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Abstract Adaptational physiology
studies how animals cope with their
environment, even if this
environment is subject to permanent
fluctuations such as tidal or seasonal
variations. Aquatic organisms are
generally more prone to be exposed
to osmotic, hypoxic and temperature
challenges than terrestrial animals.
Some of these challenges are more
restraining in an aquatic
environment. To date, very few
studies have used in vivo magnetic
resonance imaging (MRI) to uncover
the physiological mechanisms that
respond to or compensate for these
challenges. This paper provides an
overview of what has been
accomplished thus far by using MRI
to study the environmental
physiology of fish. It introduces the
reader to the use of small teleost fish
such as carp (12 cm, 60 g) and
eelpout (25 cm, 50 g) as models for
such research and to provide new
perceptions into the applicability of
MRI tools based on new insights
into the nature of MRI contrast.
Representative MRI studies have
made contributions to the
identification of the lack of cell
volume repair in stenohaline fish
during osmotic stress. They have
studied the underlying physiological
mechanisms of brain anoxia
tolerance in fish and have qualified

the role of the cardio-circulatory
system in setting thermal tolerance
windows of fish.
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Introduction

Animal life is found in a wide range of environmental con-
ditions that range from polar oceans, frozen lakes, flowing
rivers to cold and hot deserts with minimal availability
of water. Comparative and environmental physiology ad-
dresses how animals cope with the problems posed and ex-
ploit the opportunities offered by their particular habitat
[1]. Study of organismal functions under environmental
extremes and of the exceptional physiological solutions
found is relevant not only from the point of view of the
animal enthusiast, who wants to understand how ani-
mals work; the comparative approach also asks how these
functions were shaped during evolution and how they
are limited in capacity and with respect to environmental
influences. How did the “norm” of physiological functions
evolve to support the generalist in normal conditions?
How were “normal” functions modified to solve partic-
ular challenges in environmental extremes? Usually such
special solutions go hand in hand with a specialization on
specific habitats. Such specialization implies limited adap-
tational capacity once environmental conditions change.
They therefore play a key role in understanding the effects
of anthropogenic influences on ecosystems. For example,
the physiological mechanisms setting thermal tolerance
and defining thermal sensitivity have recently come into
focus due to rising interest in the effects of climate change
on organisms and ecosystems. Such information will not
only support an understanding of how temperature and
its oscillations shape biogeography and species survival [2,
3] but is also relevant to understand how climate variabil-
ity throughout earth history has influenced the directions
of animal evolution [4].

Last but not least, comparative and environmental
physiology also leads to an understanding of the phylo-
genetic background of physiological functions found in
the human body. It allows to put into perspective the func-
tional limits and constraints of these functions, which may
become important under pathological conditions. Solu-
tions and mechanisms of stress and survival found in
animals in an environmental context may even support
a mechanistic understanding of normal and pathological
function in a medical context.

Study of environmental adaptation has always de-
pended on the availability of suitable animal models as
well as of a suitable spectrum of methods. Recent insight
emphasizes that it is not possible to comprehend fully
the scope and limits of adaptation, based exclusively on
molecular and biochemical techniques (e.g. [5]) or exclu-
sively on ecological approaches. Driving forces for adap-
tation operate at ecosystem levels, whereas the scopes
and limits of adaptation originate from an integration of
molecular functions into cellular, tissue and whole-organ-
ism functioning (e.g. [3,4]). An integrative approach is
inherent to environmental physiology, which bridges the

various fields and relies on the application of techniques
that allow integration of the various levels of molecular to
organismal functioning.

Such a spectrum of techniques is offered by nu-
clear magnetic resonance spectroscopy and imaging tools
(MRS and MRI) which have more recently become avail-
able for the study of environmental adaptation. These
techniques are suitable for the combination of inva-
sive studies at molecular to organismic levels with the
capability to monitor physiological functioning non-inva-
sively in the intact organism. More recently, MRI tech-
niques were modified such that suitable animal models, for
example from aquatic habitats, have been studied online
under simulated environmental conditions ([6–10]: fish;
[11]: molluscs; [12–14]: crustaceans).

The present review provides an overview of what has
been accomplished thus far using MRI to study the envi-
ronmental physiology of teleost fish (bone fish, as opposed
to cartilage fish such as sharks). It aims to introduce the
reader to the use of teleost fish as animal models to under-
stand the underlying mechanisms of general physiological
processes and to validate imaging techniques by providing
new insights into the nature of the MRI contrast.

Special precautions when performing in vivo MRI on fish

An RF antenna mounted in an aquatic environment

As a consequence of the MRI method being particu-
larly sensitive to the detection of water and water motion,
studying aquatic organisms requires several precautions.
Fish need a continuous flow of aerated water to irrigate
their gills during the MRI measurements. This requires
first of all a water-tight animal bed in the shape of a pipe
ensuring that no water comes into contact with the gra-
dient insert. Even more stringent is the development of a
customized animal holding system with the required RF
antenna mounted in such a way that it does not come into
contact with the water and exclusively covers the regions
under study, excluding irrigated gill areas or other areas
exposed to water flow, to avoid artefacts in the image due to
water motion. With the gills being in the immediate vicin-
ity of the brain, this problem becomes worse when per-
forming brain studies. One solution is to use a Helmholtz
(transmit/receive) radio frequency (RF) antenna mounted
like a headphone covering the upper part of the head of
the fish, including the brain but excluding the irrigated
gill area. The RF antenna is mounted in a water-free com-
partment included in the fish restraining chamber (Fig. 1).
Alternatively this antenna can be combined with – or be
replaced by – a circular surface RF antenna mounted on
top of the fish head.

