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ABSTRACT

The possibility of using topography in a state estimation context as a control parameter is explored in a linear
barotropic shallow water model. Along with its adjoint, the model is used to systematically assess the influence
of the depth field on the modeled circulation in a steady-state. Sensitivity of the flow field to the topography is
greater in a partially blocked zonal channel than in a subtropical gyre. Hypothetical surface elevations are used
to represent the types of data actually available. In neither case can all the details of the topography be recovered,
showing that the relationship between topography and elevation does not have a unique inverse, and that many
details of the topography are irrelevant to the particular physics under consideration.

——————–

1. Introduction

Numerical ocean models produce results dependent upon
many parameters and parameterizations, including diffusion
coefficients, wind forcing, lateral boundary conditions, ini-
tial conditions and many others. Much activity is directed
at understanding the sensitivity of the results to a subset of
these parameters by comparisons to observations. An orga-
nized form of testing the sensitivity goes by the names of
data assimilation or state estimation. When done rigorously
(e.g., Stammer et al. 2002; Wunsch 1996), certain fields and
parameters are identified as “control parameters.” The con-
trol parameters are independent variables that are systemat-
ically modified within stipulated limits to bring the model
within estimated error of the observations.

The introduction of a field as a control variable implies
the belief that the model result (trajectory through its phase
space) is indeed sensitive to that field in some way that is
important to reproducing the observations. “Controllabil-
ity” is the mathematical concept underlying the belief that
a variable is likely to be important (see for example, Wun-
sch 1996, p. 383). For a general circulation model (GCM),
no full study of controllability or the related concept of “ob-
servability” has ever been carried out, as it involves poten-
tially very difficult questions of model differentiability and
the effective rank of very large matrices. Instead, plausi-
ble assumptions have been made about the dominant control
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variables, and these have become the focus of most state esti-
mation efforts. Thus initial conditions, and surface boundary
conditions have been the primary control fields for GCMs
(e.g., Stammer et al. 2002).

In this paper, we begin the exploration of the importance,
and practicality, of using bottom topography as controls in
models of the ocean circulation. The results are envisioned
as only the first step toward exploration of the problem in
more complex models, and also toward employing for ex-
ample, lateral boundary conditions (free-slip, no-slip, hyper-
slip, etc.) as fields to be determined rather than assumeda
priori .

Bottom topography plays a major role in determining the
flow field in the ocean. It is, however, inaccurately known
in many regions, and even where accurately known, the best
way to represent it in ocean models is obscure. For large re-
gions of the Southern Ocean or the Arctic Sea, one relies on
charts of bottom topography that were derived from very few
in situmeasurements. Different map products sometimes de-
scribe very different bottom topographies. For example, the
Foundation Seamounts in the South Pacific were unknown
prior to space-borne altimetry (Smith and Sandwell 1997)
and are consequently not represented in the frequently used
data set ETOPO5 (NOAA 1988). The bathymetry of Smith
and Sandwell (1997) is a major step forward in constructing
a global topography data base for the ocean, but the assess-
ment of the absolute accuracy of topography still remains
difficult (W. H. F. Smith, personal communication, 2001).

Numerical GCMs have limited resolution and the repre-
sentation of ocean basin geometry can be crude. Even an ac-
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curate discretization of a perfectly-known bathymetry may
not lead to the best-possible computed flow field. As a com-
mon assumption, one concentrates on the large scale com-
ponents of the flow which presumably “feel” only the corre-
sponding large scale components of the bottom topography,
a representation of which can be obtained by smoothing the
real geometry (Il’in et al. 1974). As with sub-grid-scale mix-
ing processes, the influence of small scale features has to be
parameterized. But little or nothing appears to be known
about how to do it apart from the use of some forms of sim-
plified “wave drag” (e.g., McFarlane 1987). Whether the
best fit of a coarse resolution model to real bathymetry is a
straightforward average or another approximation to the real
topography is one of the issues that must be addressed.

Similar ideas about the influence of bottom topography
have given rise to studies of its use as control parameters
in shallow water models of shelf seas (Das and Lardner
1991, 1992; Heemink et al. 2002; Lardner et al. 1993; ten
Brummelhuis et al. 1993) using a variety of optimization
methods in various approximations. The focus has tended
to be on tidal modeling, whose gravity wave dynamics are
quite distinct from the nearly-geostrophic limit of most open
ocean general circulation models.

The use of control methods to systematically adjust dy-
namical models is now a familiar, if not yet completely com-
mon, endeavor. That such methods “work,” in the sense that
solutions can be found if the data and model are consistent
is not in doubt. The questions being addressed here are: (1)
whether the dynamics peculiar to the large-scale ocean cir-
culation and the particular way in which topography enters
the equations of motion causes any unexpected difficulties,
and (2) to the extent that sensitivities and uncertainties about
the topography remain, to try and understand the physical
causes. All so-called inverse methods ultimately solve an
optimization problem; thus in (1), the concern is most of-
ten about the ability to numerically reduce a potentially very
complex objective or cost function.

