusilla Geinitz from the Lower Permian (ca. 290 Mya) of the
Holy Cross Mountains (Poland) showing needle test structure identical to that of Recent taxa.

Figure 4. Scanning electron microscopy (SEM) images showing successive stages of new chamber formation in P. eburnea. (A) Outer organic sheath,
(B) mineralized outer organic sheath, (C) calcite nanograins within a gel-like organic matrix, (D) needle-shaped mesocrystal growth, (E) needle-like calcite
building elements, (F) nanogranular shell (interval view).

The online version of this article includes the following source data for figure 4:

Source data 1. SEM images of P. eburnea.
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Figure 5. Simplified model of porcelaneous wall construction based on foraminifer P. eburnea. White spots labeled as Mg-ACC represent vesicles with

Mg-rich amorphous calcium carbonates.

begins with the construction of a thin OOS that pre-shapes the new chamber (Figures 4A and 5).
The OOS is made by pseudopodial structures supported by the cytoskeleton immediately after
the extrusion of a small mass of cytoplasm from the aperture (Figure 1E and F). Once the OOS is
constructed, the first calcium carbonate accumulation takes place inside in the form of carbonate
nanograins (Figures 4B and 5, Figure 3—figure supplement 2A and B), creating the extrados. The
extrados stabilizes the final chamber morphology relatively quickly. Subsequently, the wall gradually
thickens through the primary accumulation of hydrated and amorphous Mg-rich CaCO; (Figures 4B
and 5). We suppose that the carbonate content is successively deposited by exocytosis of Mg-ACC-
rich vesicles that most likely represent the vesicles converted from seawater stained with Calcein
(Figure 5). The characteristic autofluorescence inside foraminiferal cell excited at 405 nm (Figure 2,
Figure 2—video 3 and Figure 2—video 4) most likely indicates the carbonate content of the
vesicles, which are considered to be Mg-ACCs (see Dubicka et al., 2023). Mg-ACC is an unstable,
amorphous and hydrated form of CaCO; with a significantly high concentration of Mg (Raz et al.,
2000; Weiner et al., 2003; Bentov and Erez, 2006; Kahil et al., 2021) and is commonly regarded
as a resource for most biocalcification processes. ACCs have been found in many calcifying marine
organisms, such as echinoderms, mollusks, coccolithophorid algae, cyanobacteria, crustaceans, and
rotaliid foraminifera, where they are typically interpreted as pre-material phases for the produc-
tion of calcite skeletons (Hasse et al., 2000; Weiss et al., 2002; Sviben et al., 2016; Dubicka
et al., 2018; Kahil et al., 2021). Research suggests that a high-Mg content not only makes ACC
unstable but also facilitates the transport of ACC to the crystallization site, where it is initially trans-
formed into carbonate nanograins (Célfen and Qi, 2001; Addadi et al., 2003; Raz et al., 2003;
Dubicka et al., 2023). The existence of intracellular, vesicular intermediate amorphous phase (Mg-
ACC pools), which supplies successive doses of carbonate material to shell production, might be
supported not only by autofluorescence (excitation at 405 nm; Figure 2; Figure 2—video 3 and

Dubicka et al. eLife 2024;13:RP91568. DOI: https://doi.org/10.7554/eLife.91568 8 of 15
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Figure 2—video 4; see Dubicka et al., 2023) but also by a high content of Ca and Mg analyzed
in the cytoplasmic area by SEM-EDS analysis (Figure 3—figure supplement 4). In the future, more
precise higher resolution elemental measurements are needed for better documentation of mili-
olid ACC-bearing vesicles. However, the small size of carbonate-bearing vesicles (approximately
1-2 pm) may make this difficult.

