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Isotopic view on nitrate loss in Antarctic surface snow
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[1] Massive post-depositional processes alter the nitrate
concentration in polar firn where the annual snow
accumulation is low. This hinders a direct atmospheric
interpretation of the ice core nitrate record. Fractionation of
nitrate isotopes during post-depositional nitrate loss may
allow estimating the amount of nitrate loss in the past. We
measured §'°N of nitrate in two Antarctic surface cores
from the Dome C area. In concert with the known
concentration decrease with depth we observe an increase
in the isotopic signature. Assuming a Rayleigh type
process we find an isotope effect of € = —54%.. We
measured the fractionation factor for photolysis in the
laboratory and obtained € = —11.7 + 1.4%0. As the
observed fractionation factor in the firn is much lower this
rules out that photolysis in the surface snow is the main
process leading to the dramatic nitrate loss in the top
centimeters of the firn. Citation: Blunier, T., G. L. Floch,
H.-W. Jacobi, and E. Quansah (2005), Isotopic view on nitrate
loss in Antarctic surface snow, Geophys. Res. Lett., 32, L13501,
doi:10.1029/2005GL023011.

1. Introduction

[2] Nitrate (NOj3') deposition is the final fate of various N
species in polar regions [ Wolff, 1995]. Therefore, NO5 from
polar ice cores can potentially be used to investigate the
atmospheric cycle of reactive nitrogen compounds. Nitro-
gen compounds have an important impact on atmospheric
chemistry and the oxidation capacity of the atmosphere.
Unfortunately, it turned out that NO3 undergoes massive
depositional and post-depositional processes in the firn.
This hinders a direct atmospheric interpretation of the ice
core NOj3 records [Réthlisberger et al., 2002].

[3] In Antarctica’s low accumulation areas most of the
NOj3 deposited at the surface is lost when the snow reaches
a few decimeters depth [Mayewski and Legrand, 1990;
Rothlisberger et al., 2000]. On the other hand, high accu-
mulation sites (e.g., Summit, Greenland) presently preserve
more than 90% of the initial NO3 [Burkhart et al., 2004].
Here the annual cycle in the concentration is preserved and
also the isotopic composition of NOj3 appears largely
unaffected by post-depositional processes [Hastings et al.,
2004].

[4] Mulvaney et al. [1998] describe the depositional
processes affecting NO3 in surface snow as a short-term
equilibrium between the atmosphere and the snowpack
where uptake and loss operate over the daily cycle with a
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net loss over weeks and months. The seasonal NO3 signal is
preserved in this process although smoothed by diffusion.
At very low accumulation sites the net loss of NOj3
continues over several years and results in a complete loss
of the annual signal for very low accumulations sites like
Vostok, or Dome C.

[5] Key parameters determining NO3 loss are established
but are not clearly quantified [Dibb and Whitlow, 1996;
Mayewski and Legrand, 1990; Rothlisberger et al., 2000].
They include temperature-accumulation, near surface air
concentration, elevation, and presence of other species in
snow (see Burkhart et al. [2004] for a compilation). Major
candidates for the loss process in Antarctica as well as in
Greenland are photolysis and re-evaporation. The latter may
be related to wind driven effects [Mulvaney et al., 1998].

[6] In low accumulation sites snow remains relatively
long in close proximity to the surface and thus in range of
radiation of intense UV. Therefore, it seems possible that
photolysis is the main process leading to the NOj3 loss
[Rothlisberger et al., 2002]. Nonetheless, a model study
suggests that only 40% of the NO3 content can be depleted
by photolysis for conditions found at Dome C [Wolff et al.,
2002].

[7] The isotopic composition of NO3 deposited on the
snow depends on the NOj sources and the chemical
reactions taking place during the transport to the deposition
site [Freyer et al., 1996]. The isotope composition in freshly
fallen snow is expected to equal the one in the atmosphere
above the snow [Hastings et al., 2004]. Wagenbach et al.
[1998] present Antarctic atmospheric 6'°N values varying
from 0 to —50%o. In a pioneer study Freyer et al. [1996]
measured 8'°N of NO;3 in ice cores from Greenland,
Antarctica and the Alps. They found increasing §'5N values
with the inverse accumulation rate for Holocene samples.
This increase goes along with a NO3 concentration decrease
for most sites, which is interpreted as originating from a loss
process in the freshly fallen snow. Thus, the changes in the
nitrogen (and oxygen) isotope composition of NO3 may
allow for the reconstruction of the atmospheric NO3 con-
centration once the fractionation processes in the firn are
understood.

