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Sequences of the nuclear encoded small subunit (SSU) rRNA were determined for Pirsonia diadema,
P. guinardiae, P. punctigerae, P. verrucosa, P. mucosa and three newly isolated strains 99-1, 99-2, 99-
S. Based on phylogenetic analysis all Pirsonia strains, except P. mucosa, clustered together in one
clade, most closely related to Hyphochytrium catenoides within the group of stramenopiles. How-
ever, P. mucosa was most closely related to Cercomonas sp. SIC 7235 and Heteromita globosa and
belongs to the heterogenic group of Cercozoa. In addition to the SSU rDNA sequences, P. mucosa
differs from the stramenopile Pirsonia species in some characteristics and was therefore redescribed
in this paper as Pseudopirsonia mucosa. The three newly isolated strains 99-1, 99-2, and 99-S dif-
fered by 28 bp in their SSU rDNA sequences from their closest neighbour P. diadema and only 1 to 3
bp among themselves. These base differences and a host range similar to P. formosa were sufficient
to assign them as new strains of P. formosa.

Introduction

Parasitoid protists are small unicellular eukaryotic
heterotrophs that infect, consume and thereby in-
evitably kill their phytoplankton hosts. Most of the
planktonic diatoms in the North Sea (53 species ob-
served, unpublished) are susceptible to infections.
These parasitoids comprise diverse taxonomic
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groups, such as euglenozoa, dinoflagellates, cer-
comonads, plasmodiophorids, oomycetes and
chytrids (fungi), and species of unknown affiliation
(e.g. Bulman et al. 2001; Drebes 1966; Drebes and
Schnepf 1988, 1998; Kihn et al. 2000; Schnepf
1994; Schweikert and Schnepf 1996). Although
host-specific parasitoids can decimate a diatom
population by more than 90 per cent (Grahame
1976; Tillmann et al. 1999), their role in the marine
planktonic food web is still poorly understood. Only
recently, a novel flagellate, Parvilucifera infectans,
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was described that kills toxic dinoflagellates (Norén
et al. 1999), indicating the possible importance of
parasitoids for the control of harmful algal blooms.
Additionally, parasitoid nanoflagellates (PNF) often
have small and flexible cells, possibly enabling them
to pass through filter membranes with a poresize
below the 3 pm pore that is normally used by
oceanographers to fractionate water samples. This
might lead to their detection in the so-called pi-
coplanktonic fraction of the phytoplankton. PNF
may therefore play an important role in the hitherto
undefined heterotrophic fraction of the picoplank-
tonic community.

Pirsonia species are PNF that infect planktonic di-
atoms. Their feeding mode is unique: flagellates at-
tach to the diatom frustule and squeeze a pseudo-
pod into the cell, either between the girdle bands or
through the rimoportulae or labiate processes,
which are tubular openings that penetrate the valve
wall. The pseudopod then becomes the tropho-
some, which phagocytises and digests the diatom
protoplast. Digested material is transported into the
auxosome, the part of the body that remains on the
outside of the frustule. The auxosome then grows,
divides and reproduces, forming offspring as long
as food supply continues. Up to now, seven Pirsonia
species have been described from the North Sea
(Schnepf et al. 1990; Kihn et al. 1996; Schweikert
and Schnepf 1997), and another 5 strains have been
isolated. Ultrastructural examination clearly as-
sighed Pirsonia to the stramenopiles (Heterokonta)
(Schnepf and Schweikert 1996). Stramenopile is a
term that was introduced as a rankless, informal
name for eukaryotes possessing a flagellum with tri-
partite, tubular hair-like projections (mastigonemes)
(Patterson 1989), and comprises a huge range of
taxa that include parasites, saprotrophs, het-
erotrophs and autotrophs (e.g. brown algal kelps
and diatoms).

Here we show that, based on SSU rDNA se-
quence analysis, the genus Pirsonia forms a distinct
clade within the stramenopiles, with Hyphochytrium
catenoides and Rhizidiomyces apophysatus as their
next known relatives. Molecular analysis, however,
shows that Pirsonia mucosa Drebes does not be-
long to the stramenopiles but is related to the cer-
comonads. Furthermore, we describe a new genus,
Pseudopirsonia gen. nov., for this taxon.

Results

Morphology and host range

The life cycle of all Pirsonia species and Pseudopir-
sonia is similar (Fig. 1) (Kihn 1996). As soon as

phagocytosis begins the diatom protoplast struc-
ture becomes notably affected (Fig. 2A). Non-partic-
ulate nutrients are transported into the main body of
the former flagellate, which remains outside the
frustule and becomes the auxosome (Fig. 2B, 2C).
Trophosomes of adjacent auxosomes frequently
fuse. As long as nutrients are transported into the
auxosomes these continue to grow and divide. The
offspring eventually grow flagella and become infec-
tive flagellates.