Mg?* and Ca?* ions for intravesicular production of Mg-ACCs are obtained from seawater and
taken up by endocytosis, as independently indicated by membrane-impermeable Calcein, as well
as by the FM1-43 probe selectively labeling membranes of endocytic vesicles (Figure 2A and B,
Figure 2—video 1 and Figure 2—video 2). We hypothesize that vesicles are carried along cytoskel-
etal structures to the OM, as observed in rotaliid foraminifera (Dubicka et al., 2023), where they dock
and release their contents (Figure 4). The nanograins then precipitate within the gelatinous matter
that consists of amorphous carbonates and OM released from the vesicles (Figure 3A-C; Figure 4C,
Figure 5). Nanograins immersed in the gel-like matter gradually grow into needle-shaped elements,
precipitating in situ within the final wall structure (Figure 3C, D; Figure 4D). The gel-like matter
appears to be involved in needle formation; however, the OM seems to disappear (Figures 3E and
4E) when the needle-shaped crystals are created. We suspect that the gel-like matter consists of pre-
formed liquid amorphous mineral phase (Mg-ACC) within the extracellular OM that is suggested by
the EDS spectra of the early stage of the wall calcification (Figure 3—figure supplement 4: A3 area).
The calcification of extrados and intrados occurs before the interior of the wall crystallizes, providing
stability to the new chamber at both edges of the wall (Figure 4D).

The protruding cytoplasm appears to immediately form a chamber wall by secreting OM and crys-
tals from the vesicles (Angell, 1980). As calcite secretion continues along the leading edge, the newly
formed segment remains covered by a thin, moving sheet of cytoplasm that is called by Angell, 1980,
the ‘active sheet'. This thin active sheet of cytoplasm may represent a lamellipodium that is a pseudo-
podial structure known to be involved in the biomineralization of Rotaliida (Tyszka et al., 2019). It is
also likely that reticulopodial structures (that do not coat the whole calcification site) are responsible
for the distribution and shape of the internal surface of the chamber wall. That occurs by successive
accumulation of ACC and OM as identified on TEM images by Angell, 1980. His results suggest that
crystallization of calcite needles is ‘limited to a confined space controlled by active cytoplasmic struc-
tures’ that are strictly separated by the membranes from the cytosol.

Formation of shell crystallites: a paradigm shift

Miliolids were thought to share a similar, intracellular, crystallization pathway as the coccolith forma-
tion in coccolithophorids (Weiner and Addadi, 2011) that evolved in the Triassic, i.e., ca. 210 Myr
ago (Gardin et al., 2012). Coccoliths are produced within intracellular Golgi-derived vesicles and then
exported to the surface of the extracellular coccosphere (Borman et al., 1986). Miliolids, with their
unique fibrillar calcitic microstructures, evolved much earlier, i.e., ca. 300 Myr ago in the late Paleozoic
(Figure 3—figure supplement 5). Until now, it was generally considered that calcite crystals in mili-
olids also precipitate within vesicles immersed in the cytoplasm and are then transported to the loca-
tion of the wall construction, where they are released by exocytosis (Berthold, 1976; Angell, 1980,
de Nooijer et al., 2009; Weiner and Addadi, 2011). Our FE-SEM study of P. eburnea shows the lack
of premade needle-like crystallites of calcite at the early stages (I-IV) of the wall formation. In contrast,
we can clearly infer the in situ calcification front with a progressive sequence of crystal growth behind
the leading edge of the forming chamber (Figures 4 and 5). Therefore, this miliolid species apparently
does not produce shells by ‘agglutination’ of premade needle-like crystallites of calcite, in contrast to
the traditional miliolid calcification model (Berthold, 1976; Angell, 1980).

In the light of these results, another argument emerges that further confirms in situ calcification of
miliolid chambers. It explains the extended transparency of unmineralized walls observed under the
light stereomicroscope. The chamber wall under formation tends to gradually change its appearance
during calcification from completely transparent to milky and opaque (Figure 1E and F).

