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ABSTRACT

The advent of high precision gravity missions presents the opportunity to accurately measure variations
in the distribution of mass in the ocean. Such a data source will prove valuable in state estimation and con-
straining general circulation models (GCMs) in general. However, conventional GCMs make the Boussinesq
approximations, a consequence of which is that mass is not conserved. By use of the height-pressure coordinate
isomorphism implemented in the MITgcm, the impact of non-Boussinesq effects can be evaluated. Although
implementing a non-Boussinesq model in pressure coordinates is relatively straight-forward, making a direct
comparison between height and pressure coordinate (i.e., Boussinesq and non-Boussinesq) models is not sim-
ple. But a careful comparison of the height coordinate and the pressure coordinate solutions ensures that only
non-Boussinesq effects can be responsible for the observed differences. As a yard-stick, these differences are
also compared to those between the Boussinesq hydrostatic and models in which the hydrostatic approxima-
tion has been relaxed, another approximation commonly made in GCMs. Model errors (differences) due to the
Boussinesq and hydrostatic approximations are demonstrated to be of comparable magnitude. Differences in-
duced by small changes in sub-grid scale parameterizations are at least as large. Therefore, non-Boussinesq and
non-hydrostatic effects are most likely negligible with respect to other model uncertainties. However, because
there is no additional cost incurred in using a pressure coordinate model, it is argued that non-Boussinesg mod-
eling is preferable simply for tidiness. Itis also concluded that even coarse resolution GCMs can be sensitive to
small perturbations in the dynamical equations.

1. Introduction purposes of simulating the ocean circulation with ocean gen-
. L . ral circulation models (OGCMs), there are many problems
Recently, the Boussinesq a}pprOX|mat|ons in ocean mog- physical oceanography that may require the use of non-
els have attracted much attention (e.g., de Szoeke and Sa”%%hssinesq OGCMs. Boussinesq models conserve volume;
son 2002; Greatbatch et al. 2001; Huang and Jin 200 onsequently, they cannot recover steric effects. Hence, un-
Huang et_ al. 2001.; Lu 2001; McDougall etal. 2002). The aNess the steric sea level change is explicitly calculated (Great-
proxmat_lqns, W.h'Ch are COF“"“O”!V employed for_comput%atch 1994), one cannot use such models to study global sea
tional efficiency in general circulation models and in analyt'Tevel change due to net heating of the ocean at seasonal and
cal studies, consist of replacing (i) mass conservation by V%nger time-scales. Furthermore, changes in the heat and

ume conservation and (if) the density in tempqral and adve ‘eshwater content of the ocean can have spurious effects
tion operators by a constant reference density (McDoug h the diagnosed bottom pressure in OGCMs that make the
etal 2_002)1' o o Boussinesq approximations. For example, heating the wa-
While these approximations are generally justified fofer column (and neglecting the subsequent adjustment) de-
- creases the density. By volume conservation, decreasing the
ﬁ)rre_’sp?_ndin%aﬂor Sd\ji\;essr nstitutf Pol ey density reduces the mass and the bottom pressure, which for

artin Losch, Alfred-Wegener-Instituuf ‘Polar- und Meeres- o yag| fluid should be unchanged in this case. Therefore
forschung, Postfach 120161, 27515 Bremerhaven, Germany, . . ; ’
e-mail: mglosch@awi-bremerhaven.de gvolu_me conserving model may be inappropriate to study
'Spiegel and Veronis (1960) summarized the Boussinesq approxim@C€anic mass d'_St_”bUt'()n {ind bOtFom pressure In the con-
tions as follows: “(1) The fluctuations in density which appear with thdext of high precision satellite gravity missions such as the

advent of motion result principally from thermal (as opposed to pressurgsR ACE (Gravity Recovery and Climate Experiment) mis-

effects. (2) In the equations for the rate of change of momentum and ma : :
Slon (Greatbatch et al. 2001). Reducing the mass by heating

density variations may be neglected except when they are coupled to f )
gravitational acceleration in the buoyancy force.” from above also has dynamical consequences that can re-
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sult in different adjustment processes and different sea sumodel suggested by de Szoeke and Samelson (2002) is al-
face elevations of a Boussinesq and a non-Boussinesq modedy implemented and used as an atmospheric model (see
(Huang and Jin 2002). Marshall et al. 2003, where atmosphere-ocean isomorphisms

According to Huang et al. (2001), the Boussinesq apprond their implementation in the MITgcm are described).
imations also may introduce erroneous energy sources akidfact, the MITgecm was originally motivated by an atmo-
energy transformation processes, although this issue is ung@heric model in pressure coordinates (Brugge et al. 1991).
debate (R. Ferrari and A. Adcroft, personal correspondenc8) transferring the atmospheric model to the ocean and re-
In the ocean, heating the water column from above raises tREcing the equation of state, a fully non-Boussinesq OGCM
sea surface and increases the gravitational potential enertjyPressure coordinates is readily available. Here, this model
But in a Boussinesq model, the same heating decreases théntegrated in parallel with the Boussinesq height coordi-
mass, does not raise the sea level, and thus reduces the gi@te mode of the MITgecm and the solutions are compared
itational potential energy. Also, neglecting the compressibif0 yield a quantitative assessment of the differences due to
ity in the continuity equation removes the explicit conversiofhe Boussinesq approximation. The MITgcm can also be
between mechanical and internal energy from the BousdHn as a non-hydrostatic model which makes it possible to
nesq model. This may have an effect on the energy balané@mpare the relative impact of the Boussinesq and the hydro-

in the Boussinesq equations, although the magnitude of thesi@tic approximations and check the conclusion of de Szoeke
errors is unclear (Huang et al. 2001). and Samelson (2002) that the crucial simplification is the lat-