Five Pirsonia species were described in detail by
Kihn et al. (1996). In this study, we included three
newly isolated strains Pirsonia 99-1, 99-2 and 99-S,
which were assigned to P. formosa as described
below. Pirsonia species differ only slightly in their
morphological characteristics (Table 1). The flagel-
late of P. verrucosa is, for example, approximately 8
pm long and 3 um wide, and thereby slightly smaller
than the flagellate of the new Pirsonia formosa 99-S
with 9-13 x 6 um. The anterior flagellum measures in
all species 15 to 25 um, but the length of the poste-
rior flagellum is variable with 15 um in P. verrucosa
and 45 pm in P. eucampiae. Additional morphologi-
cal features like the size and shape of the auxo-
somes, or whether flagellate mother cells remain
connected to the diatom frustule show only minor
differences for the hitherto identified species. Cyst
formation was only observed for P. guinardiae and P.
formosa 99-2. Hatching was never observed.

<— frustule

Figure 1. Developmental stages of Pirsonia and Pseu-
dopirsonia. Motile flagellates attach and penetrate
frustule with a pseudopod. The pseudopod phagocy-
tises and digests portions of the diatom protoplast and
thus differentiates into the trophosome. Nutrients are
transported into the body of the former flagellate, now
called auxosome. The auxosome grows and divides,
forming offspring as long as trophosomes continue to
phagocytise.



A characteristic feature for the Pirsonia species is
their host range (Table 2). Some species, e.g. P. di-
adema and P. punctigerae, are host specific and in-
fect only one diatom genus whereas the host range
of the newly isolated Pirsonia formosa strains 99-1,
99-2 and 99-S is relatively broad and similar to that
of P. formosa. Circumstantial evidence indicates
that there might be a transition between an initial
chemosensory attraction and possibly successful
infection by later parasitoid generations. Pirsonia
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formosa 99-1 was attracted to Stephanopyxis turris
and attached to the frustule but failed to penetrate
(not shown). Pirsonia formosa 99-2 was clearly
chemosensory attracted to Thalassiosira punctig-
era, but did not attach to the frustule (Fig. 2D), even
though it attached to the diatom protoplast (Fig.
2E). Pirsonia formosa 99-S was strongly attracted
by Guinardia flaccida and attached to the frustule
(Fig. 2F). Successful infections, however, were
scarce.

Figure 2. Pirsonia species and Pseudopirsonia mucosa. A-C. Pirsonia diadema infecting the marine diatom Cos-
cinodiscus wailesii. A. Infection after approximatly 6 hours at room temperature. B. P. diadema, auxosomes and
trophosomes. C. P. diadema, detail of cytoplasmatic connection between divided auxosomes. D. P. formosa 99-
2 flagellates are clearly chemosensory attracted by Thalassiosira punctigera but do not attach to the diatom frus-
tule. E. P. formosa 99-2 flagellates attach to the naked protoplast of T. punctigera. F. P. formosa 99-S attach to
Guinardia flaccida but only succeed occassionally to infect the diatom. G-l. Pseudopirsonia mucosa. G. Auxo-
somes with mucilagenous coat and adhering bacteria and trophosomes (feeding on Rhizosolenia imbricata). H.
Flagellate, dorsal view. I. Flagellate, lateral view. J. Pirsonia diadema flagellates. (Bars = 10 um.)
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Phylogenetic Analysis

Full length sequences of the nuclear encoded SSU
rRNA gene were determined for Pirsonia diadema, P.
guinardiae, P. punctigerae, P. verrucosa, Pirsonia
formosa strains 99-1, 99-2 and 99-S and Pseudopir-

sonia mucosa. All methods used for phylogenetic
analysis placed the Pirsonia spp. next to Hy-
phochytrium  catenoides (accession numbers
X80344 and AF163294) and Rhizidiomyces
apophysatus (accession number AF163295) within
the group of stramenopiles (Fig. 3A). In contrast to

Table 1. Morphological characteristics of several Pirsonia species.