When investigating body parts other than the head,
and in an attempt to avoid undesired flow artefacts from



Fig. 1 a Animal holding device containing an anaesthetized carp.
b Dedicated RF headphone antenna. c Animal holding device with
RF antenna mounted so as to allow MRI of the head of the fish
while not being in contact with the flowing water. A constant irri-
gation of the gills is ensured as outlined in the text. This setup is
inserted in the bore of the magnet of the MR instrument. d–f provide
high-resolution MRIs obtained on anaesthetized common carp with
the setup shown in (c). With a spatial resolution of 156 micron, d and
e provide a midsagittal image through the head of the fish showing the
brain and the spinal cord. The hyperintense tissue surrounding the
brain is the meninx, a jelly-like mass, filling the cranial cavity. e and
d are identical images but e illustrates, superimposed, the horizon-
tal MRI sectioning plane with consecutive slices of 1-mm thickness
(From 1 to 10) shown in (f). (f1–10) represent an entire set of con-
secutive horizontal MRIs obtained from bottom to top of the carp
brain showing the following structures: (h) hypothalamus, (ot) optic
tectum, (vl) vagal lobe, (sc) spinal cord, (t) telencephalon, (cb) cer-
ebellum. Similar horizontal MRI slices were obtained with T2- and
diffusion-weighted settings and provided information on the water
balance in different brain regions (adapted from [8])

the surrounding water, the anaesthetized fish can be immo-
bilized according to Van den Thillart et al. [15]. An air-
filled bag is used to cover the measured body region,
thereby avoiding water flow in the region covered by the
RF coil (Fig. 2). The fish is inserted into a restraining tube
with head and tail regions of the fish freely exposed to the
environmental water and with a tube for water inflow in its
mouth. Figure 3 illustrates the MR imaged region using
this setup, which is the abdomen of the fish.

Studying marine fish: salt water as an extra
challenge for MRI

Using seawater has immense implications for the use of
both MR hardware and sequences. The salinity of sea

water decreases the quality factor (Q) of nuclear magnetic
resonance (NMR) coils [6,16]. Tuning and matching
capacitors must be readjusted to minimize signal reflec-
tion and frequency shifts. Sea water conductivity may
induce reflections of more than 50% and frequency shifts
of up to 3 MHz due to dielectric losses, depending on the
resonance frequency and the amount of sea water inside
the probe [10]. Consequently, RF-pulse length and power
both decrease with increasing salinity (up to 11 dB) [10].
Specially adapted NMR probes for high conductivity sam-
ples and RF power (up to 2 kW) can reduce these negative
effects of salt water. The combination of both a cylindri-
cal resonator for a homogeneous excitation profile and a
detection surface coil for improved spatial resolution oper-
ating in crossed coil mode enhances the signal-to-noise
ratio by further reducing dielectric losses. Additionally,
excitation pulse shapes, gradients and pulse sequences
can be customized. For instance, gradient echo sequences
using low flip angles will reduce the required RF power sig-
nificantly in comparison to conventional spin echo MRI.

The impact of salinity on MRI acquisitions is also
illustrated in the study of Van der Linden et al. [7] since
twice the number of acquisition averages were acquired
for fish exposed to sea water as compared to the control
fish that remained in fresh water.

Anaesthetized, conscious restrained and even
unrestrained fish

Fish can be anaesthetized by adding 0.011% MS 222 (ethyl
meta aminobenzoate metanesulfonic acid salt 98% Sigma)
to pH-controlled water. The main reason for anaesthesia



Fig. 2 a Animal chamber and water flow-through system developed
to image the belly of restrained fish. Once the anaesthetized fish
is positioned between the airbags, the flow-through system can be
closed and the RF antenna (b) positioned such that it covers the belly
region of the fish. From now on the fish receives fresh water without
anaesthetics through a tube fixed in the mouth and remains unan-
aesthetized but restrained in the closed flow-through system during
the entire MRI experiment. Environmental temperature, oxygen, pH
and salinity of the water can be varied and controlled as outlined in
the text. c Macroscopic image of a frozen carp, cut midsagittally. The
insert shows the area covered by the RF antenna and d and e repre-
sent the corresponding T2-weighted MRI obtained in vivo, revealing
the following structures: (1) the swim bladder; (2) the intestine; (3)
the vertebral column; (4) the liver; and (5) the muscle (adapted from
[7])

is to immobilize the animals or anaesthetize them if the
experiment is considered too stressful. To evaluate the im-
pact of anaesthesia during an anoxic stress, non-anaes-
thetized but curarized fish were investigated. The MRI

outcome was similar, but the fish did not recover, which
prevented repeated measurements of the same specimen.
This finding was in contrast to the effect of MS 222 which
was applied in such a low dose that the animals could eas-
ily be kept anaesthetized for up to 6 h, the duration of an
entire experiment, and still recover uneventfully from the
experimental treatment [8].

