Mathl. Comput. Modelling Vol. 16, No. 12, pp. 83-98, 1992 0895-T177/92 $5.00 + 0.00
Printed in Great Britain. All rights reserved Copyright© 1992 Pergamon Press Ltd

A COMPUTER METHOD FOR
ESTIMATING VOLUMES AND SURFACE AREAS
OF COMPLEX STRUCTURES
CONSISTING OF OVERLAPPING SPHERES

RoLF OTT, JELLE BruMA, AND CHRISTOPH HEMLEBEN
Institut fiir Ge?logie und Palaontologie
Universitat Tiibingen, Sigwartstrasse 10, 7400 Tiibingen, West Germany
MIGUEL SIGNES
Departamento de Geologia, Facultad de Ciencias Biolégicas
Universidad de Valencia, 46100-Burjassot, Spain

(Received February 1992)

Abstract—A PASCAL program which calculates volumes and surface areas of structures consisting
of overlapping spheres is designed. The calculation is done by modelling the structure in the memory
of a computer and then scanning the memory bit- or bytewise. A brief discussion of the error is
presented, and an example for testing the algorithm is provided.

INTRODUCTION

Modern computers can easily calculate the volume and surface area of simple geometric structures
by means of fundamental geometric formulas. Nevertheless, such calculations apply only where
geometric structures are not arranged in a three-dimensional space and do not interpenetrate.
Even in the case of simple spheres arranged in a coil, the calculation of volume and surface area
is very difficult. We encountered this problem in the course of our research on the morphology
of shells of foraminifers. In order to solve this problem, an algorithm was developed which can
be used for certain species whose shells can be approximated by an arrangement of overlapping
spheres.

METHODS

The following cases (i, ii, iii) outline our approach in estimating the volume and surface area
of these coiled shells:
(i) One Single Sphere. This is the trivial case; volume and surface are calculated using the
well-known formulas V = %‘ﬂ' rdand S = 4rr2,
(i) Two Overlapping Spheres. This calculation is easily managed by means of elementary
geometry. In order to compute the volume and surface of the whole solid, we can use

V=Vi+Va-W and S=851+5 -5,

where Vi, V5, S), S are the volumes and surfaces of the spheres, V4, Sy, the volume and
surface of the “lens” common to both spheres (see Figure 1a).

(iii) Three or More Overlapping Spheres. If the spheres are arranged in some kind of chain
(see Figure 1a), we can successively use the formulas of case (ii). However, where several
spheres overlap each other arbitrarily, more sophisticated mathematics are necessary. We

We are grateful to R. Olsson for critically reading the manuscript and for English corrections. The DFG (He 697/3)
and University of Tiibingen (Sondermittel) are acknowledged for financial support.

Typeset by ApS-TEX

R. OTT et al.

r4

(b) Three (or more) spheres overlapping arbitrarily. The calculation of volume and
surface area becomes difficult,

Figure 1.

shall here outline a path to the solution of this problem: Two overlapping spheres result
in a spacial intersection curve which is, of course, a circle, but three overlapping spheres
intersect in only two points. The determination of these two points is the first step in
calculating the volume. Therefore, the system

(fi-a)2=R{, (R-2)2=R}, (H-&)2=R},
where each equation denotes a sphere, 7 points to a point on the surface, & to the center,
and R is the radius of the sphere (Figure 1b) must be solved. The functional determinant

(f is the equation of sphere n) of this quadratic simultaneous equation system cannot
equal zero in order to solve independent solutions [1]:

on on o
dz dy Oz
0fs 0fr 68fy
9z By 8z |7

o 0 of
9z QJy Oz

Volumes and surface areas 85

This solution can be done in an algebraic manner or by using an iteration algorithm in
the computer.

As a second step, the space common to the three spheres must be integrated, using the
intersection points and the intersection surface as integration limits. Then the volume is
calculated as the sum of the three sphere’s volume minus the volume of the intersection
solid. At this point it is obvious that the calculation of a structure consisting of more than

three spheres is almost impossible, using the tools of algebra and analysis.

What Can We Learn from Archimedes?