Pirsonia/ Size of Length of Retraction Shape of Size of Cysts
Pseudopirsonia flagellates anterior and of flagella primary primary
(um) posterior after auxosomes auxosomes
flagellum (um) infection (um)
P. diadema 8-10x 34 16-18, 3540 early apple-shaped 10 -
P. eucampiae 7-9%x4-5 15, 45 never globular 12 -
completely
P. formosa 7-8x 56 18, 25-30 early globular 13 -
P. formosa 99-1 9x5 18-22, 2024 early apple-shaped 10x12 -
P. formosa 99-2 68 x 34 12-14,17-19 early globular 10 +
P. formosa 99-S 9-13x6 1620, 2225 never apple-shaped 10 x 11 -
completely  to globular
P. guinardiae 10x 6 15,25 never apple-shaped 15 +
completely
P. punctigerae 7-8x 34 20-25, 25-30 very early apple-shaped 12 -
P. verrucosa 8x3 10,15 very late apple-shaped 12 -
Pseudopirsonia 12-14 x 57 20-25, 25-30 early globular 18
mucosa
Table 2. Diatom host range of Pirsonia species.
Pirsonia/ - a w 2
Pseudopirsonia © > > > o o S
o 3 > 2 2 & & g £
g & g g 3§ & ® S § &
§ § € § & E& & § g 3%
© ) o o o o S S = 3 O
D 3 8 8 8 8 5 3 2 3 S
Diatom Q Q Q Q Q Q Q Q Q < E
Cerataulina pelagica — HP — HR/—
Coscinodiscus concinnus ~ + — — — —
C. granii HP — @) — — — — —
C. wailesii HP — — — — — —
Eucampia zodiacus — HP ++ ++ HP — — —
Guinardia delicatula — — ++ ++ HR HP + — HP +
G. flaccida — — + ++ (+) (+) HP — — +/O
Leptocylindrus danicus — - HP HP ++ — — — +
Rhizosolenia imbricata — — HP ++ ++ + — HP
R. setigera — — HP — — — +
R. similoides ++ ++ +)
Stephanopyxis turris — (+) @) — @) — —
Thalassiosira punctigera — — — O — O — HP —
T. rotula — — — O — — — + — —

HP, host in plankton; HR, host in raw cultures (growth medium added to plankton sample); ++, very rapid infec-
tion; +, good infection; (+), hesitant infection; O, attachment but no feeding; —, no infection in plankton samples;
—, no infection in laboratory host range studies.
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Table 3. List of possible probe sequences for the genus Pirsonia as designed in ARB. Only probe Pirsonia B was
tested in dot blot hybridisations.Given are the probe and selected non-target sequences, illustrating the position

of mismatches.

Probe Name E-coli Position Tm (GC+AT) Probe sequence 5-3’
Number of sequences with Target sequence 3’-5
given mismatch —mismatches in non-targets —
Pirsonia A 1100 58 °C 5-GCGGTCGTCTCGTTCGTT-3
3’-CGCCAGCAGAGCAAGCAA-5’
> 50 SeqU 3'-====GC============-5'
> 60 Sequ —-====CC============—
Pirsonia B 1134 60 °C 5'-CCCGCCAACGCAAGCGTT-3
3’-GGGCGGTTGCGTTCGCAA-Y
1 sequ
1 sequ
4 sequ
2 sequ
> 70 sequ
Pirsonia C 183 58 °C 5-CCTTCCGCACAGGCAGTT-3
3’-GGAAGGCGTGTCCGTCAA-5
3 Sequ —-==C=====C==T======—
9 Sequ —-==C=====GC========—-
2 sequ —-==CG====C==T======—-
> 20 sequ —-==C=====GC=T=====-
Pirsonia E 1159 56 °C 5-CCCTGATTAGTCACCAGG-3
3-GAAGGGGACTAATCAGTG-5
4 sequ —-=A===C===========T—
1 Sequ —-=========-I—I—==A====—
4 Sequ —-========GAG=C=====—
Pirsonia | 632 54°C 5'-GCAAGAGACGACACTAGT-3
3-CGTTCTCTGCTGTGATCA-5
8 Sequ —-==G======T====T===—-
4 Sequ —-==G======T====C===—-
2 Sequ —-==G=G=========T===—
2 Sequ —-==GC========C=====—-

this, Pseudopirsonia mucosa Drebes is most closely
related to the cercomonads Cercomonas sp. SIC
7235 (accession number AF277495) and Heteromita
globosa (accession number U42447, Fig. 3B).

The dendograms calculated using the Maximum
Likelihood (ML), Neighbour Joining (NJ) and Maxi-
mum Parsimony (MP) methods varied inside the
stramenopile or cercomonade groups in some
branching positions. Nevertheless, the relative posi-
tion of all Pirsonia sequences to their closest rela-
tives was stable, albeit with low bootstrap support

(Fig. 3A). Bootstrap values for these relationships
were 48/96 for the clade of Pirsonia spp. and Hy-
phochytrium/Rhizidiomyces and 89/100 for the
Pseudopirsonia/ Cercomonas SIC clade as calcu-
lated by MP and NJ analysis with 1000 replicates,
respectively. The Pirsonia species belonging to the
stramenopiles clustered closely together, showing
only 0.2—2.4% dissimilarity in the distance matrix.
Hyphochytrium catenoides had dissimilarities of
7.0—7.9% to these Pirsonia sequences. The dissimi-
larity of Pseudopirsonia mucosa to the stramenopile
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Figure 3. Phylogenetic position of Pirsonia and Pseudopirsonia among eukaryotes. Dendogram calculated with
162 sequences using ML algorithm and a 50% base frequency filter for the Pirsonia and Pseudopirsonia se-
quences. For a better graphical resolution, the tree was graphically divided into two partial figures. A. Stra-
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(P> 0.05, 72004 trees calculated).
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Figure 4. The branching order among the Pirsonia. All
calculations were carried out with the 10 sequences
shown in the figures, using all unambiguously aligned
positions (1835 valid columns). For all algorithms a
bootstrap analysis with 1000 replicates was carried
out. A. The Pirsonia clade as calculated by ML. B. The
Pirsonia clade as calculated by NJ. C. The Pirsonia
clade as calculated by MP.