Subsequent to anaesthesia induction, the fish can be
mounted in an experimental system, restrained if needed –
as outlined above – and inserted in the bore of the magnet
of the MR instrument. Aerated water with anaesthetics
can then be pumped (500 ml/min) from an aquarium to
a tube fixed in the mouth of the fish. If the fish is prop-
erly immobilized by an air-filled bag – as outlined above
– it can remain immobilized even when switched to water
without anaesthetics.

If bottom-living, rather inactive fish are used [9],
anaesthesia and restraining can be successfully avoided
and analyses carried out under more natural conditions.



Fig. 3 a Flow-through chamber for in vivo MRI measurements of
non-anaesthetized and unrestrained fish (max. animal length 40 cm),
containing a specimen of the Antarctic eelpout Pachycara brachy-
cephalum. Variable slide barriers were used to fit the size of the fish to
the chamber and the position of the surface coil (in red). The posture
of the animal is typical for eelpout, which tend to hide in narrow
tubes. b MRI of the eelpout under control conditions (T = 0◦C): the
middle image is an anatomical coronal MRI of the fish positioned
as illustrated in (a). On the left, the axial flow-weighted MRI shows:
(1) the aorta dorsalis and (2) vena cava posterior as bright spots, and
additionally (3) the stomach, (4) the dorsal muscle, (5) the spine and
(6) the tail. On the right, the T∗

2-weighted MRI displaying the tissue
oxygenation shows: (1) the dorsal white muscle, (2) the spine, (3) the
blood vessels, (4) the stomach, (5) the liver and (6) the tail (adapted
from [9])

Although these fish had the opportunity, they did not
attempt to move during MRI acquisitions. Two variable
slide bars at both ends of the animal chamber secured
an optimal position of the animal relative to the RF sur-
face coil. The unrestrained fish was placed into the cham-
ber without the need for anaesthesia during experimental
periods of more than a week (Fig. 3). Animals showed
only mild signs of stress due to handling, indicated by
a transient reduction of phosphocreatine or increase of
inorganic phosphate levels in white muscle as derived from
in vivo 31P-NMR spectroscopy [9,17,18]. Moreover, most

sessile fish species, including those from polar areas, have
a very low metabolic rate. The fact that non-feeding for
periods of up to several weeks does not push these fish into
starvation makes them excellent animals for a long-term
stay in the magnet.

Benefits of performing in vivo MRI on teleost fish

MRI sequences, contrast and signal-to-noise ratio

Blackband and Stoskov [6] demonstrated applicability of
MR imaging and localized spectroscopy to aquatic as well
as marine organisms with classic MRI and MRS methods.
Within a suitable aquatic life-support system conventional
spin echo and inversion recovery sequences as well as
the STEAM technique for localized spectroscopy yielded
high-resolution data [6]. Technological possibilities have
advanced since then such that, recently, even fast gradient
echo (FLASH and Snapshot Flash) MRI and fast spin
echo MRI (RARE) were applied to marine teleost fish
[10]. Unwanted signals from surrounding water were ex-
cluded by taking into account the flow direction of the
surrounding water relative to the phase gradient. Conse-
quently, no residual water was visible in RARE images



and tissue contrast was increased [10]. Moreover, FLASH
and RARE sequences are very sensitive to susceptibility
changes and good field homogeneity is most important for
T∗

2-weighted MRI or blood oxygenation level dependent
(BOLD) imaging. In contrast to classic MRI studies on
rodents, fish without swim bladders located in a cylindri-
cal animal chamber filled completely with water can eas-
ily be used for T∗

2 -weighted MRI studies, using automated
shimming [9,13]. This setup supported localized 1H NMR
spectroscopy using a PRESS sequence with typical line
widths of around 10 Hz and revealed, for instance, differ-
ent spectra between adult and embryos in viviparous fish
(eggs hatch in the mother which results in ‘giving birth’
instead of “laying eggs”) [10]. Since aquatic organisms
and most fish have low metabolic rates (see above) cardiac
imaging without ECG triggering is possible with standard
MRI sequences [6,13]. Taking the special prerequisites of
the surrounding water into account, any MR imaging and
spectroscopy application can be applied to teleost fish in
the same way as in mammalian animal models.

