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Abstract

Sequential Important Resampling filter (SIRF) is applied for assimilating time-series data into an ecosystem model. Advantage of this Monte-Carlo based data
assimilation approach for combined state and parameter estimation in ecosystem modelling has been already demonstrated in previous studies (Losa et al.,
2003). Some aspects of the SIRF implementation for the highly non-linear system, however, still remain to be worked out. The filter is known to suffer from
degeneration of the ensemble if either the system noise does not provide sufficient spreading of states which are resampled several times or the ensemble badly
approximates the true prior distribution (the distance between the best member and the true state is too big). This problem is even more pronounced in the
case of simultaneous state-parameter estimation where regenerating the number of samples in the parameter space is needed. In this study, we are focusing on
the model noise optimization. Investigating the system noise would, probably, allow us to explain the notable seasonality obtained for some of the optimized

parameters in our previous study (Losa et al., 2003).

1 Method

SEQUENTIAL IMPORTANCE RESAMPLING FILTERING

Prediction. Each ensemble
Initialization. An ensemble of| |/member evolves In accordance
initial conditions and model pa-| [to model equations which are
rameters % k = 1,..N is| |perturbed by a model noise till

drawn from a prior distribution.| [the next analysis step j+1 when
data d ;1 become available.

Filtering. Assign to each
VR k= 1,...N a weight w
7 : 71
according to the distance be-
tween the state described by ¢}

and the data d; ;.
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Resampling. Assign these
weights w¥ | as probabilities

for each ensemble member to
be resampled independently N
times with replacement.

Prediction. The resampled en-
semble wé?ﬂ,k — 1,...N with
some noise added to the param-
eters evolves till the next analy-

SIS step.

time step=j

Previously we estimated a proper level of
themodel noise simply by trial- and er-
rors”.

Now we suggest considering levels (£) of
the system noise e as additional parame-
ters to be optimized at every analysis step.

2 Experiment

Model noise generating (and estimat-
Ing) and jittering model parameters are
two the very crucial factors affecting
the filter performance and preventing
the “ensemble collapse”

time steb:j+1
(data are available)

Time

2.5 Dataand weighting

profiles for the same period. The UML depth is determined as the depth at which the temperature
is 0.59C less than that at the surface.
The relative weights w” are calculated under the assumption of Gaussian data errors . ke

J

wh = Cexp (—0.5 a;((?bs(Xk — X" )), g

ox IS the error levels of the observations.
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Figure 1: The evolution of the model noise variance

0
JMMJSNJMMJSNJMMJSNJMMJISNJIJMMJISNJIJMMIJ SN

for the period 1989 - 1994.

rameter set.

The parameters can be jittered by simply generating a new pa-

For example, if the parameter values are resampled many times,
at an analysis step, a new parameter ensemble can be generated
by redrawing from the uniform distribution whithin the interval
[p - nearest smaller value, p + nearest higher value].

2.1 Ensemablelnitialization

We have iImplemented the SIRF for
a highly non-linear nine-compartment
ecosystem model, which possesses 15

poorly-known model parameters.

2.2 Ecosystem model

Zooplankton kAmmonium
N

Detritus
(N&O)

Bacteria
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o) = Pexp (—i),

An ensemble ) of N = 1000 members is generated for state variables X and model parameters P,
Including the levels of the system noise £ € P, from an exponential distribution

W

mean of the distribution ¢ here assumed to equal to a first guess.

The ensamble particles evolves in accordance to the ecosystem model (see a schematic diagram, to the left) equations.
The ecosystem model used is built on the seven-compartment nitrogen-based model of Fasham et al (1990) (FDM-

model).

The schematic diagram shows the compartments and inter-compartmental flows of the upper mixed layer ecosystem.
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Previous parameter estimates
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Figure 3: The evolution of the estimates for the
model parameters obtained with a constant level of
the model noise (Losa et al., 2003). Values are nor-
malized with respect to model parameter initial val-
ues.

4 Conclusions

The obtained results, to some extent, prove
the idea that the notable seasonality obtained

for some of the biological parameters can be
linked to errors existing in forcing data and/or
to uncertainties in the used biological parame-
terizations.
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2.4 Optimized model parameters

11— phytoplankton maximum specific mortality rate;
k1 - half-saturation constant for nitrate uptake;

The model was constrained by data of the Bermuda Atlantic Time-series Study, particularly, by k> - half-saturation constant for ammonium uptake:
measurements (X fbs) of nitrate, chlorophyll, dissolved organic nitrogen and carbon concentrations ks - phytoplankton mortality half-saturation const.;
for the period December 1988 to January 1994. All the data were averaged over the upper mixed i —nitrate uptake ammonium inhibition parameter;
layer (UML). The UML thickness were estimated by means of an analysis of BATS temperature o —initial slope of the > — I curve;

(o —zooplankton maximum loss rate;

g  —zooplankton maximum ingestion;

ks  —zooplankton ingestion half-saturation constant;
— zooplankton loss rate half-saturation constant;
(3 — bacterial excretion rate;

V,,  — bacterial maximum uptake rate;

— bacterial half-saturation const. for uptake;

1y — detrital breakdown rate;

w - detrital sinking rate;

obs
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Figure 2: The time evolution of the ecosystem components at the Bermuda station for the period
1989-1994. The solid curve is a result of the sequential weak constraint parameter estimation. Red
circles are data for nitrate, chlorophyll, particular organic nitrogen and carbon. Bacteria data are
not assimilated.
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Figure 4: The evolution of the parameters tuned to BATS data for the period 1989 - 1994. Values
of the model parameters are normalized with respect to their initial values.
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