In this paper, we will argue that all of these errors ard®" One-
at the noise level of a coarse resolution OGCM. In particu-
lar, they are comparable to, say, errors due to the hydrostafic Non-Boussinesq Pressure Coordinate Model and
approximation and uncertainties associated with model p&oussinesq Height Coordinate Model: Making the
rameterizations, because the long integration of an OGCModels Comparable
is sensitive to any small perturbation, even at non-eddy-

permitting resolution Following de Szoeke and Samelson (2002), the hydro-

. . . static, Boussinesq equations of motion in height coordi-
McI_DougaII etal. (2002.) pointed out that—in ad_dmon ©Onates have the same form as the hydrostatic, non-Boussinesq
replapmg mass conservation byvolume gonservatmn and t auation in pressure coordinates. To obtain a set of non-
den§|ty by a constantr:eferenig de?]sn)ém temporal and agbussinesq equations in pressure coordinates from Boussi-
vect.lon operatorsl—wh en making t € ouszlnescé) appm)ﬂésq equations in height coordinates, one only has to substi-
mations, an error in the _tracer gquatlon needs to € Consﬁjfte pressure for height as the vertical coordinate, a pseudo-
ered th_at results_ from using a divergence-free velocity as t %Iocity, which is the rate of change of pressure, for the verti-
advecting velocity. Gregtbatch et. al. (2001) and.Lu (200 al velocity, the geopotential height for hydrostatic pressure
each suggested a practical solution for accounting for thaf, ;' s cific volume for density. Marshall et al. (2003) de-
errorin a conver?nonall Boussinesq model. The two SOIUs?cribed how this isomorphism of the equations is exploited
“OWS differ only sllghtly. I__u (2001) re-interpreted th_e mOdeIfor modeling of the atmosphere and the ocean with the same
variables as density weighted averages of the grid cell arE:‘glnamical kernel code. The description of the isomorphism

added a correction to the vertical a_ldvecnoq term in t_he M%nd its application to a non-Boussinesq pressure coordinate
mentum and tracer balance equations. This correction termodel of the ocean are summarized in AppendixA
is diagnosed from the original continuity equation which in- '

cludes time-derivatives in density. Greatbatch et al. (200
re-interpreted the model velocity variables as average m
flux per area normalized by a constant reference densi
They arrived at a set of equations in which the density nee
to be stepped forward in time.

In a completely different approach, de Szoeke and Sam

In the following sections, the solution of the non-

ussinesq pressure coordinate model is compared to that

the Boussinesq height coordinate model for a coarse res-
gution configuration with mixed boundary conditions. Al-
though both models use essentially the same dynamical ker-
el of the MITgcm, details of the implementation and the

arameters of the two models render the direct comparison

son (2002) showed that the non-Boussinesq hydrosta f the two model difficult. Before the models can be com-
equations in pressure coordinates have a form that is “du ’r;lred the following issues need to be addressed
to the hydrostatic Boussinesq equations. In this way, only the ' '

structure of the boundary conditions in existing Boussinesq
ocean model code needs to be modified. The remaining code Initialization

can be used without any further modifications, provided one pgac4.se the vertical grids of the pressure coordinate and
replaces depth, vertical velocity, pressure, and scaled densifyjont coordinate models are different, the models cannot be
anomaly by pressure, vertical pseudo-velocity, Montgomeny g4 rted from a common spun-up equilibrium state. Only a
potential, and the scaled specific volume anomaly, respeg i from rest with flat hydrography provides the identical
tively. initial conditions that are necessary for the close comparison
In the MITgem (Marshall et al. 1997a, the model codgyresented here. Difficulties in interpolating the hydrogra-
is available at http://mitgcm.org), the dynamical core of thephy onto pressure levels that implicitly depend on temper-
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Sensitivity of GCMs to fundamental approximations 3

ature and salinity are avoided by starting both models froine ocean-atmosphere interface:
uniform temperature and salinity fields, where the constant

values off = 3.6°C andS = 34.7 are chosen to be approx- Riixea
imately the mean temperature and salinity estimated from ¢(rs) = _/
the Levitus climatologies (Levitus and Boyer 1994; Levitus '

etal. 1994). .
Pressure is a nonlinear function of depth. Thereforé:,' Natural Boundary Conditions for Freshwater Flux

after choosing the depth levels in the height coordinate The response to freshwater forcing is anticipated to be
model, the pressure levels in the non-Boussinesq model agfle of the major dynamical differences between a Boussi-
termined by integrating the nonlinear hydrostatic equatiofence, the implementation of the natural boundary condi-

dp = —gp(p)dz. In the Boussinesq model, the pressurgions for freshwater flux requires great care.

is. e\(aluated at the .end of a time step. Then at the b?’ In the height coordinate model, adding freshwater locally
ginning of the next time step, the pressure from the previ

" D | din th e t ctate t Ul educes the salinity of the top layer, but at the same time
ous time step Is used in the equation of state to calculafg. o ses the height of the free surface via an inhomoge-

plensﬁy._ Lagging pressure In this way avoids the nonlmeq{eous term in the free surface equation (Equation (A9) in
integration at every time step (Griffies et al. 2001). Us

. . . . ) Appendix A). Note, that in this work, the freshwater flux is
ing an equation of state in which pressure is computed

Balanced globally over the forcing period (one year) so that
p(z) = —gpoz can lead to errors of up {0 a few Sverdrupgyq e is no net flux of freshwater into the ocean.

(1Sverdrup= 1Sv = 10°m3s~') in the Gulf Stream re- | di he flux of fresh _
gion (Dewar et al. 1998) and is therefore explicitly avoide h pressure coordinates, the flux o res water Is a mass
lux at the surface, also balanced to avoid an overall mass

in our comparison. Huang and Jin (2002) used an equati H .
of state that does depend on height and not on pressuredirﬁft' The surface mass fluctuatlogsFW(P_— E) change
the height coordinate model which makes definite compal e pressure tendengy = .Dp/Dt by a vertically constant
isons between Boussinesq and non-Boussinesq models prggl_ue throughout the entire water cglumn. (_:onsequently,
lematic. In this study, density is computed as a function o”FpFW(P — L) also appears as a forcing term in the bottom

pressure in both height coordinate and pressure coordin&&SsUre equgtion (A20) i_n AppendixA, WhiCh s effectively
model. a mass equation. The salinity, however, is affected in the sur-

face layer. The derivation of the surface boundary conditions
for w in pressure coordinates can be found in AppendixB.