Pirsonia clade was with 17.9-19.2% high, and even
the closest relative in the trees, Cercomonas SIC,
showed 9.2% dissimilarity. The branching order in-
side the Pirsonia clade, calculated with only 10 se-
quences and using all unambiguously aligned posi-
tions, differed slightly with the different methods
used for calculation, except that the new strains (P.
formosa) are last to diverge (Fig. 4). Pirsonia guinar-
diae and P. verrucosa form a sister group in the NJ
and ML analysis, but not in the tree calculated with
MP. Additionally, the relative position of P. punctig-
erae within the Pirsonia clade changed, forming a
sister group with P. diadema only in the ML analysis.
Therefore, in Figure 3A the Pirsonia clade is given as
consensus of all dendograms generated with the
different algorithms.

Due to the complicated cultivation and mainte-
nance of parasitoid cultures, the loss of described

type species is possible, and already happened for
the Pirsonia formosa type strain. To make the re-de-
tection of these species in environmental samples
and/or cultures easier, we designed oligonucleotide
probes for the genus Pirsonia. Several oligonu-
cleotide sequences with 0 mismatches to the genus
Pirsonia and at least 2 mismatches to non-target se-
quences were developed (Table 3). Probe Pirsonia B
reacted specifically with the rDNA of all 7 Pirsonia
species in dot blot hybridisations at a hybridisation
temperature of 63 °C and 0.5 x SSC as washing
buffer. As intended by the probe design, Pseudopir-
sonia mucosa was not detected with this probe.

Discussion

The SSU rDNA sequences of all the known Pirsonia
species (with the exception of Pseudopirsonia mu-
cosa) form a distinct phylogenetic clade, with Hy-
phochytrium catenoides as its sister group. How-
ever, concerning life cycle and diet, Pirsonia and Hy-
phochytrium show major differences. H. catenoides
(phylum Hyphochytriomycota), is a heterotrophic or-
ganism, which lives parasitically or saprophytically
in freshwater algae and even on Zea mays. lts life
cycle includes the formation of zoospores with only
one, anterior flagellum, bearing tripartite hairs (or
mastigonemes). These zoospores show encyst-
ment, germinate and form an eucarpic, polycentric
thallus that acquires nutrients by absorption (Spar-
row 1960; Fuller 1990). In contrast to this, in Pirsonia
the flagellates acquire nutrients by phagocytosis of
the diatom protoplast. Encystment has only occas-
sionally been observed in two species (P. guinar-
diae, P. formosa 99-2).

Stramenopile Pirsonia differ morphologically
from their closest relative

In addition to a different lifestyle, the comparison of
the ultrastructure of Pirsonia and H. catenoides
showed prominent differences. The most important
is the aggregation of ribosomes in an area next to
the nucleus in H. catenoides, which is missing in Pir-
sonia (Cooney et al. 1985; Schnepf and Schweikert
1996). Moreover, the nucleus in Pirsonia is rounded
and euchromatic, whereas it is elongated and
strongly heterochromatic in H. catenoides. In con-
trast to H. catenoides, the mitochondria of Pirsonia
have regularly arranged parallel tubular cristae. Ad-
ditionally, Pirsonia has several small or large lipid
droplets, depending on the nutritional status of the
flagellates, scattered among the cell body. H.
catenoides has only one large lipid body, predomi-



nantly at the posterior region of the cell. The kineto-
some of the anterior flagellum has in both organisms
one rootlet that consists of a fibrillar-microtubule
with electron-opaque material attached to one side.
In H. catenoides, the other rootlet consists of a pair
of microtubules and bears four rib microtubules,
whereas in Pirsonia it consists of four microtubules.
The transition zone, however, is very similar in both
organisms and is a construction that is characteris-
tic for the stramenopiles. In both organisms bulges
on the anterior end of the nucleus are in close con-
tact to the flagellar root apparatus.

These differences in ultrastructure and life cycle
of the two genera support the importance of the se-
quence dissimilarities detected by phylogenetic
analysis. Even the closely related Hyphochytrium
was shown to differ in major characteristics from
Pirsonia. Cavalier-Smith (1998) erected a new order
Pirsoniales and a new class Pirsoniaceae within the
phylum Sagenista, subphylum Bicoecia, which also
includes the heterotrophic flagellate Cafeteria. We
show, however, that a considerable phylogenetic
distance separates Pirsonia from Cafeteria (Fig. 3A).