Estimating topography from data involves a nonlinear op-
timization problem because the dynamic variables depend
nonlinearly on depth. In this light, it is important to un-
derstand whether, given the available data, there is a unique
optimal representation of topography, or whether there are
many different representations equivalently consistent with
the observations. We address this question systematically in
a model of the ocean circulation by invoking inverse (state
estimation) methods.

Ultimately, we are interested in the topographic represen-
tation in a full model. As a starting point, the study is here
confined to a linear shallow water model in steady state. In
addition to the information contained in the model dynamics
and in the hypothetical data, the realistic assumption is made
that usefula priori estimates of the topography are available
as well.

The steady-state flow, in two distinct dynamical regimes
is explored: (a) a zonal channel, whose dimensions are based
on previous models of the Antarctic Circumpolar Current
(ACC), and (b) in a mid-latitude gyre flow. Different sensi-
tivities to bottom topography can be anticipated in the two
configurations.

The only “observations” used here are sea-surface height
(altimeter) data. These pseudo-data are the natural choice
because they are the only available observable physical prop-
erty reflecting the three-dimensional, large scale fluid flow
(Wunsch and Stammer 1998). The uncertainties associated
with existing absolute sea-surface height data are still large
because of geoid errors, but new gravity missions will re-
duce them by an order of magnitude (Ganachaud et al. 1997;
LeGrand 2001; Schr¨oter et al. 2002).

The paper is organized as follows: Section2 describes the
shallow water model and both analytic and control theory
approaches toward exploring the sensitivity of the flow to
bottom topography. In Section3, it is demonstrated how the
sensitivity of an objective function to infinitissimal pertur-
bations can be assessed. In twin experiments in Section4, 5,
and 6, the shallow water flow is constrained by sea-surface
height data in various configurations. A discussion and con-
clusions are given in Section7.

2. Linear Shallow Water Model

a. Model Domain and Control Run

The equations used are for linearized shallow water flow
on theβ-plane without horizontal friction and with a lin-
ear parameterization of bottom stress. Their primitive form
is represented in finite differences on a C-grid. Starting
from initial conditions for velocity and sea-surface height,
the equations are stepped forward in time by a scheme that
treats the bottom stress term implicitly and the Coriolis term
explicitly.

As a first step towards understanding the role of bottom
topography, consider the flow in a periodic zonal channel
with solid boundaries to the north and the south on aβ-plane
with idealized topography. The scale is based on that of the
ACC, with lengthX = 4000km, widthY = 1600km, and
maximum depthH0 = 4km. The horizontal grid cell length
is ∆x = ∆y = 200km resulting in20 × 8 = 160 grid cells.
f0 ≈ −1.2 × 10−4s−1 andβ ≈ 1.3 × 10−11s−1m−1 are
chosen such that the channel is centered at approximately
55◦S. The flow is forced with steady eastward winds exert-
ing a stress,τx = τ0 sinπy/Y , with τ0 = 10−4m2s−2. The
bottom friction parameterr = 4 × 10−3ms−1 is chosen so
that the spin-down time isH0/r ≈ 11.6days.

A central meridional Gaussian sill extends across the
channel with a crest 400 m above the maximum depth of
4000m. Its half-width of 200km corresponds to an average
slope of 1m in 1000m. The depthh is shown in Fig.1.
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FIG. 1. A section along the zonal channel with the Gaussian sill.
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FIG. 2. f/h-contours of the channel (top, contour interval is
0.1×10−8 s−1 m−1). (Quasi-) steady-state flow field after spin-up
of ≈ 70days: sea-surface height (middle; contour interval is 2cm)
and velocity (bottom; contours display the current speed, arrows its
direction; contour interval is 0.2cms−1).

The model is spun up to a steady state with a time step of
100 s for 60000 time steps (≈ 70 days). Sea-surface height
and velocity of this steady state, together with thef/h-
contours are shown in Fig. 2. For illustrative purposes, the
steady-state equations of motion can be written in terms of a

transport stream functionψ,

J(ψ, f/h) = k · curl(τ/h)

− r

{
∂

∂x

(
1
h2

∂ψ

∂x

)
+

∂

∂y

(
1
h2

∂ψ

∂y

)}
,

(1)

where the term on the left-hand side is the Jacobian and
τ = (τx, 0). In the absence of bottom stress and forcing,
J(ψ, f/h) = 0, implying that the streamlines coincide with
the geostrophic contoursf/h. Dissipation and surface stress
force the flow across geostrophic contours (Pedlosky 1987).
To within the quasi-geostrophic approximation, the elevation
η and the scaled stream function,(f/g)ψ, are the same.

Here, the sill deflects thef/h-contours equatorwards
where they are blocked at the northern boundary of the chan-
nel. The number of blocked contours increases with the
height of the sill, and hence controls the transport through
the channel.

Note that although thef/h-contours are symmetric about
the center of the channel, the stress terms in the momentum
equations break the symmetry, so that the maximum north-
ward deflection of the flow is shifted downstream from the
corresponding position of the geostrophic contours. Both
the strongest and the weakest flow near the sill occur slightly
downstream of the sill crest.

b. Parameter Estimation: Analytical Approach

Assuming only zonal wind stress, Eq. (1) can be recast
as a partial differential equation for the inverse depthα =
h−1:

(
r∇2ψ

)
α+ 2r∇ψ · ∇α+ fJ(ψ, lnα)

− τx ∂

∂y
lnα =

∂τx

∂y
− β

∂ψ

∂x
. (2)

The equation is non-linear inα owing to the presence of the
logarithm. If the stream functionψ, or surface elevation,
and the boundary conditions forα are known, Eq. (2) has a
solution for givenψ, which could be found using numerical
methods.