[8] Here we investigate the first 15 cm of a firn core
taken at the EPICA-DC site in the austral summer of 2003
by means of isotope analysis. Dome C (75°06'S, 123°21'E,
altitude 3233 m a.s.l.) has an annual mean temperature of
—54.5°C and a snow accumulation rate of 25.0 kg m >
year™' (corresponding to about 7.4 cm of snow per year at
the surface). At this low accumulation site the NOj5
concentration decreases by orders of magnitude over the
first 10 cm of firn. Release in the form of HNO; and
photolysis of NO; have been proposed as the cause for
this loss [Réthlisberger et al., 2002]. Further we deter-
mined the fractionation factor for 8'°N of NO3 associated
with photolysis of NO3 in snow. Based on laboratory and

1 of 4



L13501

25

20

3'5N of nitrate (vs. N, atm)

o Lo
1 0.8 0.6 0.4 0.2
Remaining nitrate fraction

Figure 1. §'°N of NO3 measured in artificial snow versus
the remaining NO3 fraction after exposure to radiation.
Circles are replicate isotope measurements using the same
snow sample. Dots are mean values with error bars. The
gray area represents the one sigma spread of the Monte
Carlo simulations for the Rayleigh type process. The
calculated fractionation factor is € = —11.7 + 1.4%o, where
e=(ax—1).

firn measurements we are able to show that photolysis is
not the sole process responsible for the NO3 loss in the
firn.

2. Measurements

[9] We measure NO3 isotopes using a microbiological
method developed by Sigman et al. [Sigman et al., 2001].
The method is based on the isotopic analysis of nitrous
oxide (N,O) generated from NOj3 by denitrifying bacteria.
We use Pseudomonas Chlororaphis, which lacks N,O
reductase activity, and follow the protocol for bacteria
cultivation by Sigman et al. [2001]. 2 ml aliquots of bacteria
slush are added to 20 ml sample vials. Remnant N,O in the
vials is removed by purging ultrapure helium carrier gas at
20 ml/min for 2—4 hours, before melt water from the
samples (or artificial snow) is added to the cultures. After
an overnight incubation, the bacteria quantitatively con-
verted NO3 to N,O. A poison (NaOH) is injected to lysis
the bacteria and stop the reaction. Using a helium carrier
gas, N,O is stripped from each sample vial and analyzed by
a GC/MS system (Thermo Finnigan MAT 253). With stand-
ards we obtain a reproducibility of =15 ppb for the concen-
tration and £0.2%0 for 6'°N. All measurements are made
versus a N,O standard gas. Each batch of samples includes
samples with NO3 standards (IAEA-N3), which have an
assigned §'°N of 4.7%o versus atmospheric N,.

[10] Our system is designed to work with a sample
amount of 10 nmole of NO3. To obtain 10 nmole of NO3
the volume of the sample (i.e., the amount of snow) added
to the bacteria slush varies depending upon the concentra-
tion of each sample. As the concentration in the snow
decreases rapidly over the first few centimeters, the sample
volumes vary between 1 and 8 ml from the surface to 15 cm
depth. We observe that for low concentration samples the
transfer of NO3 to N,O is slightly reduced. Along with the
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reduced transfer comes a strong §'°N fractionation of
several per mil. We overcame this problem by adding more
bacteria to the low NO3 concentration samples. The bacte-
ria concentration was kept constant at values corresponding
to the sample protocol of Sigman et al. [2001] regardless of
the sample size.

3. Laboratory Experiment

[11] Fractionation factors for the various possible reac-
tions in firn are unknown. We determined the fractionation
factor for photolysis of NOj3 in a laboratory experiment. At
AWTI artificial snow was produced from a solution of
NaNOs; in ultrapure water (MilliQ) with an initial concen-
tration of about 780 ppb. The solution was sprayed into a
Styrofoam cup filled with liquid nitrogen. The generated ice
chunks were ground and passed through a sieve. After
storage over night, the artificial snow samples were exposed
to intense UV and visible radiation in the range of 200 nm
to ~900 nm [see Jacobi et al., 2005]. The experiments
were performed at —20°C with exposition times ranging
from 0.5 to 3 h.