Pirsonia versus Pseudopirsonia

In contrast to the Pirsonia spp. described above,
Pseudopirsonia mucosa Drebes (Pirsonia mucosa
Drebes, Kihn et al. 1996) is related to the cer-
comonads, a group of morphologically diverse
amoeboflagellates, and not to the stramenopiles. In
order to distinguish this parasitoid nanoflagellate
from Pirsonia we redescribe it as Pseudopirsonia
mucosa. It differs from Pirsonia in several morpho-
logical characteristics. The body of P mucosa has
an oval-oblong shape with an apical “nose”, and the
size of mature flagellates is 5-7 x 12—-14 um (Fig. 2H,
1), whereas Pirsonia spp. have a rounded to oval cell
shape and a cell size in the range of 4—7 x 712 pm
(Fig. 2J). In P. mucosa the flagella are inserted in me-
dian position or even submedianly in contrast to Pir-
sonia spp., where they are subapically inserted on
the ventral side. Additionally, in P. mucosa the divid-
ing auxosomes are morula-shaped and covered by
a mucilaginous coat where bacteria frequently at-
tach (Fig. 2H). In Pirsonia spp. offspring developing
from auxosomes never form a globular aggregation.
Moreover, the attacking flagellates of P. mucosa at-
tach to the diatom frustule with a broad pseudopod
that emerges laterally, whereas in Pirsonia spp. flag-
ellates attach with a posteriorly protruded pseudo-
pod. Another characteristic is the rather slow gliding
movement of the P. mucosa flagellates compared to
the slightly jerking swimming movements of Pirsonia
spp.. Important similarities between Pirsonia and
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Pseudopirsonia are the life cycles, which include the
formation of conspicuous trophosomes and auxo-
somes.

The comparison of Pseudopirsonia with the cer-
comonads revealed differences in their use of the
pseudopod. The pseudopod of Pseudopirsonia dif-
ferentiates into a trophosome soon after the begin-
ning of phagocytosis on the diatom protoplast. In
contrast to this, other cercomonads use the pseu-
dopod to take up food particles, which are then di-
gested in food vacuoles inside their own body (Kar-
pov 1997; Macdonald et al. 1977; Schnepf and
Kihn 2000; Thomsen et al. 1990). Because P. mu-
cosa has not yet been studied ultrastructurally we
cannot confirm its molecular relatedness to Het-
eromita globosa or other cercomonads with synapo-
morhies in the flagellates structure and organization.

Host range, speciation and
sequence similarities

It has been suggested that host specificity evolved
from a broader host range to a narrower one. Phylo-
genetic analysis of the parasitoid nanoflagellate
Cryothecomonas indicated that C. longipes with the
broadest host range (at least 14 diatom species) di-
verged prior to the separation of the two strains of
C. aestivalis, which infects only one, respectively
two diatom species of the same genus (Kiihn et al.
2000). A correlation between host range and se-
quence similarities was also found for two species
of the diatom parasitoid Phagomyxa. These
Phagomyxa species were isolated from different
host genera (Bellerochea and Odontella) and
showed significant differences in their 18S rDNA se-
quences (Bulman et al. 2001). Comparable results
were reported for the marine parasitic dinoflagellate
Amoebophrya ceratii (Koeppen) Cachon, an obli-
gate parasite of other dinoflagellates. These para-
sites show genetic divergence among strains, which
infect different hosts (Coats and Park 2002; Gunder-
son et al. 2002; Janson et al. 2000).

The identification of the phytoplankton host ap-
pears to be areliable indicator of Pirsonia speciation
as differences in nucleotides among parasitoids ap-
pear to reflect differences in their host ranges. P. di-
adema, which infects only the diatom genus Coscin-
odiscus, differs 28 nucleotides over the total se-
quence length from the three new Pirsonia formosa
strains. These, on the other hand, have a very similar
host range to that of P. formosa and differ only in
one to three nucleotides from one another. We
therefore consider them as strains of P. formosa, al-
though the type strain of this species was no longer
available for sequencing.
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Phylogenetic analysis based on all unambigu-
ously aligned positions of Pirsonia shows that P.
guinardiae and P. verrucosa are closely related (Fig.
4). Additionally, they have a similar host range, in-
fecting only diatoms of the genus Guinardia (Table
2). However, the phylogenetic analysis gives the im-
pression that host specificity is not always sup-
ported by sequence data: Depending on the analyti-
cal method, P. punctigerae and P. diadema are either
branching together (ML, Fig. 4A) or are separated
from other Pirsonia species (NJ, MP Fig. 4B, C) even
though they infect only one diatom species (Table 2).
The important difference, which might explain the
branching instability is the way of host infection.
Usually, Pirsonia species infect their hosts in the gir-
dle region of the frustule, but P. diadema and P.
punctigerae infect their hosts solely by penetrating
pores in the valves (rimoportulae in Coscinodiscus
and fultoportulae in Thalassiosira). Nevertheless, our
study with 18S rDNA sequences of Pirsonia does
not support the assumption that evolution shapes
towards host specificity, as P. formosa with the
broadest host range diverged last in the genus. This
evolutional hypothesis has to be confirmed by anal-
ysis of the variable region of the large subunit rRNA,
which should include more differences between the
individual Pirsonia sp. and thereby allow a deeper
branching inside the clade (work in progress).