Our results on biomineralization of this miliolid species do not confirm the formation of individual
skeletal crystallites within intracellular vesicles. However, in turn, our results do support existence of
endocytotic vacuolization of seawater in miliolids that was first suggested by . We further support
Angell, 1980, interpretation that the calcite crystals are dispersed in the gel-like OM (see Figure 3A,
B; Figure 4C, D; Figure 5). This gel-like fluidal OM likely includes a rich Mg-ACC component as the
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substrate for in situ calcification (Figures 3-5). Interestingly, the previous studies by Angell, 1980, did
not support crystal formation within vacuoles either.

Precipitation of calcite nanograins, which then merge and transform into crystallites, probably
occurs within the organic matter after the release of Mg?* from Mg-ACC. The organic matter provides
an appropriate physiochemical microenvironment for initiating and maintaining the crystallization
process by manipulating many essential factors, including pH, and kinetics of the system (Kabhil et al.,
2021). According to Tyszka et al., 2021, the OM involved in the biomineralization of foraminiferal
miliolid shells may contain collagen-like networks.

Our in vivo CLSM observations show a miliolid cytoplasm containing intracellular carbonate-bearing
vesicles. Such vesicles have been well documented by Angell, 1980, who stressed their crucial role in
the biomineralization process. However, rather than transporting pre-formed solid needles, the vesi-
cles likely carry liquid or quasi-liquid calcification substrates. This liquid carbonate phase was appar-
ently maintained by a relatively high concentration of Mg (Figure 3—figure supplement 4), which
was much higher than that in the shell, as detected by the SEM-EDS analyses.

Recently, an independent study was performed on another miliolid species — Sorites orbiculus
(Nagai et al., 2023). The researchers reported highly complementary results that indicate the lack of
crystal-like structures within the intracellular vesicles. Their results suggested that calcification of this
miliolid species did not follow Hemleben et al., 1987 model because intracellular vesicles did not
produce needle-like crystals to construct the shell wall. They also stated that their observations ‘may
reveal a novel and unknown mode of biomineralization in foraminifera’.

Because, miliolid wall texture originated together with the appearance of miliolid foraminifera as it
has also been recorded within Paleozoic taxa (Figure 3—figure supplement 5), thus the calcification
mode of miliolids apparently evolved in the late Paleozoic (=350 Mya) and is well conserved in this
clade till today. It should be emphasized that our recent understanding of all calcification pathways in
Foraminifera implies their independent evolution within main phylogenetic groups, besides miliolids
and rotaliids, also including spirillinids, nodosariids, and robertinids (Pawlowski et al., 2013; Mikha-
levich, 2013; Dubicka et al., 2018; Dubicka, 2019, Sierra et al., 2022; de Nooijer et al., 2023). In
fact, most of these biomineralization evolutionary transitions from agglutination to calcification origi-
nated in the mid- and late Paleozoic.

Mg-ACC has also recently been documented in rotaliid foraminifera (Mor Khalifa et al., 2018;
Dubicka et al., 2023). Therefore, the biocalcification processes in Rotaliida and Miliolida, which belong
to the two main foraminiferal classes Globothalamea and Tubothalamea, respectively (Pawlowski
et al., 2013), are more alike than previously thought (Weiner and Addadi, 2011). Their mesocrystal-
line chamber walls are created by accumulating and assembling nanoparticles of pre-formed liquid
amorphous mineral phase. Their calcification occurs within the extracellular OM enclosed in a biolog-
ically controlled privileged space by active pseudopodial structures. However, we are aware that this
process must also vary to some extent as the chemical composition of the calcite, as well as primary
crystallite geometries differ between the groups. Seawater provides the relevant Ca and Mg ions
for calcification, which are taken up in both groups by endocytosis. In Amphistegina (Rotaliida), this
process is performed by shell pores (Dubicka et al., 2023), as well as aperture; in non-porous Miliolida,
it is done by granuloreticulopodia emanating from the aperture (Figure 2, Figure 2—video 2). In both
the rotaliid Amphistegina and the miliolid P. eburnea carbonate-bearing vesicles are surrounded by
moving acidic vesicles (Figure 2, Figure 2—video 3 and Figure 2—video 4), which likely facilitate pH
regulation at the mineralization front (see Toyofuku et al., 2017; Chang et al., 2023). It is very likely
that pH is controlled by active outward proton pumping by a V-type H+ ATPase or proton outflux
driven by pH that is responsible for the proton flux and related calcification (Toyofuku et al., 2017,
see also Matt et al., 2022). We suspect much higher pH values within vesicles transporting Mg-ACC
to the site of calcification. Such alkaline vesicles were detected by the HPTS fluorescent labeling and
reported by several previous studies (de Nooijer et al., 2008; de Nooijer et al., 2009).

