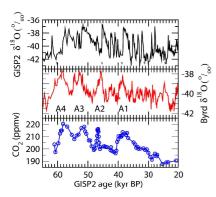
Simulated Changes in Vegetation Distribution, Land Carbon, and CO_2 in Response to a Collapse of the North Atlantic THC.

Fortunat Joos¹, Peter Köhler², Stefan Gerber³, and Reto Knutti⁴

- 1 Climate and Environmental Physics, Physics Institute, University of Bern, Switzerland, joos@climate.unibe.ch
- 2 Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- 3 Woodrow Wilson School for Public and International Affairs and Department of Ecology and Evolutionary Biology, Princeton University, NJ
- 4 National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder, CO 80307-3000 USA

OVERVIEW


To which extend did changes in vegetation distribution and terrestrial carbon storage contribute to glacial CO₂ fluctuations?

- Several millennial scale climate change events occured during the last glacial period, likely linked to changes in North Atlantic THC.
- The ice core CO₂ record shows multimillennial CO₂ variations of up to 20 ppm
- Pollen data suggest a reduction in NH tree cover during cold phases

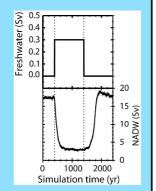
The Lund Potsdam Jena Dynamic Global Vegetation Model is forced with climate perturbations from glacial freshwater experiment with ECBILT-CLIO

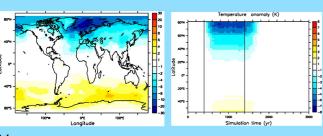
- Modelled NA THC collapses and recovers after about a millennium in response to freshwater forcing
- The initial cooling of several degree over Eurasia causes a dieback of extant boreal forests.

The simulated changes in atmospheric CO₂ and in vegetation cover are broadly compatible with the available evidence

The ice core record

Greenland (top) and Antarctic (middle) tem-perature fluctuations as recorded by the proxy d¹8O are asynchonous.

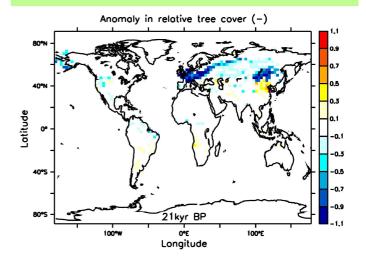

CO₂ fluctuations (bottom) of roughly 20 ppm occured broadly in parallel with the Antarctic warm phases A1 to A4

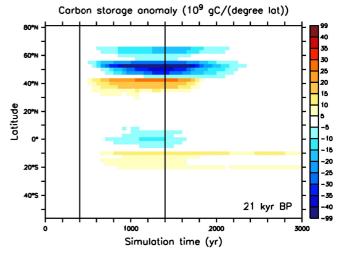

MODEL EXPERIMENTS

Right: The ECBILT-CLIO model is forced with a freshwater input (top), leading to a collapse of the North Atlantic Deepwater Formation (bottom)

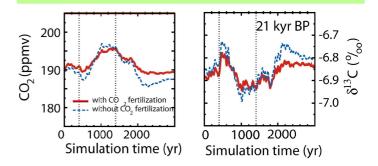
Below: The modeled temperature (and precipitation) anomalies (in K) are used to force the Lund Potsdam Jena Dynamic Global Vegetation Model

Atmospheric CO₂ is calculated by coupling the LPJ-DGVM to the HILDA ocean model. Changes in the marine carbon cycle are not addressed


References


P. Köhler, F. Joos, S. Gerber, and R. Knutti. Simulated changes in vegetation distribution, land carbon storage, and atmospheric CO₂ in response to a collapse of the North Atlantic thermohalline circulation. Climate Dynamics

Knutti, R., J. Flückiger, T.F. Stocker and A. Timmermann. Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. *Nature*, 430, 851-856, 2004.


RESULTS

Cooling associated with an NADW collapse causes forest dieback in high northern latitudes and better growing conditions in midlatitudes

Small Atmospheric ${\rm CO_2}$ and $_{\circ}$ ¹³C variations are compa-tible with evidence from ice cores and marine studies

Download Paper

www.climate.unibe.ch/~joos30/publications.html (Köhler et al.)