Archimedes probably would have modelled a geometric structure with plaster and immersed
it in a container of water. He could then determine, more or less exactly, the structure’s volume
by measuring the volume of the displaced water mass. If, in a similar manner, only a close
approximation of the volume of a geometric structure is required, then Archimedes’ method can
be simulated in a computer. A given quantum of computer memory can be substituted for the
volume of water and, instead of a geometric solid, the structure is constructed in the computer
in terms of information units. Thus, a solid whose dimension is 1000 length units (e.g., 1000 pm)
can be placed in a cube with an edge length of 1000 information units. Information units can
be chosen as bytes or bits. Bytes are easy to handle in a computer program and the resulting
code of such a program will be fast; the use of bits will demand more sophisticated programming
techniques, resulting in a slower code but saving considerable memory. An estimation of the
memory consumption gives the following results: By using bytes, a memory size of 954 MB will
be needed; the use of bits will consume “only” 120 MB. But if the cube is divided into 1000 layers
of 1 length unit thickness each, only one layer is required in memory, and the need of computer
memory is only 1MB for a cube of bytes and 123 KB for a cube of bits. These are hardware
requirements which should be available in most computers. Our first algorithm was implemented
on an IBM compatible PC(80286) with 640 KB of RAM, hard disk, and math coprocessor. The
programming work was done with Borland’s TURBO PASCAL [2]. The edge length of the bit-
cube was reduced to a modest 160 bits; more modern PCs, equipped with 4 or more MB of
extended memory, allow larger cubes and, therefore, higher resolution of a structure in question.
Subsequently, when more precision in the estimation of the volume and the surface area of
structures is desired, a second algorithm using a cube of bytes was developed on a CONVEX II
machine using Standard PASCAL (3] as programming language. As this computer is equipped
with a memory of 128 Mbytes, the edge length of the cube can be extended to 1000 if needed.

Structures under study are fitted into the cube by either scaling them down or up, thereby
gaining a maximum resolution and minimal calculation error. For this procedure, a special scaling
algorithm was developed which calculated down- (up-) scaled radii of spheres and new centers
of spheres. This establishes a scaling factor which is used to recalculate the volume and surface
area to the original coordinate system.

The Algorithm

After reading the center coordinates and the radii of the spheres from standard input (or an
external data file), the spheres are optimally fitted into the bit (or byte) cube using the procedures
ReadData and ScaleDown. Instead of a cube, a prism with the edge lengths maxx, maxy, and maxz
can be used in order to obtain an optimal fitting. The whole structure then is divided into maxz
layers which are parallel to the z-y plane. The circles obtained for all spheres intersecting with
a distinct layer are “filled out” either with “TRUE” values in a bytes cube or by setting a bit
to “1” when using a bit cube [4]. Procedure CreatePlane performs this task. According to image
processing conventions, a single bit or byte is considered as a pixel [5]. A single layer consisting
of “0” or “1” (FALSE or TRUE)-pixels is scanned by the procedure Trace. If in the scanning of a
pixel a value of “1” is found, an amount of one is added to the volume of the structure. For each
pixel, the eight neighbor pixels are scanned counter-clockwise in order to detect changes in pixels
from “0” to “1” (or the reverse). In the case where a surface pixel is encountered, the surface
of the structure is increased by one (Figure 2). Finally, after scanning the entire structure, the
sums of the volume and the surface area are retrieved by standard output.

R. OTT et al.

Figure 2. The neighbor pixels (numbered by 0 to 7) of P(X ,Y') are scanned an-
ticlockwise starting with 0, in order to detect pixels belonging to the investigated

structure.

Scaling Faclor
200 L71 146 120 113 1,02 093 0.05 0.70 al?-a 0.68 0.69
10) L i | L) | | s s

i PC Bit Model o Volume
G_

4+—a Surface
+ |
‘-"l'b.‘_“
2_
‘\...______
I
0.0+
0.6+
Ut
0.2-
60 80 100 120 1

Abs. Error %

0.1
0 160
Edge: LengUs of Plane in Dils

(a) A single sphere with a radius of 50 units as a test case. An edge length of the bit
cube equal to the diameter of the sphere (i.e., scaling factor = 1) results in minimal
computation errors.