Our findings are in line with recent work in biomineralization, supporting that ‘biominerals grow
by the accretion of amorphous particles, which are later transformed into the corresponding mineral
phase’ (Macias-Sanchez et al., 2011; see also Meldrum and Célfen, 2008). Miliolid needles, assem-
bled with calcite nanoparticles, are unique examples of biogenic mesocrystals (see Célfen and Anton-
ietti, 2005), as they form distinct geometric shapes limited by planar crystalline faces. Mesocrystals
are constructed from highly ordered individual nanoparticles (Célfen and Mann, 2003; Sturm (née
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Rosseeva) and Célfen, 2016; Sturm (née Rosseeva) and Célfen, 2017) that form hierarchically struc-
tured solid materials in the crystallographic register and are rather devoid of outer planar surfaces.
These result from the aggregation, self-assembly, and mesoscopic transformation of amorphous
precursor nanoparticles. Mesocrystals are common biogenic components in the skeletons of marine
organisms, such as corals, echinoderms, bivalves, sea urchins, and rotaliid foraminifera (e.g. Macias-
Sanchez et al., 2011; Benzerara et al., 2011; Seto et al., 2012; Evans, 2019; Dubicka et al., 2023).

Our biomineralization model further explains the random orientation pattern of the calcite needles
within the shell wall. The miliolid intertwined calcitic structure cannot be explained by the models
proposed by Berthold, 1976, and followed by , i.e., by the successive deposition of vesicles with
ready bundles of solid calcitic fibers (needles) without additional recrystallization processes. In our
proposed in situ calcification model, calcite crystallites have sufficient space to grow within the flex-
ible gelatinous OM. In addition, our model explains the need for a light and dark phase for the algae
that are present inside P. eburnea during the biomineralization processes, as these algae possibly
play an important role. Small miliolid coiling foraminifera has been regarded as a non-symbiotic taxon
because their shells are not transparent, however, this is not true for red and infrared light. Fully devel-
oped miliolid shells are made of randomly distributed needles that cause light reflection, resulting in
opaque (porcelaneous) walls that possibly protect the foraminifera from UV irradiation and allow them
to live in extremely illuminated shallow seas (Hohenegger, 2009). These walls are permeable to red
and infrared light, as we observed using multiphoton laser. Red light is commonly believed to be the
most efficient waveband for photosynthesis, however green light may achieve higher quantum yield of
CO, assimilation and net CO, assimilation rate (Liu and van lersel, 2021). P. eburnea may acquire its
facultative symbionts only for the duration of the biomineralization process. The late stage of needle
formation in the shell production process ensures that the wall remains transparent by the time the
needles are completed. Similar patterns of the gradual change from transparent to opaque whitish
walls were also observed in larger symbiotic miliolids by Marshalek, 1969, Wetmore, 1999, and
Tremblin et al., 2021. The latter authors (Tremblin et al., 2021) documented chamber formation of
miliolid Vertebralina striata with cytoplasm enveloped by a transparent sheath decorated with striate
already present in the transparent wall before calcification. They also interpret white areas on the
sheath, indicating incipient concentrations of minute calcite crystallites that represent the mineralized
wall. The biomineralization process is likely aided by their dark respiratory activity (see Hallock, 1999),
as they could supply calcification substrates such as HCO* through respiration or by increasing pH at
the calcification site during the light phase. Similarly, representatives of miliolid large benthic foramin-
ifera (Archaiasidae, Soritidae, and Peneroplidae) host endosymbiotic algae (Lee, 2006; Prazeres and
Renema, 2019). Therefore, they have developed additional morphological and textural features such
as pits, grooves/striate, or windows, which enable light penetration into the places where symbionts
are positioned (see Hohenegger, 2009; Parker, 2017).