b(r)|,_, dr'- 2

70
s

b. Computation of the Potential

The potentiab (¢ is pressure divided by in height co-  d. Free Surface vs. Bottom Pressure Gradients in the
ordinates and geopotential height in pressure coordinates\®mentum Equations
computed by integrating the generalized buoyanstarting
from the free surface, (b is gravitational acceleration times  In the height coordinate model the contribution to the mo-
density in height coordinates and specific volume in pressuf@entum equations of the surface pressure gradient is split
coordinates; see AppendixA for a further explanation of th#1to gVn+gV[(p — po)/po] n. Often, the second term is ne-
notation): glected on the grounds th@gt— po)/po < 1. Butin pressure
coordinates and with topography, the corresponding geopo-
tential height gradient at the bottom is evaluated at differ-
ent pressures. Making the above approximation in pressure
coordinates introduces larger errors because the specific vol-
wherer is the general vertical coordinate. ume varies with depth. Therefore, terms of orger po)/po

At rest and with no atmospheric pressure load, the séa height coordinates anthv — ag)/aq in pressure coor-
surface of a homogeneous ocean is flat. Because both préigates & = p~') are not neglected in this study, thereby
sure and geopotential are zero at the air-sea interface, thislucing the differences between a height coordinate and a
implies that, in this resting state, the potentfamust be pressure coordinate model.
zero at the ocean-atmosphere interface in both formulations.
This condition is easily met in the height coordinate for-

) . . . .. Turbulent Diffusion and Vi i
mulation where the air-sea interface is the free surface ar?d urbulent usion and Viscosity

¢(rs) = p(z = n)/po = 0. In the pressure coordinate  The spatially constant eddy diffusion and eddy viscos-
model, on the other hand, the “free surfacg”is at the ity coefficients of the height coordinate (Boussinesq) model
ocean floor and appropriate boundary valygs,) at the have to be converted to pressure coordinates. For example,
bottom are needed to ensure that, at rest, the geopotenti@ vertical viscosity terms takes the form
is flat at the air-sea interface. These boundary values are ob-
tained by integrating the initig from the free surface at rest 0 () Ou 5 0 (=) Ou

_ _ - _ _ = \Ay oo | o | Av o
r? = ry(t = 0) to the fixed surface = Rygx.a(= 0P3 at Dz op \V "op )

o) = o(r) + [ v07)ar' 1)

Vo 0z 3)
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whereAﬁ,Z) is the vertical eddy viscosity coefficient, the 60
horizontal velocity vectory the acceleration due to gravity,
andp the in-situ density. Therefore only for constant density 5o : .
p = po, doesAg’) = AS)ngg. However, for any real-
istic scenario, in which pressure is a nonlinear function ¢
density, the vertical diffusion and viscosity coefficients are
a function of the vertical coordinate. Here, these variatioreg
are neglected and the coeﬁiciemg) andaﬁ}” are assumed £
constant. This assumption introduces an error of up to 3
in the vertical viscosity and diffusion terms, if one assume o}
a reference density gfy = 1035kg m~3. Thus, the vertical

40 : .

drift [cm]

eddy viscosity and diffusivity coefficients should be scalec | O 91 %z 963 G54 656 956 9 0% 90 960 |
by (p/po)? to reduce this error but are not done so here
There is a further discrepancy in the lateral diffusion an T G of sea surface height In pressure coordinate rode!

— — drift of bottom pressure in height coordinate model
T T T T T T T

viscosity terms; in the height coordinate model lateral edd %10 200 a0 400 500 60 700 80 900 1000
fluxes are directed down-gradient along the horizontal. .. time fyrs]
pressure coordinates the fluxes are calculated along isobaric

surfaces which may be inclined. But the slope of isobaric 7'¢- 1. Temporal evolution of the global means of bottom
surfaces is at most of the orded— and this effect is ne- pressure of the volume conserving (height coordinate, Boussinesq)

| d I Einallv. imol . he G McWilli model and sea surface height of the mass conserving (pressure coor-
glected as well. Finally, implementing the Gent-McWi Ia‘ms’dinate, non-Boussinesq) model. The bottom pressure is represented

and Redi schemes (Gent and McWilliams 1990) in pressuf@neignt units after scaling bypo ~ 10* kgm~2 s~2 and revers-

coordinates would have incurred the same difficulties and $gy the sign. Both models show both an annual cycle and variability
we chose to not employ these schemes. of longer time scales.

3. Comparison of OGCM Results contain a false mass drift in time, whereas the mean sea sur-
face elevation in the pressure coordinate model may drift due
to steric expansiof.Fig. 1 shows the time evolution of the
Both models are integrated for 1000 years. The horizontglobally averaged bottom pressure of the height coordinate
resolution is4°, ranging from80°S to 80°N with 15 verti- model and the globally averaged sea surface height of the
cal levels. The bottom topography is realistic and derivedressure coordinate model. The evolution of the global mean
from ETOPO5 (NOAA 1988). The level thickness range®f bottom pressure in the height coordinate model in Fig. 1
from 50m to 690m in the height coordinate model. Monthlyis represented in height units after scalingglpy and revers-
mean wind stress fields by Trenberth et al. (1990), monthing the sign. Note that in spite of the approximate scaling
mean heat flux and climatological freshwater flux by Jian@one could use the vertically averagaditu-density instead
et al. (1999) force the models at the surface. The surfacé py), the mass evolution in the height coordinate model
layer of thickness 50m is also restored with a time scale @nd the volume evolution in the pressure coordinate model
2 months to monthly mean sea surface temperature (Levitase remarkably similar. We thereby confirm the conclusion
et al. 1994) to represent an oceanic feedback on the act@diGreatbatch (1994) who showed that one can recover steric
heat flux. Basic parameters of both models are summarizetfects by adjusting the sea level by a globally uniform, time-
in Table1. The comparison between the pressure coordinat@rying correction.
and height coordinate model is carried out by showing the
di_fferences of time averaged fields. Unless indicated otheg- \y/hat is the Magnitude of the Differences?
wise, the averages are taken over the last 100 years of the
integration. We now compare sea surface elevations and bottom pres-
The two models operate on different vertical gridsSUre anomalies (differences from the long time mean). For
Hence, direct comparison of model variables will in mosthis comparison, both the time-dependent global averages of
cases involve the interpolation from one grid to the othefh® total mass of the height coordinate model and the volume
introducing another possible, albeit small, source of differf the pressure coordinate model have been removed.
ences between the results. The only variables that evade thisTo gauge how important the observed differences be-
problem are bottom pressure and sea surface elevation. Bb¥een the Boussinesq and the non-Boussinesq model are, we
tom pressure is a prognostic variable in the pressure coorgempare the height coordinate model with the same model
nate model, but must be diagnosed from the height coordi-—
nate model. In contrast, sea surface elevation has to be dia 2Diagnosing bottom pressure in the height coordinate model or surface
nosed in the pressure coordinate model, but is a prognosg?ﬁ"a“‘?” In the pressure coordinate model is only consistent with the model
. . . . IScretization if the hydrostatic equation is integrated using a finite volume
variable in the height coordinate model. Furthermore, thgscretization as opposed to finite difference discretization. The finite vol-
mean bottom pressure in the height coordinate model maiye discretization of the hydrostatic equation is described in AppendixC.