Some additional insight into the problem can be obtained
by linearization. To do so, denote dimensional variables
temporarily with asterisks, and define non-dimensional ones,

x∗ = Xx, y∗ = Xy, δ = A/H0

f∗ = f0f = f0[1 + β(y − a/2)], with β =
X

f0
β∗

h∗ = H0(1 + δξ), τ ∗ = τ0τ , ε =
r

f0H0
,

(3)

whereξ is anO(1) non-dimensional topography,A a scale
for the relief height, so thatδ � O(1), anda = Y/X is the
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domain aspect ratio. With the velocity scale

U =
τ0

f0H0
, ψ∗ =

UH0Y

a
ψ, (4)

and, for smallδ,

(1 + δξ)−1 = 1 − δξ + O(δ2), (5)

ψ = ψ + δψ′. (6)

Neglecting terms ofO(δ2), Eq.(1) becomes

(
2ε
∂ψ

∂x
− f

∂ψ

∂y
+ τy

)
∂ξ

∂x

+
(

2ε
∂ψ

∂y
+ f

∂ψ

∂x
− τx

)
∂ξ

∂y
− (

ε∇2ψ
)
ξ

= −
(
ε∇2ψ′ + β

∂ψ′

∂x

)
(7)

after choosing an unperturbed stateψ of flow over a flat bot-
tom, for which

ε∇2ψ + β
∂ψ

∂x
− k · curlτ = 0. (8)

For a wind fieldτ = (sinπy/a, 0), ψ ∝ (1 − cos(πy/a)),
and Eq.(7) simplifies to

sin
π

a
y

(
∂ξ

∂y
− f

ε

∂ξ

∂x

)
−

(π
a

cos
π

a
y
)
ξ

= −
(
ε∇2ψ′ + β

∂ψ′

∂x

)
. (9)

Eq. (7) and(9) are linear first order partial differential equa-
tions in theperturbationξ to the flat bottom case, which can
be solved by the method of characteristics or numerically,
given a set of starting values ofξ.

Rather than pursuing this analytical approach, we seek
instead a more flexible method capable of dealing with the
eventually much more complex wind fields, finite-amplitude
topography, and ultimately baroclinic physics of a GCM, as
well as the errors in measurements ofψ. Eqs.(2), (7), or (9)
do however, show that the control problem is equivalent to
the determination of the depth field from a set of observables
ψ. Because the stream functionψ cannot be observed di-
rectly in a realistic configuration, other types of data must be
used, for example, observations of sea-surface height, which
are the same as(f/g)ψ within the geostrophic approxima-
tion. It is apparent that all of the issues of continuity, dif-
ferentiability, etc. that arise for the solutions of partial dif-
ferential equations will have their counterparts in the control
problem.

c. Parameter Estimation: Objective Function and Adjoint
Model

As discussed for example, in Wunsch (1996), there is a
close connection between so-called Gauss-Markov or mini-
mum variance estimation, and the solution of an equivalent
least-squares problem. In this paper, we will use the lan-
guage and formalism of least-squares, recognizing however,
that the interpretation best placed on the result is that of a
solution to a statistical estimation problem.

Let yi = Hi(ψ) + ni represent the pseudo-observations,
having noise elementni, supposed to have zero-mean; let
y = H(ψ) + n be the vector of observations, andn the
vector of noise.H is a general operator that maps the state
vectorψ to the observations. The least-squares approach de-
mands the depth field for which a quadratic objective func-
tion of the type (e.g., Wunsch 1996)

J =
1
2

(y − H(ψ))T C−1
n (y − H(ψ))

+ other terms
(10)

has an acceptable global minimum. MatrixCn describes
the prior error covariance estimate. Because the model state,
ψ, is a non-linear function of the fieldh (all asterisks are
removed, and all variables are dimensional from now on),
the least-squares problem is also non-linear. Starting from
an initial estimate, a quasi-Newton algorithm (Gilbert and
Lemaréchal 1989) at each step evaluates the gradient of the
objective function(10) with respect to depth and calculates a
new state based on the gradient information until a conver-
gence criterion is met. The gradient field is found through
the so-called adjoint model (e.g., Wunsch 1996), which is
generated semi-automatically by the Transformation of Al-
gorithms in Fortran (TAF) compiler (Giering and Kamin-
ski 2001; Marotzke et al. 1999) applied to the FORTRAN
source code of the forward model.

Assuming that one has found the global minimum, the
Hessian matrix of second derivatives of the objective func-
tion J at the minimum can be computed with code that has
also been generated by TAF. LetM(h) = H[ψ(h)] be the
nonlinear model operator that maps the depthh to the data,
then the linearized HessianH (not to be confused with the
observation operatorH) is

H =
(
∂M
∂h

)T

C−1
n

(
∂M
∂h

)
, (11)

where the Jacobian or adjoint model operator
(∂M/∂h)T

ij = (∂Mi/∂hj)T is evaluated at the min-
imum.

