1 Overview

e Most conventional gen-
eral circulation models
(GCMs) make the Boussi-
nesq approximation, con-
serving volume instead of
mass.

Is the Boussinesq ap-
proximation justified or

even necessary? How do
the errors incurred com-
pare with those due to
the hydrostatic approxi-
mation or errors associ-
ated with uncertainties in
the physical parameteriza-
tions? See, for example,
McDougall et al. (2002).

We developed a non-
Boussinesg GCM by
virtue of the Isomor-
phism of the Boussinesq
equations Iin  height
coordinates and non-
Boussinesqg equations In
pressure coordinates (se¢
Box 2) in the MIT GCM

(Marshall et al., 1997a).

We compare solutions
of non-Boussinesq,
Boussinesq, and quasi-
hydrostatic models after
1000 years of integration
(Boxes 3, 4, and 5).
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2 The Isomorphism in the MITgcm
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(de Szoeke and Samelson, 2002, Marshall et al., Climate modeling exp

Ing atmosphere-ocean fluid iIsomorphisms, in preparation)

4 Comparison of Bottom Pressure Variability
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3 Boussinesq Effects on the General C

Hydrostatic, Boussinesq model
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Figure 1: Top left. sea surface height variability (square root of the variance over 100years in centimeters) of the hydr@st

Boussinesqg model. Top right: difference of sea surface height variability between the Boussinesqg and the non-BoUes
model. Bottom left. change of sea surface height variability when some non-hydrostatic terms in the horizontal mo
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equations and the hydrostatic equation have been included. In the terminology of Marshall et al. (1997b), this is afq
hydrostatic model. Bottom right: change in sea surface height variability due to the use of a different implementationjof

equation of state; Jackett and McDougall (1995) vs. McDougall et al. (2@8arly, the different equation of state change

the sea surface height variability as much as relaxing either

the Boussinesq or the hydrostatic approximation.

5 Relevance to Sea Level Change and Gravity Missions
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Figure 2: Top left: Bottom pressure variability (square root of the bottom pressure variance of 100 years of integration) >ffi C€€d the estimated errors of a geoig o4

hydrostatic, Boussinesq modelinPascal: 1mm. The model exhibits strong variability in the Pacific sector of the South¢ rn
Ocean and in shallow regions. Top right (Boussinesg vs. non-Boussinesq): difference of bottom pressure variability betw 2e
height coordinate model and the pressure coordinate model. Bottom left (hydrostatic vs. quasi-hydrostatic): difference | et
the hydrostatic, Boussinesq model and a model where some of the non-hydrostatic terms in the horizontal momentum e |u
and the hydrostatic equation have been included. In the terminology of Marshall et al. (1997b), this is a quasi-hydrostatic m
Bottom right: difference in bottom pressure variance after adding random noise of amplitade 10~1Y (changing the last

digits of a double precision value) to the forcing fiel@early, the changes due to the different model formulations are bar ly 0

decernable from the effects of numerical round-off.

6 Conclusions

concerned, the Boussinesq approximation is only one of many approxi
tions, and it is certainly not the most severe one.

e Conventional GCMs make a number of approximations that influence their
solution, such as the hydrostatic approximation and the Boussinesq appro¥o Caveats:

Imations. We find that relaxing the hydrostatic approximation has a IarggrBottom oressure in pressure coordinates is a prognostic variable, in he
Impact on a coarse resolution global model than do Boussinesq effects.

e Small changes in other approximations, such as the exact form of the equ&ariability, thus biasing the results.
tion of state, in physical parameterisations, and numerical noise lead t
changes in the circulation, that are at least of the same order of magnitud(b
as those due to Boussinesq effects.

model, ocean models should be non-Boussinesqg. But as far as accuracy Is

coordinates it iIs diagnostic. Diagnostic variables tend to exhibit gree

etails of the comparison are incomplete. For example, the vertical
c,eosity and diffusivity in both models are slightly different for technica

_ N _ . . ~reasons. This may be the largest contribution to the current differenge
e Because there Is no additional cost involved in running a pressure coordinalgetween the Boussinesq and non-Boussinesq model.

derived from GRACE (Balmino et al., &
1998) at large scales. But Boussines%O-3
effects (NB) seem to be as importans
as the hydrostatic approximation (QH) " 02
small differences in the equation of
state (EOS), and numerical noise in th
forcing fields (NOISE).
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