a. Model Parameters and Configuration
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Sensitivity of GCMs to fundamental approximations 5

Table 1. Summary of model parameters

Parameter Symbol  z-coordinates p-coordinates
horizontal viscosity An 3.00 x 1075m?s7! 3x10°m?s!
vertical viscosity Ay 1.67 x 1073m?s™t  1.721611620915750 x 10°P& s~!
horizontal diffusivity KH 1.00 x 1073 m? st 1x10°m?s!
vertical diffusivity Ky 5.00 x 107°m?s~t  5.154525811125000 x 103 P& s~ !
convective vertical diffusivity i, 1.00 x 107t m?2 st 1.030905162225000 x 109 P& s~*
bottom friction r 0 0
reference density 00 1035.0 kgm=3 1035.0 kgm=3
freshwater reference density pryw 999.8 kgm~—3 999.8 kgm—3

with small changes to the dynamics, the parameterizatioreynvective activity in the Southern Ocean (ACC) than is nor-
and the forcing fields. The most prominent change is thmally seen in models with GM. The highly non-linear nature
relaxation of the hydrostatic approximation to include thef the convection parameterization may also be contributing
vertical Coriolis terms and non-hydrostatic metric terms thab the sensitivity of the Southern Ocean in our results.
include the vertical velocityv. (See AppendixD for de-  The TOPEX/POSEIDON altimeter mission provided
tails.) With these terms, which are generally of the ordegceanographers with sea surface height anomaly data that
of 107°m?*s ™', the model is not fully non-hydrostatic, but have an accuracy of the order of 2cm (Wunsch and Stammer
it has a consistent energy conservation principle. Marshalbgg). The accuracy of these data may serve as the bench-
etal. (1997b) called this model “quasi-hydrostatic”. mark for the difference in sea surface variability. The square

We also compare two hydrostatic Boussinesq models thadot of the variance of the sea surface height over 100 model
differ only in the choice of the vertical diffusivity parameteryears is shown in the top panel of Fig. 3 for the Boussinesq
for temperature and salinity. This parameter is often tuned taodel. The difference in sea surface height variability be-
bring the model close to the observations. Therefore it caween Boussinesq and non-Boussinesq model (second panel
have values that vary dramatically from one application tof Fig. 3) is smaller than that due to quasi-hydrostatic terms
another. As an additional test, we compare the results of tifhird panel of Fig. 3). It is hardly detectable with today’s
height-coordinate model with different implementations ohigh precision altimetry.

the equation of state and perturbations of the forcing fields All experiments so far use the polynomial equation of
at the level of numerical round-off errors. state derived by Jackett and McDougall (1995) from the UN-
The mean sea surface of the Boussinesq model is sho&®SCO formula. The bottom panel of Fig.3 shows the differ-
in the top panel of Fig.2. The difference in mean sea surfa@nce due to a different equation of state, namely the poly-
elevation between the Boussinesqg and non-Boussinesq modmial published by McDougall et al. (2003). While the
els in the second panel of Fig.2 reaches 4 cm in the Southatifference in the density computed by these different formu-
Ocean, otherwise it is small. Such differences will just béas is of the order 002 kg m~3, it still causes differences
detectable when the new high precision geoid models bet sea surface variability of the same order as those due to
come available which are expected from the ongoing gravitgoussinesq effects.
mission GRACE. The third panel of Fig. 2 shows the dif- Bottom pressure gauges and the satellite mission GRACE
ference in mean sea surface height due to quasi-hydrostafi@duce measurements of the bottom pressure fluctuations.
terms. This effect is approximately half the Boussinesq efye therefore compare the temporal variations of bottom
fects. The bottom panel of Fig. 2 compares the Boussinegfiessure in the models. The top panel of Fig. 4 shows the
model to an experiment in which the vertical diffusivity hassquare root of the bottom pressure variance over a period of
been increased by 1% of the standard value. Apparently, thigo years for the Boussinesq model (with the global mean
change in diffusivity leads to similar, if not greater, changesybtracted at every time step). The difference in the bot-
in mean sea surface elevation as do the Boussinesq effectgym pressure variability between the Boussinesq model and
In general, the differences due to Boussinesq, hydréhe non-Boussinesq model (second panel of Fig.4) is on the
static, or equation-of-state effects are largest in the Soutbrder of1cm equivalent sea surface height in the Southern
ern Ocean. This region is characterized by large horizont@icean and much smaller everywhere else. This difference is
density gradients and steep isopycnal slopes. Small changeslarge as 30% of the signal and is therefore not negligible.
in these large gradients may explain the observed sensitivifowever, the difference in bottom pressure variability due to
to small perturbations. Since these calculations do not hattee quasi-hydrostatic effects (third panel of Fig.4) has a still
the Gent-McWilliams parameterization (GM), there is moréarger amplitude.
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FiG. 2. Top panel: mean sea surface elevation (in cm) of the FiG. 3. Top panel: Sea surface height variability (square-root
hydrostatic, Boussinesq model; contour interval is 20cm. Secoraf the variance in m); contour interval is 1cm. Second panel: dif-
panel: sea surface height difference due to Boussinesq effects; céerence in sea surface height variability due to Boussinesq effects;
tour interval is 1cm. Third panel: sea surface height differencesontour interval is 0.5cm. Third panel: difference in sea surface
due to quasi-hydrostatic effects; contour interval is 1 cm. Bottorheight variability due to quasi-hydrostatic effects; contour interval
panel: difference in sea surface height variability due to a chande 0.5 cm. Bottom panel: sea surface height differences due to a
of 1% in vertical diffusivity; contour interval is 1cm. changed equation of state; contour interval is 0.5cm.