[12] Previous experiments performed under identical con-
ditions regarding initial NO3 concentration, radiation inten-
sity, and temperature demonstrated an exponential decay of
NO;3 within the first 5 h of the experiments with a
photolysis rate of 0.5 h™' [Quansah, 2004]. This photolysis
rate was used to calculate remaining NOj3 fractions in the
snow samples used for the isotope analyses. In the previous
experiments, nitrite concentrations showed a steep increase
followed by a fast decrease leading to a maximum in the
nitrite concentrations after experiments lasting between 0.5
and 1 h. Using the previously observed nitrite concentra-
tions, we estimate that the nitrite-to-nitrate ratios are equal
to or smaller than 0.08 in all samples used for the isotope
analysis. Since the experiments were performed in closed
cells, it is not clear if the detected nitrite is a decay product
or if it is formed from decay products, which were not
removed during the experiments. We also do not completely
rule out that some NOj3 is reformed from gaseous decay
products like NO,. The exposed snow was transported to
Bern for isotope analysis (Figure 1).

[13] We calculate the fractionation factor of the photoly-
sis reaction for this Rayleigh type experiment.

Rr ey
A (Y 1
R, S (1)

Ry and Ry are the isotope ratios ISN/"™N of the initial NO3
and the remaining NOj3 fraction f. The same equation can
be written with concentrations and 6-values versus an
arbitrary standard with the isotope ratio value Rg;.

Rf Rs & +1

_ — fla=1) 2
Rs Ry S +1 f ( )

In(d +1) = (a—1)-Inf +1In(8 + 1) (3)

[14] A simple linear regression of the data allows the
calculation of the fractionation factor (Equation 3). How-
ever, this method does not account for the individual
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Figure 2. 6'°N and concentrations of NO3 from the Dome
C area versus depth. Grey dots and diamonds are
concentration measurements from a snow pit taken in
1999 [Réthlisberger et al., 2000]. Dots and diamonds are
individual samples from adjacent cores taken in 2003. Error
bars show one sigma analytical errors. Concentrations were
estimated from the mass spectrometer measurements.

uncertainties for §'°N values and concentrations, which are
quite substantial. Therefore, we do a Monte Carlo simulation
taking into account these uncertainties (Figure 1). The
exposition times are used to calculate the NO3 concentra-
tions, which are accurate to the 2% range. We obtain a
fractionation factor ofe = —11.7 £ 1.4%o, where e = (o — 1).
Our bacteria do feed on NO; and nitrite forming finally
N,O. Therefore the calculated fractionation factor includes a
fraction of maximal 8% nitrite in our samples (see above).
Depending on how this nitrite is formed we may under- or
overestimate the photolytic fractionation factor for NOs .

4. Antarctic Samples

[15] Two adjacent firn cores were sampled at Dome C
during the austral summer of 2003. The cores were stored in
polyethylene tubes and kept below —20°C until analyzed.
We measured the first 15 cm of both cores, which covers
about two years of precipitation. Both concentration profiles
are typical for Dome C and low accumulations sites, with a
drastic drop of 350 ppb to 50 ppb in the first ten centimeters
of the firn (Figure 2). In deeper strata the concentration
remains stable at low levels [Rothlisberger et al., 2000].

[16] Samples were taken from the inner and the outer part
of the core. We observe systematically higher NO3 con-
centrations and lower isotopic values in the outer section of
the cores. On average the concentration difference between
outer and inner sample is 41 = 11 ppb with an average §'°N
difference of —26 + 6%o. Apparently the polyethylene tube
is a source of light NOj3. In a core sampled and stored in a
similar way than the Dome C samples discussed here, we
investigated how deep the contamination entered the core.
We found that the contamination has entered the outermost
2 cm of the core. As these measurements have been made
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six months later than the isotope measurements, we are
confident that our Dome C results from the inner core
section are free from a contamination from the sampling
tubes.

[17] In Figure 3, §"°N values of the inner section are
plotted against NO3 concentrations. The resolution depends
on the NO3 concentration of the ice core. In the top 2 cm
we measured samples every 0.5 cm. Further down the
core the resolution decreases due to the lower concentration
in order to match the sample size minimum of about
10 nmoles of NO53.