Scaling Fuclor
102 051 034 025 02 047 04 013 01 Ol

504 CONVEX II Byte Model == Volurne

s=a Surfnce
104
5-
14
b
E oo
4 s -
<
\a-..
R T R
-
iR 48 B
..... Wor s v aiagi g :

0 100 200 300 400 500 GOU 700 00 900 1000
Edge Length of Planc in Byles

(b) For large edge lengths of the byte cube, the resulting errors become nearly con-
stant.

Figure 3.

Volumes and surface areas 87

y A / 7

.
A

(a) A set of spheres whose centers are situated on a three-dimensional logarithmic
spiral. Only two spheres are overlapping each other; so volume and surface area of
the structure can be calculated by means of simple geometry.

X 1000

900 -

800 -

700 -

500

400-

300 — T T T T T

0 100 200 300 400 500 600 Z

(b) A projection into the z-z plane of the structure shown in Figure 4a.
Figure 4.

RESULTS AND DISCUSSION
Testing the Algorithm

Testing with a single sphere

In order to compare calculated values with theoretical values, a sphere of a radius of 50 units
was chosen for testing. As expected, the error of the volume and surface area is a function of
the cube’s edge length. If the sphere fills the entire bit- or byte space, respectively, which results
in a scaling factor of 1, the error shows up at a minimum. Curiously, somewhat greater edge
lengths give relatively high error values but with very large edge lengths the error remains almost
a constant (Figures 3a and b). In cases where an error of about 0.5% is acceptable, an edge
length of 300 units is sufficient. The scaling factor at this edge length computes to 0.34, which
means that the structure is enlarged three times its original size.

88 R. OTT et al

Scaling Faclor

119 99 84 74 65 59 53 49 45 42 39 36
[} i Fows ¥ ' R J 1 ' i | '

=—= Volume

PC Bit Model

l,.i

«— Surface

—[2-

4\

Error %

.

T T T
GO 80 100 120 140 160
Edge Length of Plane in Bils

(a) As the maximum extension of the test structure amounts to ca. 600 units, a
personal computer will deliver results with considerable errors.

Scaling Faclor
5.0 23 12 0.8 0.6

L i L

L
<
i

'\ CONVEX II Byte Model

-u

=i+

\ N

\\
.
\\--——-—-—-———_.--........_.
———
h—

= z
'] T T T T T T T T
0 100 200 300 400 500 GO0 VOO GOO 000 10VO
Edge Lenglh of Manc in Byles

(b) A very fast computer equipped with a large memory should be used in order to
achieve more exact results.

Error %

Figure 5.
Testing with a more complex structure

The second test structure consists of an arrangement of 18 spheres with increasing radii ar-

ranged along a logarithmic spiral, which is defined by the following set of equations in Cartesian
coordinates:

z=z9+ae, y=yo—c(e® - 1), z=2z+ae"

The size of the spheres is computed according to
Ra=kR.y, n=12,...,18.

Table 1 provides a data set calculated by means of the above formulas. Only two spheres penetrate
mutually, so the volume and the surface of the whole structure can be determined by elementary

Volumes and surface areas 89

geometry (Figures 4a and b). As Figures 5a and b show, an edge length of 300 units will cause
an error of almost 4%. In cases where more precision is desired, a larger edge length (ca.700
units) is required which eliminates the use of a personal computer. For example, the CONVEX II
computer operated for many hours to master this task.

Table 1. Input data set representing overlapping spheres on a logarithmic spiral
calculated with the following parameters: zp = 330, yo = 710, 20 = 600, a = 30,
b = 0.09, c = 66, k = 1.12. 8 specifies the angle argument; z, y, 2 are the center
coordinates of the spheres, and R is the radius of the sphere.

n é i v z R
1 0.0000 330.0 710.0 600.0 200
2 1.2566 3104 702.1 631.9 224
3 2.5133 269.6 693.2 622.1 25.1
4 3.7699 265.9 683.3 575.2 28.1
5 5.0265 314.6 672.2 555.1 31.5
6 6.2832 | 352.8 | 659.8 | 600.0 35.2
7 7.5398 3183 645.9 656.2 39.5
8 8.7965 246.4 630.3 638.9 44.2
9 10.0531 240.0 612.9 556.4 49.5
10 11.3097 325.7 593.4 521.0 55.5
11 12.5664 393.0 571.5 600.0 62.1
12 13.8230 332.2 547.0 699.0 69.6
13 15.0796 205.7 519.6 668.5 7.9
14 16.3363 194.4 488.9 523.3 87.3
15 17.5929 345.2 454.5 461.0 9.7
16 18.8496 463.6 416.0 600.0 109.5
17 20.1062 356.6 3729 774.3 122.6
18 21.3628 134.0 324.6 720.6 137.3