Physiological monitoring in fish: the similarity
with a perfused organ

By positioning the fish in the bore of the magnet whilst
receiving water through a fixed mouth tube from a res-
ervoir outside the magnet, the animal is comparable to
a “perfused organ”. Since the fish gills represent 70% of
the organism’s exchange surface with the environment,
and since gill epithelia are responsible for gas exchange,
changing gas partial pressures in the water immediately
change these parameters in the blood. Moreover, fish
are ectotherms, with body temperatures close to those
of the environment. Changing water temperature will
immediately change the temperature of blood and, as a
consequence, of the entire body. This “perfused fish” setup
allows monitoring of temperature and gas tension of the
environmental water to substitute for monitoring body
temperature and (as a first approximation) for monitor-
ing blood gasses. Water oxygen concentration and tem-
perature are recorded online with an OXY 325-B probe,
and pH with a PHM 93 probe (Radiometer Copenhagen;
WTW). The probes are connected to a PC with Lab Win-
dows software and included in the water circuit as close as
possible to the mouth inlet to enable rapid registration of
experimentally induced changes. The probes’ position is
just outside the bore of the magnet (40 cm away from the
fish mouth) since it remained unaffected by the magnetic
field strength. For temperature incubation experiments,
fluoroptic temperature sensors (Luxtron 504, Polytechnic,
Germany) were installed directly in the animal chamber
and in the reservoir tank. Temperature was recorded con-
tinuously using a PowerLab system and stored onto a PC
with Chart software (ADInstruments, Germany).

Teleost fish as models to study response
to environmental change

As outlined in the introduction, the objective of adap-
tational physiology is to study how animals cope with
the environment they live in, even if this environment
changes permanently as during tidal or seasonal varia-
tions. Aquatic organisms are, in some cases, exposed to
larger environmental changes than terrestrial animals. In-
deed, except for desert animals, terrestrial animals are less
frequently exposed to osmotic challenges and to a lesser
extent to hypoxia (since air is a much richer source of oxy-
gen). Furthermore, although temperature fluctuations are
smaller, water breathers may face more demanding chal-
lenges since oxygen content is lower and warming impairs
both water oxygen availability and utilization. Oxygen
limitations were recently discussed to represent the first
line of thermal limitation as a unifying principle in ani-
mals [2], with special features in fish [19].

Since fish are ectotherms and display lower metabolic
rates and higher resistance to conditions like hypoxia or
anoxia this allows for a broader range of environmental
changes to be sustained and assessed on longer time scales
than in euthermic mammals. Moreover, changing environ-
mental conditions such as between normoxia and hyper-
oxia, anoxia or hypoxia can easily be created by equilibrat-
ing the water in the reservoir tank with the appropriate gas
mixture using a gas-mixing pump (Wösthoff, Germany).
Temperature changes can be accomplished by means of
cryostats or heaters in the reservoir tank. To establish that
the fish experiences, while in the magnet, rapid transitions
from anoxia to normoxia, cold to warm, or salt to fresh
water and vice versa, it suffices to set up two aquaria with
different experimental conditions and a three-way valve
close to the fish mouth, allowing a rapid switch between
the two.

Physiological MRI studies in fish: examples

Environmental changes in an aquatic environment, like
those in temperature, gas tensions or osmolarity, can be
acute or chronical, for example in intertidal zones, where
fish are swimming up or downstream, or during sea-
sonal or diurnal fluctuations. Examples outlined below
will illustrate how in vivo MRI can be an excellent tool to
provide insights into how changing environmental param-
eters affects the physiology of fish.

Fish brain response to acute anoxia

While the mammalian brain is irreversibly damaged after
a few minutes of anoxia, some vertebrates such as the
crucian carp (Carassius carassius), a close relative of
the goldfish, survive for 1 or 2 days under anoxia at



room temperature. These fish are able to maintain brain
adenosine triphosphate (ATP) levels during anoxia by
combining an increased rate of anaerobic (glycolytic) ATP
production with a depressed rate of energy use [20]. Its
anoxia-intolerant relative, the common carp (Cyprinus
carpio), can only survive for 2 h under anoxia at room
temperature during which time a continuous fall in brain
ATP levels is observed [21,22]. As a consequence, brain
swelling and edema as well as irreversible brain damage
may occur in this species.

For the respective analyses, both fish species (n =
5) were submitted to 2 h of anoxia and subsequent
normoxic recovery while monitoring cell swelling events
with T2- and diffusion-weighted MRI as usually car-
ried out in clinical and experimental stroke research (e.g.
[23–27]. While in the magnet, anaesthetized and restrained
fish were submitted to a period of normoxia (the water
was bubbled with air to maintain 100% oxygen satura-
tion = 9 mg O2/ml), 2 h of anoxia (the water was bubbled
with nitrogen) and allowed to recover under normoxia for
100 min. MR Imaging was applied to fish with the head
mounted in a custom-made RF headphone antenna of
40-mm diameter (Fig. 2). The entire setup was inserted
in the bore of a horizontal 7-T magnet of an SMIS MRI
system (UK). Consecutively, T∗

2-weighted gradient echo
(GE) images (TE/TR = 12 ms/500 ms, acquisition matrix
128 × 128), different T2-weighted spin echo (SE) images
(TE/TR = 18/2000, 34/2000, 50/2000) and different diffu-
sion-weighted (DW) spin echo images (TE/TR = 50/2000,
diffusion-sensitizing gradient pulse in the X direction,
duration (δ) of 10 ms, diffusion-gradient separation time
(�) of 15 ms, diffusion gradient ramp time of 1 ms, b values
of b0x =0, b1x =2.993, b2x =6.736 ×108 s/m2, acquisition
matrix 256 × 128) were acquired at the level of the brain
of the fish. The field of view (FOV) was 40 mm and the
spectral width was 25 kHz. Two averages were taken and
the 12 acquired consecutive 1-mm slices covered the entire
fish brain. The GE T2*-weighted images, which showed
visible darkening when the blood perfusing the brain be-
came anoxic (increased amount of paramagnetic deoxy-
Hb), served to control appropriate vascular circulation,
heart function and gill perfusion of the fish during the
experiment. For each time point, the T2 and apparent
diffusion coefficient (ADC) values were calculated on a
pixel-by-pixel basis.