In the neighborhood of the solution, the inverse Hes-
sian is proportional to the covariance matrix of the solu-
tion. Hence the eigenvalues of the Hessian can be used
to determine which components of the control parameter
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FIG. 3. Gradient of zonal transport with respect to depth
[Sv m−1]. Areas of negative values are shaded. Contour interval
is 0.02Svm−1.

are well or poorly determined by the data (Thacker 1989),
with small eigenvalues corresponding to poorly-determined
components and vice versa. Zero-eigenvalues correspond to
completely indeterminate elements that lie in the problem
null space. (Note that the concept of a null space is only
directly applicable in the linearized problem. At finite am-
plitude, the indeterminate components are constructed here
as the difference between the known correct solution, and
the one found by non-linear optimization.)

3. Sensitivity of Zonal Volume Transport to Depth

The adjoint model permits calculation of the gradient of
any parameter, or combination of parameters, with respect to
the controls. Thus the sensitivity of the solution element to
perturbations in control parameters is readily found. Con-
sider, briefly, an alternative scalar observable that can be
used to characterize the flow. The zonal volume transport

TV =
∫ Y

0

h(x0, y)u(x0, y) dy

depends explicitly and implicitly on the topography in
the channel, but is independent of the zonal positionx0.
The gradient of the zonal transport with respect to depth
∂TV /∂h is the spatial distribution of this sensitivity (Fig.3).
Sensitivity is largest over the northern end of the sill where
most of the flow traverses the obstacle. Here, decreasing the
height of the sill at one grid point by 5m would increase the
flow by 1Sv (= 106m3s−1). At the southern end, changes
in sill height hardly affect the flow. The gradient ofTV with
respect to depth is slightly negative in the deep-sea regions
away from the sill. Making these regions shallower shifts
the f/h-contours north, thus moving some of the blocked
contours across the northern boundary and out of the model
domain. They are replaced by unblocked contours near the
southern boundary. More unblocked contours lead to higher
transports.

Thus, the gradient systematically assesses the sensitivity
of the flow to topography in a quantitative way. Further-

more, this sensitivity can be conveniently connected to the
dynamics of the flow. In the following sections we explore
the ability to estimate depth from the combined sea-surface
height data and the model.

4. Error-Free-Data Experiments

In this section the method of “identical twins” is used to
explore how topography as an independent variable is con-
strained by sea-surface height data: after the model is spun
up to a near-steady state, it is integrated for another 40000
time steps (≈ 46 days) to produce pseudo-data. In a subse-
quent run with identical boundary and initial conditions, the
model necessarily fits these values perfectly, and the objec-
tive function has its minimum value (zero). In bypassing the
minimization, we avoid convergence problems at this point.
The system is at a global minimum, and we can safely em-
ploy the linearization of the Hessian matrix for error calcu-
lations.

With a perfect result, the only consistent error estimate
would have zero variance. We can nonetheless explore the
impact of data errors on the accuracy of depth estimates, in
the limit of small perturbations about the perfect solution.
The case where errors are added to the pseudo-data will be
taken up later (Section5).

We use two different objective functions. In the first, we
assume that we do not know anything about the depth, and in
the second we use ana priori depth estimate that is accurate
to within 200 m. We anticipate that with the first objective
function not all depth values can be determined from data
(see also Das and Lardner 1992). As an intuitive explana-
tion, consider that in regions of no flow the height of the
topography has no effect. A topographic estimate from data
in such a quiescent region would necessarily be non-unique.

With the second objective function, a bias towards thea
priori depth estimate is introduced into the system.

a. Sea-Surface Height Data only

The first objective function is

J1 =
1
2

[y − M(h)]T C−1
η [y − M(h)] , (12)

whereyi are the sea-surface height data,Mi(h) their model
counterparts, andCη = σ2

ηI is a diagonal covariance matrix
with the constant prior error estimateση for the data.ση is
chosen to be 10cm. Only relative weights affect the solution
of the optimization problem, so that the size ofση has, for
the moment, only the role of a uniform scaling factor. Later
however, additional, differently weighted terms will be in-
troduced.

An eigenvalue spectrum of the numerical approximation
of the Hessian matrix is shown in Fig.4. The displayed range
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FIG. 4. Eigenvalues of the Hessian of the objective functionJ1

(Eq. 12), normalized by the maximum eigenvalue. The smallest
eigenvalue, which is numerically zero [O(10−15)], is not shown.
The corresponding null space vector consists mostly of grid-scale
noise (see text).

of the spectrum spans eight orders of magnitude; the small-
est eigenvalue, which is numerically zero [O(10−15)], is not
shown. The null space vector corresponding to the zero-
eigenvalue shows a nearly pure grid-scale (2∆x) structure.

