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1 Overview

•Most conventional gen-
eral circulation models
(GCMs) make the Boussi-
nesq approximation, con-
serving volume instead of
mass.

• Is the Boussinesq ap-
proximation justified or
even necessary? How do
the errors incurred com-
pare with those due to
the hydrostatic approxi-
mation or errors associ-
ated with uncertainties in
the physical parameteriza-
tions? See, for example,
McDougall et al. (2002).

•We developed a non-
Boussinesq GCM by
virtue of the isomor-
phism of the Boussinesq
equations in height
coordinates and non-
Boussinesq equations in
pressure coordinates (see
Box 2) in the MIT GCM
(Marshall et al., 1997a).

•We compare solutions
of non-Boussinesq,
Boussinesq, and quasi-
hydrostatic models after
1000 years of integration
(Boxes 3, 4, and 5).

2 The Isomorphism in the MITgcm

height coordinates ←→ pressure coordinates
(Boussinesq eqs.) (non-Boussinesq eqs.)

dynamical equations
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(de Szoeke and Samelson, 2002, Marshall et al., Climate modeling exploit-
ing atmosphere-ocean fluid isomorphisms, in preparation)

3 Boussinesq Effects on the General Circulation: SSH Variability
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Figure 1: Top left: sea surface height variability (square root of the variance over 100years in centimeters) of the hydrostatic,
Boussinesq model. Top right: difference of sea surface height variability between the Boussinesq and the non-Boussinesq
model. Bottom left: change of sea surface height variability when some non-hydrostatic terms in the horizontal momentum
equations and the hydrostatic equation have been included. In the terminology of Marshall et al. (1997b), this is a quasi-
hydrostatic model. Bottom right: change in sea surface height variability due to the use of a different implementation of the
equation of state; Jackett and McDougall (1995) vs. McDougall et al. (2003).Clearly, the different equation of state changes
the sea surface height variability as much as relaxing either the Boussinesq or the hydrostatic approximation.

4 Comparison of Bottom Pressure Variability
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Figure 2: Top left: Bottom pressure variability (square root of the bottom pressure variance of 100 years of integration) of the
hydrostatic, Boussinesq model in10Pascal≈ 1mm. The model exhibits strong variability in the Pacific sector of the Southern
Ocean and in shallow regions. Top right (Boussinesq vs. non-Boussinesq): difference of bottom pressure variability between the
height coordinate model and the pressure coordinate model. Bottom left (hydrostatic vs. quasi-hydrostatic): difference between
the hydrostatic, Boussinesq model and a model where some of the non-hydrostatic terms in the horizontal momentum equations
and the hydrostatic equation have been included. In the terminology of Marshall et al. (1997b), this is a quasi-hydrostatic model.
Bottom right: difference in bottom pressure variance after adding random noise of amplitude2.22 × 10−16 (changing the last
digits of a double precision value) to the forcing fields.Clearly, the changes due to the different model formulations are barely
decernable from the effects of numerical round-off.

5 Relevance to Sea Level Change and Gravity Missions
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Figure 3: Mass drift of the height co-
ordinate model and volume drift of the
pressure coordinate model, scaled to
units of centimeters. The Boussinesq
models are volume but not mass con-
serving and therefore the global mean
bottom pressure drifts in time. The
non-Boussinesq model in pressure co-
ordinates is mass conserving and re-
covers a global volume drift caused by
steric effects. Clearly, the mass drift
of the Boussinesq model can be trans-
formed into a volume drift that is re-
markably similar to that of the non-
Boussinesq model.

Figure 4: The difference in bottom
pressure variability as a function of
scale. Shown are the per-degree vari-

ances
√∑

m |cnm|2 of the spherical
harmonic coefficientscnm. All approx-
imations/errors give rise to differences
in bottom pressure variability that ex-
ceed the estimated errors of a geoid
derived from GRACE (Balmino et al.,
1998) at large scales. But Boussinesq
effects (NB) seem to be as important
as the hydrostatic approximation (QH),
small differences in the equation of
state (EOS), and numerical noise in the
forcing fields (NOISE).
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6 Conclusions
•Conventional GCMs make a number of approximations that influence their

solution, such as the hydrostatic approximation and the Boussinesq approx-
imations. We find that relaxing the hydrostatic approximation has a larger
impact on a coarse resolution global model than do Boussinesq effects.

• Small changes in other approximations, such as the exact form of the equa-
tion of state, in physical parameterisations, and numerical noise lead to
changes in the circulation, that are at least of the same order of magnitude
as those due to Boussinesq effects.

• Because there is no additional cost involved in running a pressure coordinate
model, ocean models should be non-Boussinesq. But as far as accuracy is

concerned, the Boussinesq approximation is only one of many approxima-
tions, and it is certainly not the most severe one.

• Two Caveats:

– Bottom pressure in pressure coordinates is a prognostic variable, in height
coordinates it is diagnostic. Diagnostic variables tend to exhibit greater
variability, thus biasing the results.

– Details of the comparison are incomplete. For example, the vertical vis-
cosity and diffusivity in both models are slightly different for technical
reasons. This may be the largest contribution to the current differences
between the Boussinesq and non-Boussinesq model.
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