The study clearly showed that, although both com-
mon carp and crucian carp survived 2 h of anoxia at 18◦C,
the response of their brains to anoxia was quite differ-
ent. As expected, the anoxic crucian carp showed no signs
of brain swelling or changes in brain water homeosta-
sis. In contrast, the anoxic common carp brain suffered
from serious cell swelling as indicated by the ADC val-
ues, which showed a drop by 53±8% after 2 h of anoxia.
Upon normoxic recovery some brain areas regained their
control ADC values while others did not. A net water

Fig. 4 Mean brain volume (mm3) (± SD) of common carp (n= 5)
and crucian carp (n= 5) when exposed consecutively to normoxia,
2 h of anoxia and 100 min of normoxic recovery. The data also reveal
that, although the common and crucian carp were equally sized, the
common carp has a much larger brain (adapted from [8])

gain was discerned from the average T2 values, which were
58 ± 10 ms during the initial normoxic conditions but in-
creased significantly to 67±7 ms after 100 min of normox-
ic recovery. This presumably reflected the observed brain
volume increase (6.5%), which continued (by 10%) during
100 min of normoxic recovery (Fig. 4). Like in many fish,
the brains of both studied carp species are embedded in a
soft mass of jelly-like tissue called meninx, and the cranial
space surrounding the brain is much larger than the brain
volume. Common carp were able to recover from this in-
sult, indicating that these changes were reversible. It can
be suggested that the oversized brain cavity and the jelly-
like meninx, seen in many ectothermic vertebrates, allows
brain swelling during energy deficiency without a resul-
tant increase in intracranial pressure and global ischemia,
as observed in mammals under similar circumstances.

Responses to acute and prolonged salt exposure
in freshwater fish

Regulation of internal water balance and ion concen-
trations are critical in fish since they either live in the
hyper-osmotic marine environment or in hypo-osmotic
fresh water. Depending on the level of tolerance displayed
to changes in external salt concentration, two types of
freshwater fish can be distinguished: stenohaline (narrow
range of tolerance) and euryhaline fish (broad range of tol-
erance), which display different physiological responses
when exposed to salt water. Stenohaline freshwater fish
will hyper-regulate their internal osmolarity to allow the
continuous influx of water necessary for the elimination
of waste products via the kidneys. Euryhaline freshwa-
ter teleosts exposed to salt water are hypo-regulators that
prevent net water loss by drinking salt water and keep the
composition of the body fluids constant by salt excretion



[28]. Generally, when animals or cells are exposed to a
hypertonic external solution, the cell volume decreases by
water loss and must be regulated during the process of
regulatory volume increase (RVI), which is accompanied
and caused by shifts of osmolytes [28–30].

The common carp (Cyprinus carpio) is a well-known
example of a stenohaline freshwater fish [31]. When ex-
posed to 1% NaCl it survives osmotic stress for more than
a month but eventually the fish die revealing that no accli-
mation took place. Lack of regulatory volume increase
might be the reason for enhanced mortality. To that end,
we introduced in vivo MRI to investigate the dynamic
changes in internal water balance, particularly in liver and
muscle of carp, upon prolonged exposure to 1% (10 g/l)
NaCl and correlated these data with plasma osmolarity
data obtained from the same specimens [7].

Two weeks before starting the experiments, carp were
transferred to moderately hard standard water (STW)
according to standard methods (American Public Health
Association, 1989) and kept at room temperature (22 ±
2◦C). Carp were fed daily ad libitum with pond sticks (Tet-
rapond, Henkel) and excess food was removed 15 min after
feeding. Salt exposure was accomplished by adding 10 g
of NaCl to 1× l STW (1 weight%=1 wt.%). Thirty-six fish
were transferred from the aquarium filled with STW to
the tank with the 1 wt.% NaCl. Carp were again fed daily
ad libitum but due to loss of appetite the quantity of food
given was reduced by 50%.

After 1, 2, 4, 7, 14 and 21 days of salt exposure,
carp (n= 6 for each time point) were submitted to an in
vivo MRI protocol. They were positioned and restrained
in an animal chamber and MRI was applied without
anaesthesia as outlined above to avoid the influence of
anaesthesia on osmoregulatory capacity. Results were
compared with those obtained for fish kept in STW (n=
12). After MRI measurements, blood samples were taken
to determine plasma osmolarity and ion concentration.
Sagittal diffusion-weighted MRI was performed on the
same 7-T SMIS NMR instrument (Guildford, UK) men-
tioned in the previous chapter and using the same RF
antenna, but turned upside down to image the abdomen
(Fig. 2). The same diffusion-weighted spin echo sequence
was applied except for the diffusion gradient direction (Y ).
Field of view (FOV) = 50 mm with an in-plane resolution
of (195×195) µm2, 16 slices with slice thickness of 1 mm,
TE/TR=36/2000 ms, number of averages: n= 2 for STW,
and n=4 for salt-treated fish. The b0y image was used as a
T2-weighted image. An Eppendorf tube filled with water,
used as an internal reference for SI, was positioned within
the imaged region to ensure standardization of the mea-
surements, and T2 signal intensity (T2w SI) values of the
muscle and liver tissues were expressed relative to the SI
of the water reference.