To assess the extent to which the above responses aredagit of a 64 bit (double precision) real number and simu-
innate property of the system (i.e., does any small perturbkates the differences in round-off error that one encounters
tion lead to large changes?), the height coordinate model rwhen changing compilers or computing platforms. The bot-
is repeated with slightly different forcing fields: all forcingtom panel of Fig. 4 shows the resulting differences in bot-
fields are perturbed by random noise with a relative ampltom pressure variability. As with the use of a different equa-
tude 0f2.22 x 1076, This amounts to changing the lasttion of state and a perturbed vertical diffusivity, the effect of
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Hydrostatic, Boussinesq model 9
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longitude [°E] proximations and errors give rise to differences in bottom pres-
Boussinesq Hydrostatic - Boussinesq Quasi-Hydrostatic sure variability that exceed the estimated errors of a geoid derived
from GRACE (Balmino et al. 1998) at large scales. But the hydro-
static approximation (QH), small changes in the vertical diffusivity
(KAPPA), small differences in the equation of state (EOS), and nu-
merical noise in the forcing fields (NOISE) seem to be as important
as Boussinesq effects (NB).
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The most likely explanation for the observed sensitiv-
0 50 100 150 200 250 300 s0 ity is the choice of mixed boundary conditions. The com-
_ longitude [E] bination of restoring conditions for temperature and flux
Difference due to perturbed forcing . ..
boundary conditions for salinity has been reported to make
OGCMs unstable (Power and Kleeman 1994; Rahmstorf
1996). Repeating the above experiments with restoring
boundary conditions for both temperature and salinity con-
strains the height coordinate and the pressure coordinate
model to stay on very similar trajectories. However, this
does not change the qualitative result: when the models are
restored to the same surface fields, the solutions of the vari-
ous models become more similar and all differences are re-

latitude [°N]

0 50 100 150 200 250 300 350 . . .
longitude [°E] duced by one order of magnitude. But the relative sizes of

the differences remain the same (not shown).
FiG. .4. TOp panel: pottom pressure varlablllty (square root of F|gS Summarizes the previous Comparisons as afunction
the variance); contour interval i§)Pa~ 4mm equivalent sea sur- of scale. Plotted is the square-root of the degree variances
face height. Second panel: difference in bottom pressure varlabll—/izm |Cnm|2 of the bottom pressure variability differences

|ty_due to Bpu_ssmesq t_effects; contour mtervgﬂ&?a ~ Lmm. (in mm equivalent sea surface height) projected onto spher-
Third panel: difference in bottom pressure variability due to quasi* h . fficient To bring th . i
hydrostatic effects; contour interval i)Pa ~ 1mm. Bottom Ical harmonic coethicients,,,,. 10 bring the experiments

panel: difference in bottom pressure variability due to numericd/'t0 the context of the current high precision satellite grav-

noise in the forcing fields; contour intervali§Pa~s 1mm. ity mission GRACE, the expected error of a geoid model that
will be derived from the GRACE gravity data (Balmino et al.
1998) is also drawn as a function of spherical harmonic de-
these tiny perturbations on the variability is of the same ogree. (It is assumed that the bottom pressure measurement
der of magnitude as the Boussinesq effects. This again sugrors, which are unknown at this time, are comparable to
gests, that our model is particularly sensitive in the Southetthe errors of the mean geoid. In this sense, the geoid errors
Ocean, where the flow is geostrophically balanced by larggovide only a rough estimate of the measurement errors.)
density gradients. All differences in bottom pressure variability are larger than
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the geoid errors on the very |arge Sca|es; degree 10 corr " ] eight—pressure coordinate model, nonlinear free surface
sponds to a wavelength of approximately 4000 km, degre —
15 to approximately 2670 km. On shorter scales the geoi
errors dominate. For most coefficients, that is spatial scale _. 2
the differences due to Boussinesq effects are smaller thi
those due to both non-hydrostatic effects and round-off nois
in the forcing fields.

In summary, comparison of solutions obtained using
Boussinesq and non-Boussinesq models shows significe
differences in the time-mean and variance of surface elev:

latitude [°N

0 50 100 150 200 250 300 350
. . . R longitude [°E]
tion and in the variance of bottom pressure. Compariso Height - pressure coordinate model, rigid lid

of the hydrostatic model to the quasi-hydrostatic model indi
cates larger differences than those due to the non-Boussine
approximations in sea-surface height and bottom-pressu
variances though a considerably smaller change in mean s &
surface height. Thus the relative effect of the two approxime g
tions seems comparable. Changing the vertical diffusivity b < -
1%—actually, we know that both vertical viscosity and dif-
fusion can potentially vary by 2—3 orders of magnitude— o
the form of the equation of state, or adding truncation leve -8 50 100 150 200 250 300 350
noise to the forcing leads to equally large changes. longitude [°E]

itu

ati

Fic. 6. Difference of the square root of the sea surface vari-
4. Are the Differences Between Height Coordinate and ~ ance over an averaging period of 1 year for the model with constant

Pressure Coordinate Model Really due to the density. Top panel: with nonlinear free surface; contour interval
Boussinesq Approximations? is1 x 10~®m. Bottom panel: with rigid lid; contour interval is
' 0.02 x 107%m.