Eigenvectors corresponding to the very small, but non-
zero eigenvalues, are also dominated by grid-scale noise.
But they also have a superimposed large-scale structure
which we believe arises from technical aspects of the nu-
merical scheme, and so we do not attach any physical sig-
nificance to them. On a C-grid, the kinematically relevant
depth at the velocity points has to be found by interpolation
between the values at the grid cell centers where the control
parameters are located. This interpolation is clearly respon-
sible for the grid-scale noise. One could avoid this issue by
choosing the depth at the velocity points as control parame-
ters. But this doubles the number of the control parameters.
Also, as will be clear later on, introducing prior information
for topography eliminates the grid-scale-noise problem.

In an attempt to add information to the system that other-
wise lies in the null space, one can augment the data vec-
tor y in Eq. (12) with direct observations of the velocity.
But experiments (not shown) reveal that the structure of the
null space does not change when one includes in the objec-
tive function even a full row of velocity measurements that
spans the channel—presumably because the grid noise in the
model has a very local structure.

Because of the zero eigenvalue, the condition number,
which is the ratio of the largest and the smallest eigenvalue,
is infinite and the Hessian matrix is singular, even if one
were willing to regard the other very small eigenvalues as
being mathematically non-zero. In the presence of any noise
at all, some of the small eigenvalues are effectively zero, and
one therefore infers immediately that there will, at least in a
formal sense, be an infinite number of acceptable solutions
to the problem of determiningh. One needs ultimately, to
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FIG. 5. Estimated error reduction for depth (in percent, relative
to the prior error estimateσh = 200m); error-free data; deviations
from the (true) initial guess are penalized.

understand the family of acceptable solutions. In Section 5
the shape of the poorly determined components of bottom
topography will be discussed.

b. Sea-Surface Height Data and Prior Depth Estimate

The objective function (12) is augmented by a term that
penalizes deviations from a prior depth estimate,h0 as,

J2 =
1
2

(y − M(h))T C−1
η (y − M(h))

+
1
2

(h0 − h)T C−1
h (h0 − h) ,

(13)

whereCh = σ2
hI is a, for now, diagonal covariance matrix

with the constant prior error estimateσh for depth. With the
addition of this term, which renders the problem one of “ta-
pered least-squares,” the null space, either formal or effec-
tive, is suppressed. For simplicity, the prior error estimate
for sea-surface height is again constant in space and time
with standard deviationση = 10cm. This value is in rough
accord with the average combined error of satellite altime-
try and an underlying geoid model (Wunsch and Stammer
1998). A large depth error,σh = 200m, is chosen to prevent
the prior estimate of the depth from dominating the new esti-
mate. Also, the vertical resolution of a GCM near the bottom
can be very poor, so thatσh can be interpreted also as the ac-
curacy by which depth is represented on a numerical grid.

The condition number of the Hessian ofJ2 is ≈ 24, and
the problem is well-conditioned. None of the eigenvectors
contain any grid-scale noise. The posterior relative error re-
duction estimate (= 1−√

diag(H−1)/σh) in percent (%) is
shown in Fig.5. The impact of sea-surface height data on the
topography estimate is greatest where the current speeds are
highest. Above the flanks of the sill, the topography error es-
timate is reduced by up to 20% compared to the initial error
estimate of 200 m while above the southern part of the sill
and along the northern and southern boundaries away from
the sill there is hardly any error reduction at all.

Accepted by J. Atmos. Ocean. Technol. – April 4, 2003



Bottom Topography as a Control Variable 7

5. Recovering the “True Depth”

The experiments of Section4 suggest that measurements
of the dynamical properties of the flow are not sufficient to
remove the problem null space. Hence, one cannot expect to
estimate a unique bottom topography with a shallow water
model, unless there is additional information available about
those components of the topography lying in the effective
null space of the problem. But we are primarily interested in
an optimal representation of topography in an ocean model.
In this context the null space components of the topography
will not affect the flow and need not be determined from
data.

In the following experiments, the optimization is started
from an incorrect prior depth estimateh0 for which the first
estimate of the sill height has been incorrectly set to 360m,
that is, with a 10% initial error. Deviations from this prior
estimate are penalized as described by objective functionJ2

(Eq. 13). Doing so introduces a bias towards the incorrect
prior depth estimateh0. By choosing small weights for the
penalty term, that is, assuming a large error for the prior
depth estimate, one can alleviate the effects of the bias, but
cannot remove them entirely. (The prior error estimates cho-
sen here are the same as in Section 4b,ση = 10cm and
σh = 200m.)

a. Perfect Sea-Surface Height Data and a Prior Depth
Estimate

Fig.6 shows the difference between the true depth and the
estimated depth after minimizing the objective functionJ2

with sea-surface height data that has been generated with the
correct topography. The difference between the estimated
depth and the true depth is small over the northern part of
the sill where the current velocities are high (compare Fig.2
and Fig.6). Over the southern end of the sill, the sea-surface
height data have little effect, and the differences between the
optimal estimate and the true depth are as large as 40m. The
difference between the estimate and the true depth is always
smaller than the posterior error estimate, and so the solution
is statistically consistent.

b. Noisy Sea-Surface Height Data and a Prior Depth
Estimate

With objective functionJ2 (Eq. 13) the problem is for-
mally well determined, but the information provided by the
sea-surface height data is not sufficient to reconstruct the
true depth completely: in the previous section, the estimated
depth differs from the true one, in some places by as much
as the initial difference.