It seemed that the osmolarity of a 1% NaCl solution
(about 324 mOsm/kg) equalled the initial plasma osmolar-
ity of the fish when kept in fresh water (328±19 mOsm/kg)

Fig. 5 Plasma osmolarity and the contribution of plasma inorganic
and organic compounds to plasma osmolarity of the common carp
when exposed for up to 21 days to 1% NaCl (n = 6 for each time
point) (adapted from [7])

(Fig. 5). The obtained plasma osmolarity data confirmed
that carp is a hyper-regulator, since upon exposure to
1% NaCl, the internal osmolarity (plasma) of the carp
attained values which were 30 to 45% higher than the
external value, supporting passive influx of water. Con-
comitant with but unlike the plasma data, data on water
balance were obtained in an in vivo non-invasive manner
and on conscious fish. These data demonstrated that upon
exposure to 1% NaCl, liver and muscle of the stenohaline
common carp showed signs of dehydration during the first
days of exposure (decreased T2 values, shown in Fig. 6a).
Upon osmotic adjustments of the plasma, which reached
a plateau after 7 days (Fig. 5), rehydration of the investi-
gated tissues occurred (Fig. 6a). However, no cell volume
repair occurred but continuous increase of the extracellu-
lar volume was observed instead (increased ADC values
with increased T2, shown in Fig. 6a, b). Liver and muscle
tissue displayed the same type of response to the osmotic
challenge but to a different degree. Even within 21 days,
extracellular volume did not attain equilibrium values but
continued to increase (Fig. 6b). By that time, the liver had
gained twice the control T2 SI (Fig. 6a). All of this explains
why carp do not survive exposure to 1% NaCl for longer
than 1 or 2 months.

Thermal tolerance of marine fish

With respect to temperature tolerance, polar ectotherms
are stenothermal (e.g. Antarctic fish species living at
constant temperatures around 0◦C) and display low
tolerance to temperature changes, whereas eurythermal
animals (e.g. temperate fish confronted with seasonal
fluctuations in temperature) have a much broader ther-
mal tolerance window. The eelpout fish family ranges from
temperate zones and the deep sea to polar regions, har-
bouring both stenothermal and eurythermal family mem-
bers and therefore provides suitable animal models for



Fig. 6 a Relative (to a water phantom) T-2-weighted signal inten-
sity (± SD) (providing information on the tissue water content) and b
ADC values (± SD) (providing information on the ratio of intra- versus
extracellular volume), determined in liver (top) and muscle (bottom)
of the common carp upon exposure to 1% NaCl (n=6 for each time
point) (adapted from [7])

comparative physiological studies of temperature accli-
mation and adaptation [17,18].

The physiological mechanisms behind thermal toler-
ance limits are currently under investigation, with respect
to the question of how animals maintain function at differ-
ent temperatures and how they are able to adjust their ther-
mal tolerance windows [2,32]. A recent concept based on
data collected in various groups of marine ectotherms is
the hypothesis that thermal tolerance in animals is limited
by oxygen availability to tissues [2]. Briefly, limits of ther-
mal tolerance during warming and cooling are indicated
by threshold temperatures (pejus temperatures, T p, and
critical temperatures, T c), where oxygen supply decreases
beyond pejus temperatures, resulting in a drop of aerobic
scope. Full availability of aerobic scope defines the range
of optimum performance of the animal, with maximum
availability of aerobic energy to all physiological func-
tions including growth and reproduction. Within the pejus

(getting worse) range, survival of the individual animal is
still possible, but scopes for activity, growth and reproduc-
tion might already be diminished. In the critical tempera-
ture range, which is indicated by minimized aerobic scope
and the onset of anaerobic metabolism, survival is time
limited [2,33,34].

This hypothesis was tested using in vivo MR imag-
ing and spectroscopy on a Bruker Biospec 47/40 with a
40-cm magnet bore operating at 4.7 T in the stenothermal
Antarctic eelpout, Pachycara brachycephalum [9]. The fish
had an average length of 25 cm, a mean weight of 50 g
and were kept at 0 ± 0.5◦C and a salinity of 32.5%. Dur-
ing the experiment water temperature was increased from
0◦C (control) to 15◦C by 1◦C/12 h, whilst the fish re-
mained in the magnet. To test the impact of oxygen limita-
tions two experimental settings were tested, one normox-
ic (PO2 : 20.3–21.3 kPa) and one hyperoxic (PO2 : 45 kPa).
Flow-weighted MR imaging (TOF) was applied to exam-
ine blood flow in the aorta dorsalis using the following
parameters: matrix, 128 × 128; field of view, 4 × 4 cm; 5
slices at 2 mm each; sweep width: 50 kHz; flip angle, 45◦–
60◦ (using a hermite pulse of 2000 µs); TR, 100 ms; echo
time (TE), 10 ms; acquisition time, 1 min; 2 averages. In
the obtained images, blood vessels were picked manually
and changes in the ratio of signal intensity over noise