After showing that the differences between the Boussi-
nesq and the non-Boussinesq model are generally of the
same order of magnitude as those due to relaxing the hgdvection terms and the horizontal viscosity terms are eval-
drostatic approximation or changing uncertain parametes@ted (strictly along pressure surfaces and along horizontal
slightly, it is still not clear whether the observed differencesurfaces, which form a small angle with the pressure sur-
between the models are really due to the Boussinesq approfdees). Note that in this configuratioﬂ,iﬁ’) = Aif)g%ﬁ,
mation or simply due to the numerical difference introducedxactly.

by the different coordinate systems. These may arise be- Fig.6 illustrates the contributions of the effects due to the
cause in a physically identical fluid the gradient operators agpnlinear free surface. Shown is the difference in sea sur-
along different surfaces (pressure vs. height surfaces), so thate height variability. Because of its barotropic nature the
numerical truncation may lead to different trajectories. Thghodel equilibrates very quickly and the averaging period is
nonlinear free surface causes an additional numerical diffethe 10th year of integration. Although both the height coor-
ence: in the height coordinate model the surface layer hagimate and the pressure coordinate model describe the same
variable thickness, while in the pressure coordinate modelfitjid of constant density, the answers are slightly different
is the bottom layer that can vary in time and space (Campijue to the different truncation errors implied by the differ-
etal. 2003). ent formulation, top panel of Fig.6. The difference between
To test how much of the differences between the heiglpressure and height coordinate model is three orders of mag-
coordinate model and the pressure coordinate model angude smaller than in the full model of Section 3. Replac-
due to the numerical discretization, any dependence on they the nonlinear free surface by a rigid lid, bottom panel of
Boussinesq approximations is removed by replacing theig.6, decreases the difference in sea surface height variabil-
pressure dependent density with a constant in both the heigtyt further by two orders of magnitude (and the differences
coordinate model and the pressure coordinate model. Themean sea surface elevation and bottom pressure variability
system is forced by wind stress only, and there is no buows well, not shown).
ancy flux. Then any pressure level inclination is solely The remaining differences in sea surface height variabil-
barotropic and due to sea surface elevation changes. ity are largely due to the fact, that sea surface elevation
Only two differences remain between the pressure cooin the pressure coordinate model is a diagnostic variable,
dinate and the height coordinate model: changes in layetereas it is prognostic in the height coordinate model. In a
thickness due to the nonlinear free surface (at the bottom lrmrotropic model, sea surface height and bottom pressure are
pressure coordinates and at the top in the height coordinaguivalent. Comparing the sea surface height of the height
model) and the way the horizontal gradients in the nonlineaoordinate model and the bottom pressure anomaly of the
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pressure coordinate model reveals that, after proper scalimyice: the numerical noise level. This conclusion is sup-
they are the same in the case of a rigid lid to working precported by the experiment that shows the differences due to
sion. The differences in horizontal velocities are also smalleound-off noise in the forcing fields. Such differences are as
than10~!4 for the barotropic experiment with rigid lid, and large as those due to Boussinesq effects.

the two models give essentially the same result. Thatis, the McDougall et al. (2002) showed that the steady-state
angles between surfaces of constant height and surfacesggbstrophic Boussinesq equations are equivalent to the non-
constant pressure are so small that the horizontal gradiemgussinesq equations under the same dynamical regime.
do not cause any differences that exceed the noise level. Wﬁerefore' at the coarse resolution used here, we can ex-
can assume that in the case of variable density, the diffgfect only small differences between a Boussinesq and a non-
ences in numerical discretization are also mainly due to tfgoussinesq ocean model, because a good deal of the sim-
nonlinear free surface. Although there may be a larger inyjation should be geostrophically balanced. With increas-
pact of the free surface in the full baroclinic model becaus@g realism of the simulations (increased resolution, higher
of the vertical advection of buoyancy near the surface, theequencies, etc.) that leads to sufficient ageostrophic and
numerical effects due to different coordinate systems are Stﬁl—ne-dependent motion one expects the Boussinesq effects
much smaller than the Boussinesq effects. to become more important. But at the same time, hydro-
static effects will become more prominent as well. Further,
the model solutions of chaotic (eddy-resolving) systems will
be highly sensitive to noise in the initial fields and the bound-

Conventional OGCMs make a number of approximation@ry conditions. Whether the Boussinesq effects will be dis-

that influence their solution, such as the hydrostatic aﬁ_ernible under these circumstances, remains questionable.
proximation and the Boussinesq approximations. We find Still, models that do not make the Boussinesq approxima-
that relaxing the hydrostatic approximation has a larger intilon are recommended over the conventional height coordi-
pact on the variability of a coarse resolution global modetate models when they are not more expensive to integrate.
than do Boussinesq effects. Non-Boussinesq effects leddlis point of view is taken for the puristic reason of aban-
to larger changes in mean sea surface elevation than @@ning an approximation. If, however, there is a consider-
non-hydrostatic effects and this is consistent with switchingble additional effort involved in integrating these mass con-
from conserving volume to conserving mass, as discussedSfrving models, the minor effects of the Boussinesq approx-
Huang and Jin (2002). Note, however, that we have not uséBation do not justify that cost. Instead, efforts to improve
the MITgcm in a fully non-hydrostatic mode. The fully non-the parameterization of unresolved physics such as mixing
hydrostatic model involves an additional algorithmic step t4/ill be more beneficial to OGCM solutions that relaxing the
compute the non-hydrostatic pressure contribution, whidgoussinesq approximations.
is complicated when using a nonlinear free surface. The One of the conclusions of this study is only indirectly re-
changed algorithm represents a further perturbation and witlted to the Boussinesq approximations. In the configura-
surely lead to additional deviations from the solution of théion of this study with mixed boundary conditions for tem-
hydrostatic model. perature and salinity, the OGCM yields robust results on
There is also convincing evidence that the changes duethe large scale. But at the same time, it is so sensitive to
Boussinesq effects are smaller than the errors introduced $jall, in fact, aimost indetectable changes in the parameter-

other approximations and parameterizations generally maations, largely unknown forcing fields, or approximations
by ocean general circulation models. made, that one cannot expect two models that use a different