CONCLUSION

A technique is designed for estimating the volume and surface area of an arrangement of
spheres. By substituting procedure CreateSphere with a similar procedure (e.g., CreatePrism)
or by adding other structure creating procedures to the program, even more complex structures
can be calculated.

REFERENCES

1. L.N. Bronstein and K.A, Semendjajew, Taschenbuch der Mathematik, 840p., Harri Deutsch, Frankfurt/M.,
(1988).

2. TURBO-PASCAL, Reference Manual, 636p., Borland International, Scotts Valley, California, (1989).

3. K. Jensen and N. Wirth, PASCAL, User Manual and Report, Springer-Verlag, New York, (1979).

4. T. Pavlidis, Algorithms for Graphics and Image Processing, 416p., Springer-Verlag, Berlin-Heidelberg,
(1982).

5. V.A. Kovalevsky, Image Pattern Recognition, 241p., Springer-Verlag, New York, (1980).

R. OTT et al.

APPENDIX
PROGRAM LISTING

program ABACUSByte(input,output);

{Author: Rolf Ott

Purpose: Calculation of volume and surface of structures built of inter-
secting spheres. The program is written in Standard Pascal and
was tested on a CONVEX II machine under the operating system
UNIX. There are no references to external files, so the
input/output files have to be redirected: ABACUSBYTE >
output_file < input_file. The length unit of the cube contain-
ing the structure is 1 BYTE}

const
maxsph = 30; {The maximum number of spheres}
maxdim = 1000; {maximum edge length in bytes}
type
plane = array[0..maxdim, 0..maxdim] of boolsan;
SpheresArray = array[1..maxsph] of real;
var
N :integer; {number of spheres}
Scale,Scale2,Scale3 ‘real; {scaling factor: scale, scale*#2, scalex#*3}
xyplane :plane; {a layer of the structure}
radii,xe,yc,zc tarray[1..maxsph] of integer;
{scaled radii and centers of the spheres}
XX,¥Y,22Z,IT :SpheresArray;
{original radii and centers of the spheres}
Xmin,Ymin,2Zmin,
Xmax,Ymax,Zmax :real;
{minimum and maximum coordinates of the structure}
MaxX,MaxY,MaxZ :integer; {maximum extension of the prism (cube).}
dx,dy tarray[0..7] of integer;
{================= ==== e == }
procedure ReadData(var N: integer; var f: text); {Reads data input file}
var
i, kk !integer;
begin {ReadData}
readln(f,MaxX); MaxY:=MaxX; NaxZ:=MaxX; {read extension of cube}
readln(f,N); {read number of spheres}
for i:=1 to N do
readln(f,kk,xx[il,yy[il,zz[il,rr[i]); {read centers and radii}
end; {ReadData}
=== === = ================zcx}
procedure ByteSpace (N :integer); {Main procedure}
var
i,j,x,y,2 tinteger;
Vol,Surf,Ratio ireal;
iVol, iSurf :integer;

procedure ScaleDown(N: integer; var Scale: real);
{Calculates scaled centers and radii of the spheres,
and issues a scaling factor.}
var
i :integer;

procedure MiniMax;
var
i :integer;

Volumes and surface areas 91

begin {MiniMax}
Xmin:=1.0E30; Xmax:=-Xmin;
Ymin:=Xmin; Ymax:=-Xmin;
Zmin:=Xmin; Zmax:=-Xmin;
for i:=1 to N do
begin
if xx[il+rr([i]
if yy[il+rr[i]
it zz[il+rrl[i]
if xx[i]-rr[i]
if yy[il-rrlil
if zz[i]-rrli]
end;
writeln(’Minima:’,Xmin:10:3,¥min:10:3,Zmin:10:3);
writeln(’Maxima:’,Xmax:10:3,Ymax:10:3,Zmax:10:3);
end;