The problem is now extended to explore the sensitivity of
the optimal solution to random Gaussian noise in the data
having a standard deviation of 10cm. With these noisy data,
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FIG. 6. Difference between true depth and estimated depth (in
meters, top) and estimated error reduction (in percent, relative to
the initial error estimate of 200 m, bottom); perfect sea-surface
height data; deviations from the (wrong) initial estimate are pe-
nalized.

the experiment of the previous section with objective func-
tionJ2 is repeated.

When the forward model is run with an incorrect topo-
graphic estimate as in Section5a above, it produces an rms-
deviation from the correct sea-surface height of only 0.5 cm.
After optimization, using the noisy sea-surface height data,
this rms-difference is hardly changed, and the difference be-
tween the true depth and estimated depth remains very large
(Fig.7) with an rms-difference of 45m and a maximum dif-
ference of 124 m. Thus major differences in bottom topog-
raphy generate only very slight differences in surface eleva-
tion. After optimization, all differences in surface elevation
and bottom topography are smaller than the formal error es-
timates and the solution is statistically consistent. The error
estimate still shows the spatial patterns of Figs.5 and 6 with
smallest errors (largest error reductions) where the velocities
are strong, but as a consequence of the random nature of the
noise in the data, the depth error reduction can locally be
much greater than with perfect data (Fig.6).

In spite of the noisy topography estimate, the estimate
of the sea-surface height by the inverse model is improved
over the noisy data: the rms-difference between the temporal
means of the perfect and the noisy data is 1.2cm; for the per-
fect data and the model estimate, this rms-difference is only
0.5 cm. Therefore adjusting the topography improves the
model-data fit. But the new sea-surface height mean (Fig.8)
implies the difference to the true topography shown in Fig.7.

Accepted by J. Atmos. Ocean. Technol. – April 4, 2003



8 Losch and Wunsch

X [km]

Y
 [k

m
]

50

50
50

50

50

50

50

50

50

10
0

10
0

100

−100

−10
0

−75

−75

−75

−75

−50

−50

−50−50

−50
−50

−50

−25

−25

−25

−25

−2
5

−25

−25

−25

−25

−2
5

−2
5

0

0 0

0

0

0

0

0

0 1000 2000 3000 4000
0

800

1600

X [km]

Y
 [k

m
]

−10

−5

−5

0

0 0 0 0

0

0
0

0

0

5

5

5

5 5

5

5

5

5

5

5

5

5

5

10 10

10

10

10

10

10

10

10

10

10

15

15

15

15

15

15

15

15

15

15

15

15

20

20 20
20

20

20

20

20

20

25

25

25
25

25

2530

0 1000 2000 3000 4000
0

800

1600

FIG. 7. Difference between true depth and estimated depth (in
meters, top) and estimated error reduction (in percent, relative to
the initial error estimate of 200m, bottom); noisy sea-surface height
data; deviations from the (wrong) initial guess are penalized.

Reducing the noise level in the data leads to a less distorted
sea-surface height estimate which in turn reduces the noise
in the topography estimate (not shown).

6. Gyre Experiments with Noisy Sea-Surface Height
Data

To demonstrate the behavior of the system in a regime
in which the the topography has a smaller impact on the
flow than in a zonal channel, attention is now turned to a
closed basin with a gyre flow. Dimensions are 4000 km in
both zonal and meridional direction; the horizontal grid cell
length is 200 km, the maximum depthH0 = 4km, f0 ≈
7.3 × 10−5s−1, andβ ≈ 2.0 × 10−11s−1m−1. The flow is
forced by a stationary zonal wind stressτx = τ0 cosπy/Y ,
with τ0 = 10−4m2s−2. A linear bottom friction parameter
r = 0.04ms−1 leads to a western boundary current that the
coarse grid can resolve. An analytical problem analogous
to that posed above in Eq. (9) can be formulated. Because
of the choice of parameters, the rms-amplitude of the sea-
surface height itself is only of the order of 1mm in contrast
to 6cm in Section5.

Proceeding numerically again however, the gyre flow is
by far less sensitive to changes in the bottom topography
than is the flow in the zonal channel. A meridional mid-
ocean Gaussian ridge of 2000 m height and 200 km half-
width at the center of the basin modifies the flow primarily
away from the western boundary current: with the ridge, the
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FIG. 8. Estimate of the mean sea-surface height after assimilat-
ing noisy sea-surface height data. Contour interval is 2cm. Com-
pare to Fig.2.

zonal steady-state flow along the northern and the southern
boundary is topographically steered equatorwards (Fig. 9),
but it does not follow the geostrophic contours as closely as
does the flow in the zonal channel. As a consequence, de-
creasing the ridge height to 1000m above the sea-floor leads
only to a slight change in the flow. The rms-difference be-
tween the sea-surface height with the full ridge and with the
smaller ridge is 0.25 mm, that is, over one order of magni-
tude smaller than in the experiments of Section 5 although
the change in topography is considerably larger here.