Greatbatch et al. (2001) showed that the differences bEo0rdinate system to stay on aimost identical trajectories for
tween a Boussinesq model and a non-Boussinesq mod@&\ m_ﬂmte time (of |nte_grat|on). The re§ults prgsented here
are reassuringly on the order of a few percent in the me&9ssibly depend on thIS. detail. It is particularly important to
fields. Here we confirm that the differences between the nof®MPare the model variances while the two models are on a
Boussinesq pressure coordinate model and the Boussingigilar trajectory. Once the models have diverged, there is
height model are small in the time mean. But even the coarit® hope of recovering the results shown.
resolution experiments are sensitive to small differences in When the property of exact mass conservation is required
the dynamics or parameterizations. These small perturb@r @ particular study, non-Boussinesq models must be pre-
tions lead to detectable changes in the computed circulatidg!Ted. However, current Boussinesq models in height coor-

particu|ar|y in the Var|ab|||ty of bottom pressure and sea suﬂinates still have their benefits. For instance, at Eddy resolv-
face height. ing scales, non-hydrostatic effects are believed to be impor-

It is particularly interesting to point out that all resultst@nt: and a non-hydrostatic model is much easier to formulate

shown here were obtained by using the same compiler In, height coordinates than in pressure coordinates. (On this
the same platform. Use of a different compiler or platforn{i©te: the approach by Greatbatch et al. (2001) may allow the
changes the results due to differing numerical floating poifclusion of non-Boussinesg effects into the non-hydrostatic
operations, and gives an additional clue about the order f'Sion of the MITgem and make the comparison of the dif-

magnitude of errors the Boussinesq approximations intré@rent height coordinate models simpler. But we suspect that

5. Discussion and Conclusions
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the Greatbatch et al. approach also introduces artificial dikl. Boussinesq Hydrostatic Ocean Model in Height
ferences due to the different structure of the equations (ne@oordinates

terms) while the height-pressure isomorphic equations have ) L ) _

the same structure.) Also, the representation of atmospheric 1 N€ €quations of motion incoordinates after making the
pressure load in a pressure coordinate model is slightly moRPUSSINesd approximation can be cast as

complicated than in a height coordinate model, because it

involves two moving surfaces. Further, while the represen- Du _ —Vzﬂ —fkxu+F, (A1)
tation of bottom pressure in the pressure coordinate model is Dt po
more natural, the bottom pressure diagnosed from the height op = —gp (A2)
coordinate model appears accurate enough in the light of 0z ’
other approximations made, namely the hydrostatic approx- V. u+ ow -0 (A3)
imation. oz 7

Constraining pressure coordinate OGCMs with bottom Do =Q, (A4)
pressure data is more straightforward in the same way that Dt
height coordinate models are more easily constrained by sea DS _ Qs. (A5)
surface elevation data. Although we found high sensitivi- Dt

ties to dynamical formulation under mixed boundary condi- . . . .
. . e In these equationsy is the horizontal velocity and the ver-
tions, constrained models may show less sensitivity, as was . . . . )

ICal velocity,p is the full hydrostatic pressurg, is the fric-

the case with restoring boundary conditions. If this is th%onal force.() andQ represent the source terms of poten-

case then concerns about assimilation of bottom preSSL{Irgl temperature and salinitys, for example, atmospheric

even in height coordinate OGCMs are unwarrante_d, partuﬁ- xes of heat and freshwater, respectively. The subscript
ularly since we have demonstrated that the evolution of ne S . :
V. indicates that the gradient is taken along surfaces of

ocean mass can be quite accurately accounted for in SUCIannstantz; the substantial time-derivative (rate-of-change)

model. .
operator is
Acknowledgments.The authors thank Carl Wunsch and D o o
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tiative. p=0, w=—_-— (P—E) atz=n, (A7)
w=-u-V,H atz = —H(z,y). (A8)

(P — E) is the freshwater flux into the ocean (precipitation
minus evaporation).

A prognostic equation for the sea surface elevatjas
obtained by integrating (A3) and applying (A7) and (A8):

APPENDIX

Vz-</n udz)Jr%(PE). (A9)

—-H

Linearizing this equation is equivalent to neglecting a term
V. - (un) in the surface boundary condition far (Roullet

and Madec 2000).
A. Isomorphic Pressure and Height Coordinate

Formulation of the Primitive Equations ) ) )
A2. Non-Boussinesq Hydrostatic Ocean Model in Pressure

Coordinates

To familiarize the reader with an ocean model in pres- The equations of motion written in terms of pressure as
sure coordinates, the symmetry between the pressure and émeindependent variable are well-known and much used in
height model formulations as pointed out by de Szoeke ardynamical meteorology (e.g., Haltiner and Williams 1980).
Samelson (2002) and Marshall et al. (2003) is reviewed. Using an isomorphism (Marshall et al. 2003), the MITgcm
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implements these equations in pressure coordinates: which is the analogue to equation (A9). Equation (A20) can
Du be viewed as a statement of mass conservation for the entire
o —V,® — fk x u+F, (A10) water column.
0P o .
. (Al1l) A3. Symmetry of the Primitive Equations and the
Isomorphism in the MITgcm
Ow
Vpy -u+ — =0, (A12) . . . .
op The two sets of equations in the preceding two sections
Do have a strikingly similar form. By making the following sub-
Dt Q, (A13)  stitutions, they can be transformed into each other:
DS
_— = . e p7
D = Ws (A14)
W — W,
Here,® = gz is the geopotential an¥,, is the gradient D/py s @ (A21)
along pressure surfaces; the substantial time-derivative (rate- ’
of-change) operator is gp — .
D P P In the model code of the MITgcm, these variables are re-
DL <8_> +u-V,+w— placed by general variables. A run time switch then selects
t t)y p (A15) the meaning they have in the present experiment. This makes
(9 tu-V. 4 wg it possible to use the identical dynamical kernel for simula-
—\ ot ; # 0z’ tions in both pressure and height coordinates (Marshall et al.
; ) 2003).
}?’::Jebthe pseudo velocity, the pressure tendency, is de- Exploiting this symmetry, both models can be summa-
y Dp rized in terms of more generalcoordinates:
e L . — =—-V,¢— fk F, A22
The specific volume is given by the equation of state Dt ¢~ flexus (A22)
9¢
p ' =a=a(S6,p). (A17) o b, (A23)
o
At this point, it is interesting to point out that the V,-u+ a—r =0, (A24)
form of the continuity equation (A12), albeit resembling A
) - i . Do
the incompressibility statement of Boussinesq models in z- T Q, (A25)
coordinates, is a consequence of the hydrostatic assump- DS
tion (A11) and does not require the neglect of dilatation D = Qs. (A26)