Imax then Xmax:=xx[i]+rr[i];
Ymax then Ymax:=yy[il+rr([il;
Zmax then Zmax:=zz[i]+rr[il;
Xmin then Xmin:=xx[i]-rr[i];
Ymin then Ymin:=yy[i]-rr([i];
Zmin then Zmin:=zz[i]l-rr([il;

AAAVVY

procedure DoScaling;
type
ScalingFactor = record
value :real;
class :1..5;

end;
var
SF :array[0..4] of ScalingFactor;
temp :ScalingFactor;
ordered, fitted, f1ipXZ :boolean;
i,j,delta,x2,y2,22 rinteger;
begin {DoScaling}
delta:=0; fitted:=false;
repeat

SF[0] .value:=(Xmax-Xmin+delta)/(MaxX-1);
SF[1] .value:=(Ymax-Ymin+delta)/(MaxY¥-1);
SF[2] .value:=(Zmax-Zmin+delta)/(MaxZ-1);
SF[3] .value:=(Xmax-Xmin+delta)/(MaxZ-1);
SF[4] .value:=(Zmax-Zmin+delta)/(MaxX-1);
for i:=0 to 4 do SF[i].class:=i+i;
repeat
ordered:=true;
for i:=4 downto 1 do
if SF[i-1].value > SF[i].value then
begin
temp:=SF[il;
SF[i]:=sF[i-1];
SF[i-1] :=temp;
ordered:=false;
end;
until ordered;
ji==1;

92 R. OTT et al.

repeat
jr=j+;
Scale:=SF[j].value;
y2:=round((Ymax-Ymin)/Scale);
if SF[j].class < 4 then
begin
x2: =round((Xmax-Xmin)/Scale);
z2:=round((Zmax-Zmin)/Scale);
end
else { <-- class > 4 }
begin
x2:=round((Zmax-Zmin)/Scale);
z2:=round((Xmax-Xmin)/Scale);
end;
if (x2 < (MaxX-1)) then
if (y2 < (MaxY-1)) then
if (22 < (MaxZ-1)) then fitted:=true;
until fitted or (j=4);
delta:=delta+1;
until fitted;
f1ipXZ:=SF[j].class > 4;
if f1ipXZ then
for i:=1 to N do
begin
xc[i] :=trune((zz[i]-Zmin)/Scale)+1;
zc[i] :=trunc((xx[i]-Xmin)/Scale)+1:
yelil:=trunc((yy[il-¥Ymin)/Scale)+1;
radii[i]:=trunc(xrr[i]/Scale);
end
else
for i:=1 to N do
begin
xc[i] :=trunc((xx[i]-Xmin)/Scale)+1;
zc[i]:=trunc((zz[i]-Zmin)/Scale)+1;
yelil:=trunc((yy[i]l-¥Ymin)/Scale)+1;
radiili] :=trunc(rr[i]/Scale);

end;
end; {DoScaling}
begin { Scaledown}
MiniMax;
DoScaling;

for i:=1 to N do
writeln(i:3,xx[i]:10:3,yy[i]:10:3,22[1]:10:3,rr[il:10:3,
xc[i]:5,yc[i]:5,2z¢[i]:5,radii[i]:5):

end; { of ScaleDown}
{- = =1 - = e - -—=}
procedure CreatePlane(zi: integer); {Create a layer of the structure.}
var
rcirc,h,rh ‘real;
rcirec2 ireal;
i :integer;

procedure CreateCircle(i:integer);
{Create a circle and fill it with ‘‘TRUE" values.}
var
X,w :integer;
yi,y2,ix1,iy tinteger;
d ireal;

Volumes and surface areas 93

begin {CreateSphere}
for x:=round(xc[i]-rcirc) to xc[i] do
begin
d:=rcirc2 - Sqr(x-xc[il);
if d > 0.0 then
begin
w:=trunc(Sqrt(d));
yi:=yclil+w; y2:=yc[il-w; ixi:=xc[il+xc[i] - «x;
for iy:=y2 to yi do
begin
XYPlane[x,iy] :=true; XYPlane[ix1,iy]:=true;
XYPlane[x,iy] :=true; XYPlane[ix1,iy):=true;
end;
end;
end;
end; {CreateSphere}

begin {CreatePlane}
for i:=1 to N do

begin
h:=zi - zc[i]; rh:= Radiil[i];
rcirc2:=Sqr(Rh) - Sqr(h);
if rcirc2 > 0 then
begin
rcirc:=Sqrt(rcirec2);
CraateCircle(i);
end;
end;
end;