5. Results and Discussion

[18] At high accumulation sites annual variations in
concentration and isotope values are visible in the first
meter of firn [Hastings et al., 2004]. No annual variations
are obvious in the concentration [Réthlisberger et al., 2000]
or nitrogen isotope records (Figure 2) at Dome C. The two
cores and similar concentration studies show, that both
concentration and isotope signals are highly variable in
adjacent cores. Nevertheless, a clear trend of lower concen-
trations with increasing isotope values is visible. Apparently
the removal process for NO3 prefers the lighter isotope.
Assuming that NOj is removed irreversibly from the firn
we can use the Rayleigh equation to calculate the fraction-
ation coefficient o of the sum of the processes involved. For
the natural samples we do not know the original surface
concentration and, therefore, the fraction f. However, the
fractionation coefficient can also be calculated without that
knowledge. We substitute /= C,/C, where Cy and Cyare the
original surface concentration and the concentration of the
remaining fraction f, respectively and obtain:

ln(6f+1) :((x—l)lan+[ln(60+l)—(0c—l)lnCo] (4)
b

[19] We find € = —53.9%o, where € = (o — 1) (Figure 3).
Due to the high local variability the uncertainty of this
isotope effect is relatively large (9.7%o). As the fractionation
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Figure 3. §'°N of NOj versus concentration for samples
taken in the austral summer of 2003 (Figure 2). The gray
area represents the one sigma spread of the Monte Carlo
simulations for a Rayleigh type process.
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coefficient for photolysis is only € = —11.7 + 1.4%0 we
conclude, that photolysis is probably not the dominant loss
process in the near surface snow.

[20] There is, however, the possibility that photolysed
NOj is recycled, accumulating photolytic fractionations to
the observed isotope effect. Such a process would involve
the photolysis of NO3 in the snow generating nitrogen
oxides (NO,), its release to the firn air [Jones et al., 2000],
the reoxidation of NO, to NOj3 in the gas phase, which then
is again deposited to the snow. Such a recycling in the
atmosphere could explain the strong fractionation observed
in the natural snow only, if it involves at least one step with
a strong 6'°N enrichment. Such an enrichment has been
observed, however, not under conditions that lead to a
significant NO3 production. Under conditions that lead to
a significant production of NOj3 the redeposited NO3 is
isotopically light [Heaton et al., 2004]. This is in line with a
recent finding from Hastings et al. [2004] and makes it
unlikely that recycling of photolysed NO3 explains the
observed isotope fractionation in the firn.

[21] At Neumayer Station (70°39'S, 08°15'W) the isotope
values of NOj3 vary between about 0%o in the austral
summer and —50%eo in the austral winter. The annual mean
value for the time period 1986 to 1992 is —21.6 £ 9.9%o
[Wagenbach et al., 1998]. First measurements on filter
samples from the Dome C site show a similar signal. The
top samples (“surface”) show relatively low concentrations
compared to the values found by Rothlisberger et al. [2000]
with elevated isotope values of up to +40%o. It is likely that
we did not catch the surface snow or that the first sample
suffered from loss processes during the transport. The
Rayleigh approach allows also the calculation of a surface
concentration based on a surface isotope value from the
intercept b of the regression (Equation 4).

80+ 1\ /(D
c= () 5)

[22] Assuming that the initial 6'°N signature of NO3 in
fresh snow corresponds to the annual mean value found for
Neumayer Station, we calculate a surface NO3 concentra-
tion of about 900 ppb consistent with published data for the
Dome C area [Rothlisberger et al., 2000].

[23] We are aware that assuming a Rayleigh type frac-
tionation is an oversimplification of the processes in the
firn. Nevertheless, this simple approach demonstrates that
photolysis alone is not responsible for the loss process in the
near surface snow. Wolff et al. [2002] estimate that only
40% of the NO3 is removed by photolysis reactions. With
our data this would result in a fractionation factor of the
other non photolytic process(es) of about —80%o. The most
promising candidate is re-evaporation of NO5. The next
step will be to simulate re-evaporation in the lab and to
determine its fractionation factor.

[24] Once fractionation factors for individual loss pro-
cesses in the firn are known they will help to disentangle
their relative contribution to the total NO3 loss. If we
understand the fractionation of NOj3 isotopes during post-
depositional processes isotope measurements from ice
cores may ultimately allow estimating the amount of
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post-depositional NO3 loss in the past. Combined with
the existing high resolution NO5 concentration records it
may be possible to reconstruct the true past atmospheric
NOj3 concentration in polar areas.
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