Treating the true sea-surface height as data, the initial gra-
dient of objective function(12) with respect to depth for the
model with the smaller ridge is plotted in Fig.10. The prior
rms-error estimate for sea-surface height is 1 mm. The ob-
jective function is most sensitive to depth over the northern
part of the ridge where increasing the ridge height would
deflect the flow further equatorwards and thus decrease the
model-data misfit.

An eigenvalue decomposition of the Hessian of the ob-
jective function, similar to that of Section 4, reveals that—
apart from the grid-scale components—the eigenvectors
corresponding to the smallest eigenvalues (the least con-
strained shapes) have a peak near the point(x, y) ≈
(1000km, 2000km) where there is little flow.

a. Error-Free Sea-Surface Height Data

The forward model is started with an initial estimate for
the ridge height of 1000m (extending to 3000m water depth)
when the “correct” value is a height of 2000 m. The model
then must recover the true depth from sea-surface height
“data” that have been generated by the model with the “cor-
rect” ridge height of 2000m. The deviations from the (false)
initial estimate are penalized as described by objective func-
tion J2 (Eq. 13). The prior errors in this experiment are
ση = 1mm andσh = 1000m.

The solution after 48 minimization steps is depicted in
Fig. 11. As before, the solution resolution is highest where
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the current velocities are high. The true errors (difference
between estimated and true depth on the left hand side of
Fig. 11) are greatly reduced over the northern and southern
end of the ridge whereas at the center of the gyre, where
the fluid is almost at rest, the ridge is poorly recovered. Es-
timated errors, which are consistently larger than the true
errors, show their minimum in the western boundary cur-
rent. A local error minimum is also observed in the north
where the ridge causes the strongest deflection of the flow.
The overall error reduction is small compared to the uniform
prior error of 1000m. A large estimated uncertainty remains

and it is concluded that sea-surface height data in this con-
figuration can only weakly constrain the topography.

b. Noisy Sea-Surface Height Data

Gaussian noise with a standard deviation of 1mm is added
to the sea-surface height data and the experiment of Sec-
tion 6a is repeated. Convergence is slow, so that the norm
of the gradient is only reduced by a factor of 0.04 after 300
minimization steps. The rms-difference between the esti-
mated and the true depth is actually increased from 298m be-
fore the optimization to 439m afterwards (not shown). The
model cannot find a depth estimate that is consistent with
prior assumptions or the true solution. Apparently the initial
estimate of topography corresponds to a point in the phase
space that is too far away from the global minimum, so that
the nonlinear minimization with noisy data slowly converges
to a local minimum. Further experiments, in which the ini-
tial depth estimate has been moved closer to the true depth,
confirm this conclusion: for an initial height estimate of the
ridge of 1500m, the optimization converges quickly and the
solution is consistent with the true depth within estimated
errors (Fig.12).

To overcome the poor convergence of the optimization
problem with an initial ridge height of 1000m, a smoothness
requirement, a simple way of demanding a spatially corre-
lated solution, is added to the objective function. Correlation
is achieved by adding nondiagonal contributions to the depth
weight matrix in the objective functionJ2, here constructed
from the matrix operatorL that represents the discretized
Laplacian operator,

C−1
h = σ−2

h I + σ−2
r LTL. (14)
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With the new objective functionJ2, in which σr =
2σh∆x−2 is chosen such that both terms in Eq. (14) have
the same order of magnitude, faster convergence is achieved:
the norm of the gradient is reduced by a factor of105 after
59 minimization steps. Also the rms-difference between the
estimated and the true depth is decreased to 275 m, but the
spatial patterns of both the true and estimated errors show
less resemblance with the flow field and the topographic fea-
tures as in the perfect-data case (Fig.13). More than 90% of
the true errors are smaller than one standard deviation of the
estimated errors, and all true errors are smaller than two es-
timated standard deviations.

7. Discussion and Conclusions

In a steady barotropic situation, it is practical to treat the
bottom topography as a control variable to be determined
from the combination of a model and observations. This
conclusion is consistent, despite the radically different phys-
ical setting, with shallow water gravity wave studies (e.g.,
Das and Lardner 1992; ten Brummelhuis et al. 1993). Here,
we put this concept into the context of modeling the general
circulation of the ocean.

Surface elevation alone does not, empirically, produce a
full uniquely determinable estimate of the bottom topogra-
phy of the underlying model, especially when the data are
noisy and small eigenvalues become part of the effective null
space. As with all such problems, the accuracy of thea pri-
ori information has a direct influence on the final accuracy
and precision of the results. The only simple generaliza-
tion is that regions of high flow velocity tend to produce
better results, with weak flow regions providing relatively
little information about the topography. A Southern Ocean-

like channel shows a greater sensitivity of the elevation to
topographic perturbations, and this sensitivity translates into
a greater ability to recover the topography. In mid-latitude
gyre problems, errors in the bottom topography are unlikely
to be the dominant source of model problems, given all of
the other uncertainties involved. To that extent, the insensi-
tivity there is good news.

The above conclusion seems also valid if the accuracy of
the, in our case, sea-surface height data is dramatically in-
creased with the new space-borne gravity missions, for ex-
ample the GRACE (Gravity Recovery and Climate Experi-
ment) mission (Tapley 1997). In our model we can reduce
the formal error to zero as in Section4, but there still remains
a null space, which is associated with regions of weak flow.