Explanation for the occurrence of Pirsonia in
picoplanktonic clone libraries

Taxonomically identified species in sister groups of
Pirsonia, such as Hyphochytrium catenoides (Hy-
phochytiomycetes), Developayella elegans (unas-
signed), the oomycetes Lagenidium gigantum,
Achlya bisexualis, Phytophtora megaspermum and
the labyrinthulids Thraustochytrium kinnei, La-
byrinthuloides haliotidis, Ulkenia profunda are para-
sitic or saprophytic. Other sequences related to Pir-
sonia belong to not yet isolated and identified eu-
karyotic picoplanktonic stramenopiles, which were
obtained from clone libraries (Diez et al. 2001; Mas-
sana et al. 2002; Moon-van der Staay et al. 2001).
The assignment of these sequences to the pi-
coplankton was based on the filtration of plankton
samples through filter membranes with a pore size
of 3 um and the set up of the clone libraries with the
filtrate. Because heterotrophic nanoflagellates even
slip through very small pore sizes of 0.8 um (Beards-
ley 2003)it is very likely that Pirsonia and Pseudopir-
sonia flagellates with their soft cell structure will be
found in filtrates from 3 um pore size filters. The rela-
tion of the novel picoplanktonic sequences to para-
sitic and saprophytic groups suggests that they also

could be parasitoids, parasites or saprophytes. A
parasitic nature of these organisms would also ex-
plain the failure to cultivate them with the methods
for heterotrophic and phototrophic growth de-
scribed by the authors (Massana et al. 2002).

Conclusions

Our phylogenetic analysis showed that species de-
scribed as Pirsonia were not monophyletic: (i) one
group of Pirsonia spp. clusters within the group of
stramenopiles and includes P. verrucosa, P. di-
adema, P. formosa, P. guinardiae, P. punctigerae,
whereas (ii) P. mucosa clusters within the heteroge-
nous group of cercozoa with Cercomonas SIC as its
closest relative. Consequently, P mucosa was
moved to a new genus Pseudopirsonia based on
these results and additional morphological charac-
teristics. The ecological relevance of these para-
sitoids will be determined using the specific oligonu-
cleotide probe developed based on results de-
scribed here (work in progress).

Taxonomic appendix

Our taxonomic decisions are placed in the context
of the higher level classification available via
micro*scope: http://www.mbl.edu/microscope

Eucaryote
Cercomonadidae
Cercomonadida incertae sedis

Pseudopirsonia Kiilhn Medlin & Eller new genus:
Obligate parasitoid nanoflagellate that preys on ma-
rine diatoms. Cell with apical “nose”, two medianly
inserted flagella; feeds by means of a trophosome;
dividing auxosomes are globular and covered by a
mucilaginous coat, frequently with adhering bacte-
ria; movement gliding rather than swimming, feeds
on the diatoms Rhizosolenia imbricata, R. setigera,
Leptocylindrus danicus, Guinardia delicatula and G.
flaccida.

With one species: Pseudopirsonia mucosa
(Drebes) Kiihn & Eller, comb. nov.

Basionym: Pirsonia mucosa DREBES 1996, Hel-
golander Meeresunters 50; P. 219, Figure 6.

Methods

Materials: Pirsonia species were isolated from
plankton samples collected with a 20 or 80 um mesh
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plankton net off List/Sylt in the German Wadden Sea
or off Helgoland (North Sea) over a period of 7 years.
Cultures were established by isolating diatoms in-
fected by Pirsonia. The isolation of infected cells
was carried out using a mouth pipette. Each para-
sitoid strain was maintained in culture with its re-
spective diatom host(s). A few pl of infected cultures
were transferred into new host cultures when most
diatoms were infected. Three Pirsonia strains (99-1,
99-2, 99-S), described here as P. formosa, were iso-
lated in September 1999 off List/Sylt and main-
tained with Guinardia delicatula as host. All Pirsonia
species that are cultivated, currently P. formosa and
P. diadema, and the DNA preparations of all species
investigated can be obtained from Stefanie Kiihn,
University of Bremen.