{ - - }

procedure Trace(var Vol,Surf: integer);
{Perform scanning of a single layer.}

label 99;
var
x,¥,z,i,n :integer;

begin {Trace}
Vol:=0; Surf:=0;
for y:= 1 to MaxY-1 do
for x:= 1 to MaxX-1 do
begin
if XYPlane[x,y] then
begin
Vol:=Vol+i;
for i:=0 to T do
if (not XYPlane[x+dx[i],y+dy[il]) then

begin
Surf:=Surf+i;
goto 99;
end;
end;
99: end;
end; {Trace}
{------ e - -}

WM 16:12-6

94

procedure ResetPlane;
var
X,y :integer;

begin
for x:=0 to MaxX do
for y:=0 to MaxY do
xyplane[x,y] :=false;

begin
write(chr(27),’[23?%);
Scaledown(n,Scale);

R. OTT et al.

{Fills a single layer with ‘‘FALSE" values.}

{ResetPlane}

{ResetPlane}

{ByteSpace}
{Clear screen (ANSI terminals only)}

Scale2:=Sqr(Scale); Scale3:=Scale2#Scale;

Vol:=0; Surf:=0;

{vriteln(’ j Vol Surf’);}

for j:= 0 to MaxZ do
begin
ResetPlane;
CreatePlane(j);
Trace(iVol,iSurf);
Vol:=Vol+iVol;
Surf:=Surf+iSurf;

{writeln(j:10,Vol*Scale3:10:1,Surf*Scale2:10:1);}

end;
Vol:=Vol*Scale3;
Surf:=Surf*Scale2;

Ratio:=Vol/Surt;
writeln(’ Scale Vol Surf v/s’);
writeln(Scale:10:7,Vol:12:1,5urf:10:1,Ratio: 10 2);
writeln(’-—--—-— END BYTESPACE --—--—- *) 3
end; {ByteSpace}
begin {ABACUSBytel}
dx[0]:= 1; dx[1]:=-1; dx[2]:=-1; dx[3]:= 1;
dx[4]:= 1; dx[8]:= 0; dx[6]:=-1; dx[T]:= 0;
dy[0l:= 1; dy[1]:= 1; dy[2]:=-1; dy[3]):=-1;
dy[4]:= 0; dy[6]:= 1; dy[6]:= 0; dy[7]:=-1;
ReadData(N, input);
ByteSpace(N);

end.

Volumes and surface arcas 95

{$A+,B-,D-,E-,F-,I-,L- N+,0-,R-,S-,V-}
{$M 6000,0,655360}
program ABACUSBit;

{Author: Rolf Ott
Purpose: Calculation of volume and surface of structures built
of intersecting spheres. The program is written in
TURBO Pascal Version 5.5 and was tested on a 80386 PC
under the operating MS-DOS V. 3.3. The length unit of
the cube containing the structure is 1 BIT}
const
maxsph = 30;
maxdim = 400;
maxyword = maxdim div 16 + 1;
type
plane = array[0..maxdim] of “vector;
vector = array[0..maxyword] of word;
real = single;
stri2 = string[12];
sarray = array[l..maxsph] of real;
var
maxx,maxy,maxz,code :integer;
fname,fout :8tri2;
count,i,n :byte;
scale,scale2,scale3 ireal;
xyplane :plane;
f,inf :text;
radii,xc,yc,z¢ :array[1..maxsph] of integer;
XX,YY.22,IT :sarray;
xmin,ymin,zmin,xmax,
ymax,zmax :Teal;
procedure scaledown(n:integer; var scale: real);
begin {the same code as in program ABACUSByte.}
end; {ScaleDown}

procedure readdata(var n:byte);
var i :byte;

begin

assign(inf,fname); reset(inf);

readln(inf,n);

for i:=1 to n do readln(inf,kk,xx[il,yy[il,zz[il,rr[il);
close(inf);

end;