When attention is turned to more realistic problems, par-
ticularly those involving baroclinicity, a number of major
changes can be anticipated. The sensitivity of the surface
elevation to the depth structure in general will decrease in a
model that allows for baroclinic compensation (e.g., Holland
1973; Marshall and Stephens 2001). On the other hand, to-
pography can have a major impact on water mass properties,
which are a central oceanographic observable and for which
there exists a major data base. Undoubtedly there will be
technical details of deducing the best-fitting topography in
such models, but the principle of doing so does not seem to
be in doubt. A likely major issue is the expected coupling
between topographic representation and mixing parameteri-
zations.

Also unexplored at this time is the information content,
in the barotropic model, of the time dependent motions that
are readily observed with altimeters. This step is left to the
future as well.
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Technical points raised by the use of topography as a con-
trol variable have been glossed over here, on the basis that
numerically, no particular difficulties were encountered. On
a more theoretical level, particularly if one returns to the an-
alytical form of Eq. (7), the existence of the adjoint might
be called into question. In the continuous formulation, the
existence of the adjoint model depends upon the differentia-
bility of the forward model with respect to the topographic
field. In practice, as here, with a little care, discrete mod-
els do not produce numerical derivatives which are infinite.
Experience with the adjoint tool used does show that it is
possible to write FORTRAN codes which cannot be com-
piled, but these problems usually result from coding issues,
rather than from mathematical ones.

Here, as a particular example, we explicitly avoided the
use of code that fails to be numerically differentiable. For a
finite volume discretization of the equations of motion as in
the MITgcm (Marshall et al. 1997) where the depth at the in-
terface between two grid cells (velocity points on a C-grid)
is evaluated as the minimum of the two cell depths (tracer
points), the FORTRAN minimum function is not differen-
tiable when the grid cells have exactly the same depth. In
this situation—which is common in ocean general circula-
tion models where the abyssal plains are characterized by
many grid cells with exactly the same depth—the disconti-
nuities of the gradients of the objective function may cause
numerical difficulties in the minimization. One remedy may
be the shaved cell formulation, where the step topography of
the partial cells with flat bottoms is replaced by piece-wise
linear topography (Adcroft et al. 1997).

The use of bottom topography as a control variable is only

the first of a number of unorthodox controls that need to be
explored. Prominent among these are the inference of lateral
and bottom boundary conditions from observations. Open
boundaries are already being employed in state estimation,
where inflows, outflows, and scalar properties being carried
become parts of the control vector (e.g., Zhang and Marotzke
1998). But even with models using conventional Laplacian
friction, one has to make a choice between free-slip and
no-slip (Adcroft and Marshall 1998). In models with, for
example, biharmonic terms in the momentum equation, the
most appropriate higher order boundary conditions are little
more than guesses. The distinction between open and closed
boundaries is thus seen to be somewhat artificial. Eventu-
ally, bottom topography as well as all boundary conditions,
are expected to be included generally as a control variable
in general circulation models of arbitrary complexity. Much
remains to be done.
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Schröter, J., M. Losch, and B. M. Sloyan, 2002: Impact of

the Gravity Field and Steady-State Ocean Circulation Explorer
(GOCE) mission on ocean circulation estimates: Volume and
heat transports across hydrographic sections.J. Geophys. Res.,
107(C2), doi:10.1029/2000JC000,647.

Smith, W. H. F., and D. T. Sandwell, 1997: Global seafloor topog-
raphy from satellite altimetry and ship depth soundings.Sci-
ence, 277, 1957–1962.

Stammer, D., C. Wunsch, R. Giering, C. Eckert, P. Heimbach,
J. Marotzke, A. Adcroft, C. N. Hill, and J. Marshall, 2002:
The global ocean circulation during 1992–1997, estimated from
ocean observations and a general circulation model.J. Geophys.
Res., 107(C9), 3118, doi:10.1029/2001JC000,888.

Accepted by J. Atmos. Ocean. Technol. – April 4, 2003



Bottom Topography as a Control Variable 13

Tapley, B. D., 1997: The gravity recovery and climate experiment
(GRACE). Suppl. Trans. Am. Geophys. Union (EOS), 78(46),
163.

ten Brummelhuis, P. G. J., A. W. Heemink, and H. F. P. van den
Boogaard, 1993: Identification of shallow sea models.Int. J.
Numer. Methods Fluids, 17(8), 637–665.

Thacker, W. C., 1989: On the role of the Hessian matrix in fitting
models to data.J. Geophys. Res., 94(C5), 6177–6196.

Wunsch, C., 1996:The Ocean Circulation Inverse Problem. Cam-

bridge University Press, 442 pp.
Wunsch, C., and D. Stammer, 1998: Satellite altimetry, the marine

geoid, and the oceanic general circulation.Ann. Rev. Earth and
Planet. Sci., 26, 219–253.

Zhang, K. Q., and J. Marotzke, 1998: The importance of open-
boundary estimation for an Indian Ocean GCM-data synthesis.
J. Mar. Res., 57, 305–334.

Printed April 4, 2003.

Accepted by J. Atmos. Ocean. Technol. – April 4, 2003