DNA extraction: Parasitoids were harvested by
centrifugation after all diatom cells in the culture
were infected and their protoplasts consumed. This
late stage of infection was chosen to prevent con-
tamination of the parasitoid DNA preparation with
diatom DNA. The culture pellets were used directly
for DNA extraction. Total DNA was obtained using
3% CTAB (hexadecyl-trimethyl-ammonium-bro-
mide) procedure as described by Doyle and Doyle
(1990). Cells were lysed in 3% CTAB buffer at 60 °C
for 1 h. DNA was purified by subsequent extraction
with phenol/chloroform/isoamylalcohol (PCI) and
chloroform/isoamylalcohol (Cl). DNA was precipi-
tated with isopropanol and the pellet washed with
ethanol. After resuspension in PCR grade water,
RNA and proteins were removed (Rnase and Pro-
teinase K treatment), proteins extracted again with
PClI and Cl and DNA precipitated with 100%
ethanol. Finally, DNA was resuspended in pH stabi-
lized PCR grade water and concentration estimated
photometrically by measuring the adsorption at 260
nm.

PCR amplification: The SSU rRNA genes of the
parasitoids were amplified using the universal eu-
karyotic primers 1F (5"- AAC CTG GTT GAT CCT
GCC AGT A-3’) and 1528R (5-GAT CCT TCT GCA
GGT TCA CCT AC-3’) as described by Medlin et al.
(1988). Each 100 pl PCR reaction contained 10 pl of
10x reaction buffer (100 mM Tris (pH 8.4), 500 mM
KCI, 20 mM MgCl,, 0.1% gelatine), 0.1 mM of each
dNTP, 0.1 uM of each primer, and 2.5 to 5 units of
Ampli-Tag DNA polymerase (Perkin-Elmer, Roche
Molecular Systems, USA). Two different cycling pro-
tocols were followed. In the first protocol, PCR reac-
tions were performed with hot start, using a Perkin-
Elmer-Cetus thermocycler. After the initial denatura-
tion at 95 °C for 6 min, the Tag polymerase was
added to the reaction mix. The cycler cooled to
60 °C, followed by 29 cycles of 72 °C for 4 min,
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94 °C for 2 min, 45 °C for 2 min, and a final extension
step 72 °C for 9 min. For the second protocol, PCR
reactions were prepared including the Taq poly-
merase and cooled on ice until placed in an Eppen-
dorf Mastercycler Gradient (Eppendorf, Germany),
with the block preheated to 94 °C (lid 105 °C). After
the initial denaturation (94 °C, 5 min), 30 cycles of
94 °C for 2 min, annealing at 56 °C for 2 min and
elongation at 72 °C for 4 min were carried out, fol-
lowed by a final extension at 72 °C for 10 min and
cooling to 4 °C. Amplification products were
checked for appropriate length and purity by
agarose gel electrophoresis and the template con-
centration varied until sharp single bands were
achieved for each DNA. Both amplification proto-
cols resulted in high quality PCR products.

Sequencing: PCR products were purified using
the QIAQuick PCR purification or the MiniElute Kit
(QIAGEN, Germany) following the instructions of the
manufacturer. Sequencing reactions were per-
formed following two different methods. First, the
Sequi-Therm-Cycle Sequencing kit from BIOZYM
(Germany) was used, with up to 200 ng template per
reaction and following the instructions of the manu-
facturer. Sequencing reactions were run on an auto-
mated Licor sequencer (MWG, Ebersberg, Ger-
many). For the second protocol, the Big Dye Termi-
nator Ready Reaction Mix (BigDye v.3.0, Applied
Biosystems) was used, following the instructions of
the manufacturer. Approximately 10 ng template
were added to each reaction mix and the annealing
temperature was set to 50 °C for all primers used.
Sequences were determined with a capillary se-
quencer (ABI Prism 3100 Genetic Analyzer, Applied
Biosystems). To achieve full length double strand
reads of the SSU rDNA, primers 528F (5’-GCG-
GTAATTCCAGCTCCAA-3’), 1055F (5-GGTGGTG-
CATGGCCGTTCTT-3’), 536R (5-AATTACCGCG-
GCKGCTGG CA-3'), and 1055R (5-ACGGCCATG-
CACCACCACCCAT-3") were used in addition to the
primer set 1F/1528R. All sequence outputs were
checked manually and consensus sequences calcu-
lated using different software packages (DONAMAN,
BioEdit (Hall 1999), SegMan (DNA-Star, Lasergene)).

Nucleotide Accession Numbers: The Pirsonia
SSU rDNA sequences have the accession numbers
AJ561109 to AJ561115, the Pseudopirsonia SSU
rDNA sequences has the accession number
AJ561116.