Materials and methods

Living foraminifera, collected from the coral reef aquarium in the Burgers’ Zoo (Arnhem, Nether-
lands), were cultured in a 10 L aquarium containing seawater with a salinity of 32 psu, pH of 8.2, and a

Table 1. Wavelengths and dyes.

Dye Concentration Excitation nm Emission nm Source Function
pH, membrane
LysoGlow84 50 upM Multiphoton 730 380-415/450-470  Marnas Biochemicals permeable
Thermo
FM1-43 1uM Argon 488 or Multiphoton 1000 nm 580-620 Fisher Scientific Membrane staining
Membrane
Thermo -impermeable water
Calcein 0,7 mg/10 mL Argon 488 510-555 Fisher Scientific soluble dye
Diode 405 CaCQO;,,
Autofluorescence MP 800 420-490 ACC
Chlorophyll
Autofluorescence Diode 405/HeNe 633 650-700 of algae
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temperature of 24°C. Specimens of P. eburnea (d'Orbigny) were placed in 4 mL Petri dishes 1 day prior
to CLSM studies, incubated without food for 18-24 hr, and then individuals that underwent chamber
formation were observed under a Zeiss Stemi SV8 stereomikroscope for selection of individuals.

These selected individuals were studied in vivo using a Leica SP5 Confocal Laser Scanning Micro-
scope equipped with an argon, helium-neon, neon, diode, and multiphoton Mai Tai laser (Spectra-
Physics) at the Alfred-Wegener-Institut, Bremerhaven, Germany. In vivo experiments were performed
by labeling samples with different fluorescent dyes (Table 1) just before imaging using pH-sensitive
LysoGlow84 (50 pM exc. MP 720 nm exc./em. 380-415 nm and 450-470 nm, Marnas Biochemicals
Bremerhaven, incubation time: 2 hr), FM1-43 membrane stain (1 uM, exc. 488 nm em. 580-620 nm,
Invitrogen, incubation time: 24 hr), and membrane-impermeable Calcein (0.7 mg/10 mL, exc. 488 nm,
em. 510-555 nm, incubation time: 24 hr). The foraminifera were removed from the Petri dish with
clean water using a pipette. In addition, the autofluorescence of specific foraminiferal structures at
the chosen excitation/emission wavelength was detected. All experiments were replicated with at
least several individuals of the same species. All fluorescence probe experiments were performed with
appropriate controls.

Additional foraminifera individuals that had been studied by CLSM were fixed for further analysis.
The fixation process followed two different methods: (1) 60 individuals were transferred to 3% glutar-
aldehyde for 5 s and then dehydrated stepwise for a few seconds with an ethanol/distilled water
mixture with increasing concentrations (30%, 50%, 70%, and 99%). (2) The seawater was removed
from 50 individuals by pipetting and applying a small piece of Kimtech lab wipe (without any rinsing),
followed by quick drying in warm air (30-35°C). This method stops the dissolution of the amorphous
mineral phase because there is no contact with other liquids. Fixed foraminifers of both procedures
were gently broken using a fine needle to coat the cross-sectional surfaces and tested inside with a
few nanometers of either gold or carbon. Foraminifera were then studied using a Zeiss Sigma variable-
pressure FE-SEM equipped with EDS at the Faculty of Geology, University of Warsaw.
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