R. OTT et al.

procedure bitspace (n :byte; fname,fout 18tri2);

var
i,j.x,y,z tinteger;
startz,endz :integer;
vol,surf,ratcomp :real;
ivol, isurf :longint;
{ Bit Handling Routines -

procedure putbit(x,y: werd):
var
nword,nbit iword;
begin
nword := y div 16;
nbit := y mod 16;
XYPlane[x] “ [nword] := XYPlane[x] [nword] OR (1 SHL nBit);
end;

function getbit(x,y: word):boolean;
var
nword,nbit :word;
begin
nword := y div 16;
nbit := y mod 186;
getbit := ((XYPlane[x]~[nword] SHR nBit) AND 1) = 1;
end;

procedure createplane(zi: integer);

var
rcirc,rcirc2,h,rh :real;
i :integer;
procedure createcirc(i:integer);
const
delta = 1;
var
x,w,yl,y2,ix1,iy :integer;
d :real;
begin
for x:=round(xc[il-rcirc) to xc[i] do
begin

d:=rcirc2 - sqr(x-xc[i]);
if d > 0.0 then
begin
w:=trunc(sqrt(d));
yi:=ycl[il+w; y2:=ycl[il-w; ixl:=xc[il+xc[i] - x;
for iy:=y2 to yi do
begin
putbit(x,iy); putbit(ixi,iy);
putbit(x,iy); putbit(ix1,iy);
end;
end;
end
end;

Volumes and surface areas

begin
for i:=1 to n do
begin

{createplane}

h:=zi - zc[il; rh:= Radiil[il;

rcirc2: -sqr(nh) - sqr(h);

if rcire2 > 0 then
begln

rcirc:=Sqrt(rcirc2);

createcirc(i);
end;
end;
end;

{CreatePlane}

procedure trace(var vol,surf: longint);

label continue;

const
dx: array[0.
dy: array[o0.
var
x,¥,Z,i,n
xchange

begin
vol:=0; surf:=0;
for y:= 1 to maxy-1 do
for x:= 1 to maxx-1 do
begin
it getbit(x,y) then
begin
inc(vol);

for i:=0 to 7 do

.7T] of shortint
.7T] of shortint

(1,-1,-1, 1, 1, 0,-1, 0);
(1, 1l_1!-1) o, 1, Oa-i);

rinteger;
:boolean;

if (not getbit(x+dx[i],y+dy[il)) then

begin

Inc(surf);

goto continue

end;
end;
continue:
end;
end;

procedure ResetPlane;
var

x,y
begin
for x:=0 to maxx do
for y:=0 to maxyword do
xypla.nel:x] [yl:=0;
end;

:integer;

{trace}

R. OTT et al

begin {of BitSpace}
for i:=0 to maxx do new(xyplane[il);
write(#27,’'[23’); {clrscr;}
writeln(’memory = ’,MemAvail:12,’ bytes’,’ file: ’,fname);
writeln;

assign(f,fout); rewrite(f);
writeln(f,’ INPUT FILE: ’,fname,’ OUTPUT FILE: ’,fout); writeln(f);
scaledown(n,scale);
scale2:=sqr(scale); scale3:=scale2*scalse;
writeln(’ j Vol Surf’);
for j:= 0 to maxz do
begin
ResetPlans;
createplane(j);
trace(ivol,isurt);
vol:=vol+ivol;
surf :=surf+isurf;
writeln(j:10,vol#scale3:10:0,surf*scale2:10:0);
end;
vol:=vol#*scale3;
surf:=surf+*scale2;
ratcomp:=vol/surf;

writeln(f,’ Scale Vol Surf vV/S?’);
writeln(!,scala:10:7,?01:10:0,surt:10:0.ratconp:10:23;
end; {BitSpace}
begin {ABACUSBit}

Fname:=ParamStr(1); Fout:=ParamStr(2); Val(ParamStr(3),maxx,code):
if code <> 0 then begin writeln(’Illegal parameter’); halt(1); end;
maxy:=maxX; maxz:=maxx;
readdata(n);
BitSpace(n,Fname,Fout);
close(f);

end.