Fig. 7 a Ventilatory effort, b oxygen consumption (M02), c arterial
blood flow changes read from the aorta dorsalis and d white muscle T∗

2
contrast (reflecting tissue oxygenation) acquired at different tempera-
tures. Hyperoxic conditions (triangles) are compared with normoxic
data (black circles). The horizontal bar parallel to the x-axis indicates
significant differences between both series. The number of animals
used per data point (n) was (3–6) unless indicated otherwise in the
figure. Asterisks represent significant differences above that temper-
ature. Exponential and linear best fits are presented for 8a and b
respectively. Line fits in 8c and d indicate an overall trend within the
data sets (adapted from [9])

intensity were used to determine relative changes in blood
flow. T∗

2-weighted MR imaging estimated tissue oxygen-
ation changes (BOLD contrast). Imaging parameters for
BOLD MRI were as follows: matrix, 128 × 128; field of
view, 4×4 cm; 5 slices at 2 mm each; sweep width, 50 kHz;
flip angle, 11◦ (pulse shape, sinc3; pulse length, 2000 µs);
TR, 100 s; TE, 40 ms; acquisition time, 4 min; 4 repetitions;
2 averages [9].

In vivo 31P-NMR spectroscopy was used for investiga-
tions of energy metabolism and acid-base regulation. In
addition, classic oxygen consumption measurements and
analyses of ventilatory effort were performed. Figure 3b
presents examples of typical transversal flow-weighted
and T∗

2-weighted MR images relative to a coronal anatom-
ical MR image of the Antarctic eelpout. Different organs

can be identified in both anatomical and T∗
2-weighted

images. In the flow-weighted image blood, vessels like
the aorta dorsalis and the vena cava posterior are visi-
ble as bright spots. Figure 7 summarizes the results of
ventilation and oxygen consumption measurements in
comparison to blood flow analyses of the aorta dorsalis
derived from flow-weighted MRI. Under normoxic condi-
tions ventilatory effort and oxygen consumption increased
exponentially with temperature. Blood flow also increased
but levelled off above 7◦C. Tissue oxygenation in white
muscle derived from T∗

2-weighted MR imaging did not
change significantly, despite increased oxygen demand
during warming.

Under hyperoxic conditions ventilation still increased
exponentially upon warming. Most importantly, the rise
in oxygen consumption was reduced from an exponential
slope under normoxia to a linear slope under hyperoxia.
Blood flow did no longer change over the whole tem-
perature range. Hyperoxia conditions revealed a signifi-
cant decrease in oxygenation of white muscle tissue above
5 −−6◦C, which reflected the lower levels of blood flow
and the lower whole animal O2 demand. The results
indicate that, as a trade-off at higher temperatures vis-
ible under hyperoxia, blood perfusion to muscular tis-
sue may be reduced so that oxygen can be delivered to
more relevant aerobic organs such as the liver. Overall, the



comparison of normoxic and hyperoxic conditions indi-
cates that a temperature-induced rise in metabolic oxy-
gen requirements was not adequately balanced by oxygen
delivery through the cardiovascular system above 7◦C un-
der normoxia, resulting in a mismatch in oxygen deliv-
ery and demand. This imbalance leads to a loss in aero-
bic scope (see above). Elevated oxygen availability reduces
temperature-dependent cardiovascular costs and thereby
oxygen consumption, such that thermal stress is reduced.
Altogether, this data set supports the principle of an oxy-
gen-limited thermal tolerance in animals [2] and provides
an excellent example for the application of in vivo MRI
methods to study environmental physiology.

MRI of teleost fish provides new insight into MRI
contrast mechanisms

Temperature dependence of brain apparent diffusion
coefficient values

Most brain ADC data available in the literature have
been obtained from mammals, and thus at 37◦C. Studying
the impact of hypothermia on the ADC of rat brain,
Jiang et al, [35] found that tissue ADC decreases at
1.5%/◦C. Because of the narrow range of body tempera-
tures usually displayed by mammals, fish represent a nice
alternative to test the temperature dependence of tissue
ADC values. This is illustrated in one study of carp [8],
where ADC determined in carp brain at 18◦C yielded val-
ues of 399 ± 74 × 10−12 m2/s for the common carp and
487±60×10−12 m2/s for the crucian carp. Since tempera-
ture during the fish measurements was 19◦C lower than
mammalian body temperature, according to Jiang et al.
[35], the resulting ADC values should be 28.5% lower
(429–526 × 10−12 m2/s) than those measured in e.g. rat
brain (600–700×10−12 m2/s). Using fish would allow one
to obtain experimental ADC data from a wide range of
temperatures and to compare them with the diffusion
values of free water for a better understanding of what
ADC values represent.