p~tDp/Dt (de Szoeke and Samelson 2002). Hence, a non-
Boussinesq model with continuity equation (A12) conservekhe general coordinate replacesp andz, the vertical ve-
mass in contrast to a Boussinesq model, which conserv@§itiesw andw becomei = Dr/Dt, the general poten-
volume. tial ¢ takes the place o® andp/py, and the generalized

As before, we assume that the pressure is constant at ff#PYancyb is substituted for the specific volumea and
upper surface (taken to be zero). Any freshwater flux into tHg'® Scaled density-gp/po. The substantial time-derivative
ocean (precipitation minus evaporation) appears as a bourtfté-0f-change) operator in this formulation is

ary condition forw (see AppendixB). The flux is scaled by D b )
the gravitational acceleratignand the density of freshwater Dt (g) +u-V,+ "o (A27)
prw = 999.8kgm~3: "
where now the horizontal gradients are taken along the sur-

w=gprw(P—E) atp=0. (A18) faces of constant

To see the symmetry in the kinematic boundary condi-
tions it is convenient to distinguish between a (moving) free
surface, which is at the top in height coordinates and at the
ocean floor in pressure coordinates, and a fixed boundary
surface, which conversely is at the top for pressure coordi-
nates and at the bottom for height coordinates. The boundary
onditions at the free and at the fixed boundary surfaces are

At the ocean bottomy, = — H («, y), the boundary condition
is expressed in terms of bottom presspyér, y,t) as

w=——+u-Vyp, atp=pp. (A19)

Together with the continuity equation (A12), the boundar
conditions yield a prognostic equation for the bottom pres-

Drg
sure = ﬁ atr = r,, (A28)
Py a
V- ( / udp) - % =gprw(P — E),  (A20) i =—u-V,Riwd atr=—Rexa(z,y).  (A29)
0
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wherer = r, is the free surface:, is the bottom pressure 77 @nd—2; are the respective heights of the surface pressure
py in pressure coordinates and the sea surface elevaiion @nd the base of the layer. Multiplying through withusing

height coordinatesr = — Rgyeq is the topography of the L€ibniz's rule, and using the boundary condition (A7) tar
fixed surface, that ig) in pressure coordinates and depgth W€ get
in height coordinates. So with the additional substitutions o n
for the boundary conditions 0 :EAp +V- (gpu) dz (B3)
an
— 9P, — 9P Vi
Ts: M Dp, (A30)
(=)
Rfixea: H+<—0 +9p—g,— t9pu- Vp(=21)
D
+ gpFZ —gprw (P — E) — (gpw)

the symmetry is complete, except for freshwater flux at the

ocean surface. The fluxy(P — E) has to be added to the 7 ; andV, z, are gradients along surfaces of constant pres-

boundary condition (A28) or (A29), whichever is the one a§yre. With the layer-averaged velociiyand observing that
the ocean-atmosphere interface. The scale factamverts A is constant@Ap/dt = 0)

the freshwater flux into pressure or height units, that is, mass

flux (v = gprw) or volume flux ¢ = —1), respectively. Fi- 0=V - (Apu) — gprw (P — E) (B4)
nally, the prognostic equation for the free surfagés again 9z
the same for both coordinate systems: - {gp (w T u- Vp21) }
or
v ( / udz) Lo poE). (A3 1
"\ Ri ot . 0=V u+ Ap <_9PFW(P - E)tw ) ,  (BS)
because
B. Natural Boundary Conditions in Pressure Dz 0z v 0z (B6)
Coordinates YEDr T e T ”Z+w8_p'

) ~ Equation (B5) is the full continuity equation in pressure co-
At the surface, a freshwater flux not only dilutes the saling,qinates for the top layer. Fakp — 0, one recovers the

ity, but adds mass to the water column. To represent this flijfgrerential form, and the implied boundary condition for
through the material surface (interface between atmospheyg-omes

and ocean), the boundary condition fom pressure coordi-
nates (onw in height coordinates) has to be modified. With- w=gprw(P — E) atp = 0. (B7)
out a freshwater fluxy = 0 at the surface. Including the flux

leads to the boundary condition (A18), which may appear in- C. Finite Volume Discretization of the Hydrostatic
consistent at first, because the surface 0 is a coordinate Equation

plane. Integrating the non-Boussinesq, hydrostatic continu-
ity equation in height coordinates farover the top pressure
layer with thicknesg\p yields

Let k£ be the index of the grid point at the center between
the vertical cell interfacels— £ andk+ 1. If the distance be-
tween these vertical cell interfaces is call&d,, a finite dif-
ference discretization of the hydrostatic equation (A23) that
yields the potentiap at the center between two grid planes

0=/0 {—erVz(/MH%(W)} dp (BL) IS

Ap

Arg 4+ Arpp br + b1
. . 1
> > (C1)

This formulation has been shown to conserve energy (Ad-

croft et al. 1997). However, an arbitrary choice about dis-
or cretization at the top and bottom boundaries leaves the def-
inition of bottom pressure (surface geopotential) somewhat

ambiguous. This ambiguity can be avoided by using the fi-

n(p=0) B nite volume discretization where the hydrostatic pressure is

0= S v =z dz. (B2)

= o " =(pu) + 92 (pw) ¢ dz. (B2) integrated over half levels as follows:

—z1(p=Ap)
Pyt = Q1 + Aryby, (C2)

Gk+1 = Ok + (
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