Phylogenetic analysis: Pirsonia and Pseudo-
pirsonia sequences were checked for closest rela-
tives in GenBank by BLAST Search
(http://www.ncbi.nlm.nih.gov/BLAST). For phyloge-
netic analysis Pirsonia and Pseudopirsonia se-
quences and sequences of their closest relatives
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found in GenBank were imported into a dataset of
small subunit rDNA sequences using the ARB soft-
ware package (Ludwig et al. 2003). In total, the
dataset used for our phylogenetic analysis included
15000 sequences from the small subunit rRNA gene
from prokaryotic (~14000 sequences) and eukary-
otic (~1000 sequences) organisms. For the more
detailed analysis of the position of Pirsonia and
Pseudopirsonia among the eukaryotes, 162 se-
quences from eukaryotic small subunit rRNA genes
were used. To exclude highly variable alignment po-
sitions from the analysis, a 50% base frequency fil-
ter was constructed for the Pirsonia and Pseudopir-
sonia sequences, excluding positions where less
than 50% of the sequences had the same nu-
cleotide. This filter resulted in 1807 valid columns
out of the 6700 alignment positions. It was applied
for all different analysis methods used for the 162
sequences data set described below. In addition to
the filter, correction algorithms were used to ac-
count for possible multiple substitutions (Jukes-
Cantor Correction, Jukes and Cantor 1969) and
branch attraction (Felsenstein correction, Felsen-
stein 1978). Multiple substitutions are expected to
occur mainly in highly variable positions and should
therefore in the analysis carried out here be already
mainly excluded by the 50% base frequency filter.
Tree topologies were calculated with and without
the 50% base frequency filter and with and without
the different correction models and resulting trees
compared.

Distance analysis of the sequences was carried
out using the Neighbour Joining (NJ) algorithm as
implemented into the ARB software package (based
on the algorithms described by Saitou and Nei
(1987)) and as given in the Phylip package (J.
Felsenstein, University of Washington, Phylip 3.5
and 3.6). Additionally, Maximum Parsimony (MP)
and Maximum Likelihood (ML) analyses were car-
ried out on the same dataset as used for the NJ
analysis, to compare different evolutionary models.
The MP method used was based on the PhylipDNA-
Pars program (Version3.5¢ by J. Felsenstein, Copy-
right 1986-1993), as implemented in the ARB soft-
ware. For ML calculations, the fastDNAmI tool (ver-
sion 1.2) was used as given in ARB and described
by Olsen et al. (1994) and Felsenstein (1981). The
comparison of the resulting tree topologies of all dif-
ferent algorithm combinations showed, that the
main clusters of sequences stayed constant and did
not depend on the analysis algorithm or correction
model used. A bootstrap analysis was performed for
the NJ analysis in the Phylip package and for the MP
analysis in the ARB package using 1000 replicates
(Felsenstein 1985). The dendograms shown in Fig-

ure 3A and B were based on the dendogram calcu-
lated with the ML algorithm, which included 72004
trees.

To analyse the branching order within the genus
Pirsonia a set of 10 sequences was used, including
the Pirsonia, Hyphochytrium catenoides and Rhizi-
diomyces apophysatus. All unambiguously aligned
positions were used for these analyses, resulting in
1835 valid columns. Bootstrapping was carried out
with 1000 replicates and the NJ, MP and ML algo-
rithms were applied as implemented in the Phylip
software package (Fig. 4A-C). The dendograms
shown in Figure 4A—C were calculated using the
ARB software package without bootstrapping and
adapted manually to the bootstrap results calcu-
lated with the Phylip software.

Probe design: A probe specific for Pirsonia was
designed using the ARB software package and its
subfunction “probe design”. The suggested probe
sequences were checked for specificity using the
“probe match” function implemented in ARB. The
probe sequences with the highest number of mis-
matches to non-target sequences and a location of
the mismatches in the center of the probe sequence
were further checked in Genbank. The probe se-
quence selected according to the “in-silico” results
was ordered (MWG-Biotech, Germany) and DIG la-
belled according to the instructions of the manufac-
turer (DIG Oligonucleotide Tailing Kit, Boehringer
Mannheim, Germany). The specificity of the probe
was tested with PCR amplified SSU rRNA genes in
dot blot hybridisations.

Probe labelling and dot blot hybridisation: Un-
labelled probes were supplied by MWG-Biotech
(Ebersberg, Germany) and labelled with DIG using
the DIG Oligonucleotide Tailing Kit (Boehringer
Mannheim, Germany) following the instructions of
the manufacturer. Labelled probes were mixed with
dot blot hybridisation buffer to a final probe concen-
tration of approximately 0.1 pmol mI~'. PCR prod-
ucts were denatured by heating to 95 °C for 5to 10
min and immediately chilled on ice. For each
species tested, triplicates of 1 ul PCR product were
dripped onto positively charged nylon membranes
(Boehringer Mannheim, Germany), air dried and
cross linked to the membrane by UV radiation for 2 x
90 s. Membranes were pre-hybridised in hybridisa-
tion buffer (65 x SSC, 0.1% N-Laurylsarcosine,
0.02% SDS, 1% blocking solution) without probe for
2 to 4 h at hybridisation temperature. After that
buffer was exchanged to probe-buffer mix and hy-
bridisation carried out over night in a hybridisation
oven (Appligene, Germany). Detection was carried
out using the DIG detection kit and CSPD
(Roche/Enzo, Germany), following the instructions



of the manufacturer. Signals were detected by expo-
sure to X-ray films for 15 minto 4 h.
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