In vivo in situ assessment of the contribution
of deoxyhaemoglobin concentration to the BOLD signal

BOLD measurements in tissue are complicated to inter-
pret since alterations in cerebral blood flow (CBF), cere-
bral blood volume (CBV) and the ratio of oxy- to
deoxyhemoglobin all seem to play a role. The anoxia-
resistant crucian carp is an excellent model to study the
correlation between BOLD contrast in vivo in situ in the
brain, and the PO2 and deoxyhemoglobin concentration
in the blood without any contaminating CBV and CBF
changes within a broad range of PO2 values. For a rough
estimate it is sufficient to change the PO2 of the environ-
mental water between zero and normal to create a range of

Fig. 8 Oxygen dissociation curves obtained in vivo and non-inva-
sively at the level of the brain of a crucian carp. The fish was pro-
gressively transferred from normoxic to anoxic water (norm-anox)
and vice versa (anox-norm) with a 1-h anoxic period in between.
The entire procedure took about 3 h, during which continuously GE
images of the head of the carp were acquired providing BOLD SI
changes (y-axis) while the PO2 changes in the water (x-axis) were
monitored online. A linear correlation was demonstrated between
the PO2 in the water (0 – anoxia to 400 mmHg – hyperoxia) and the
blood of the fish (0 to 40 mmHg) (r2 =0.79) [38]

increasing PO2 values in the blood leaving the gills. Since
fish have a single-loop cardiovascular system, this blood
will then go straight to the brain. Crucian carp is known
to maintain CBV values during hypoxic challenge and
to change its CBF only at blood oxygen concentrations
lower than 0.1 mg/l oxygen in order to increase glucose
supply to the brain [36]. Increasing CBF during anoxia
will not affect BOLD contrast. Therefore crucian carp is
an excellent model to study in vivo in situ oxygen dissocia-
tion curves using GE MRI sequences (TE/TR=12/300 ms,
acquisition matrix of 128×128, FOV of 40 mm, spectral
width of 25 Hz, 1 average, 7-T SMIS MRI instrument
(UK)) during progressive water PO2 alteration (Fig. 8).
To investigate the pH sensitivity of the O2-hemoglobin
equilibrium (Bohr effect) we challenged the fish within 1 h
of anoxia, which is known to lower tissue pH from 7.8 to
7.4 [37] and observed a clear Bohr effect (Fig. 8) [38]. MRI
in crucian carp provide data that MRI in mammals can
never achieve due to the limited hypoxia tolerance of the
mammalian brain.

Explaining T2 and ADC changes using fish as a model

Mammals do not sustain the major osmotic changes that
would lead to substantial tissue ADC and T2 changes.
Combined T2 and ADC changes are therefore almost



exclusively observed and reported from pathologies asso-
ciated with stroke and other edema. Carp were submitted
to an osmotic challenge resulting in massive ADC and
T2 changes [7]. The MRI findings and the correlation
with plasma osmolarity values obtained from the same
fish illustrate how using fish as an animal model for MRI
studies provides a new angle from which to understand
MRI contrast changes.

Future perspectives

MRI of teleost fish provides new insights in MRI con-
trast mechanisms and the underlying physiological phe-
nomena. In particular functional BOLD MRI in fish,
which investigates brain-activity-induced BOLD contrast
changes, would be interesting for several reasons. It is
not yet known whether brain activity in ectothermic ani-
mals provokes a haemodynamic response in the first place
and it is likely that the entire BOLD response might by
slowed down due to the lower body temperature, allow-
ing a better temporal resolution of the entire BOLD
response. Even the temperature dependence of the haemo-
dynamic response could be investigated in fish. From an
evolutionary point of view it would be interesting to study
the haemodynamic brain-activity-induced response by
performing comparative functional MRI (fMRI) exper-
iments in mammals, birds, amphibians and fish.

Functional MRI in fish brain in general would allow
several interesting applications in which the fish brain

model would then be used owing to its less complicated
organization. This would definitely be relevant for those
circuits whose mechanisms and molecules have been con-
served throughout evolution. In this context it would be
relevant to perform functional MRI at the level of the
hypothalamic-pituitary-adrenal (HPA or stress) axis and
the brain-pituitary-gonadal (BPG) axis using appropriate
external stimuli such as alarm substances and sex attrac-
tants (both collected from fish), which can be administered
in different doses to the external water.

Long-term anaesthesia [8] and long-term restraining
of fish without anesthesia (up to 9 h – [39]) is feasible.
Even conscious fish without restraint can be maintained
in the magnet for up to a week [9]. This opens the potential
for in vivo MRI investigations which require either a long
measuring time, such as diffusion tensor imaging, or the
follow-up of slow changes.

From a more general point of view, examples
illustrated in this review demonstrate that MRI can be
extended to organs other than brain and also to an inte-
grative study of organismic functioning. Such integrative
studies will become more relevant in an effort to address
the whole organism capacity of coping with environmen-
tal change.

In the end, this review should convince the reader that
MRI of small teleost fish represents a valuable tool for
integrative studies of organismic functioning and also pro-
vides the bonus of approaching MRI contrast mechanisms
from a different angle.
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3. Pörtner HO (2002) Climate change and
temperature dependent biogeography:
systemic to molecular hierarchies of
thermal tolerance in animals. Comp
Biochem Physiol 132A:739–761
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