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Abstract

The steady rise of observations of harmful or toxic algal blooms throughout the world in the past decades constitute a menace for coastal
ecosystems and human interests. As a consequence, a number of programs have been launched to monitor the occurrence of harmful and toxic
algae. However, the identification is currently done by microscopic examination, which requires a broad taxonomic knowledge, expensive
equipment and is very time consuming. In order to facilitate the identification of toxic algae, an inexpensive and easy-to-handle DNA-biosensor
has been adapted for the electrochemical detection of the toxic dinoflagellateAlexandrium ostenfeldii. The detection of the toxic algae is
based on a sandwich hybridisation, which is carried out on a disposable sensor chip. A set of two probes for the species-specific identification
of A. ostenfeldiiwas developed. The specificity of the probes could be shown in dot-blot hybridisations and with the DNA-biosensor. The
sensitivity of the DNA-biosensor was optimised with respect to hybridisation temperature and NaCl-concentration and a significant increase
of the sensitivity of the DNA-biosensor could be obtained by a fragmentation of the rRNA prior to the hybridisation and by adding a helper
oligonucleotide, which binds in close proximity to the probes to the hybridisation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The safety and quality of the world’s coastal areas is
an important issue because they harbour complex ecosys-
tems and represent an important economic source with re-
gards to tourism, fishery and aquaculture. However, blooms
of microalgae that are potentially harmful with respect to
the ecosystem, public health or economic aspects frequently
affect coastal areas. Harmful algae can be classified into
three groups. The first group is not toxic, nevertheless, it
has the potential to harm the environment by forming dense
blooms that can cause an oxygen-depletion that results in
indiscriminate kills of fish and other organisms. Toxic al-
gae are assigned to a second group of harmful algae that
threaten the environment by the production of very potent
toxins, which can cause both animal and human poisoning.
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The third group of harmful algae comprises those microalgae
that either harm fish mechanically or by the production of
haemolytic substances (Hallegraeff, 1993). There are about
300 species known to have the potential to form algal blooms
and approximately 85 of theses species are potential toxin
producers (Sournia et al., 1991; IOC, 2002). The majority
of the known toxic algae species belongs to three divisions:
Cyanophyta, Dinophyta and Haptophyta (Fogg, 2002). How-
ever, the division Dinophyta contains the largest number of
harmful algal species (Taylor, 1985). Among the Dinoflag-
ellates there are about 20 species known to produce potent
toxins, for example, saxitoxins that cause the life threatening
syndrome paralytic shellfish poisoning (PSP). PSP is caused
by the consumption of contaminated shellfish (Hallegraeff,
1993). The dinoflagellateAlexandrium ostenfeldiiproduces
PSP-toxins (Hansen et al., 1992) and other toxins. Recently,
new toxins, including the spirolides, produced by the marine
dinoflagellateA. ostenfeldiihave been isolated. Mammalian
toxicity of spirolides was confirmed by mouse bioassays.
Spirolides proved to be highly toxic in intraperitoneal injec-
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tions of lipophilic, contaminated shellfish extracts in mice,
including neurological symptoms, followed by rapid death
(Cembella, 1998; Cembella et al., 2000; Hu et al., 2001).
The dinoflagellateA. ostenfeldiiis cosmopolitan, it has been
observed in the waters of Greenland (Hansen-Ostenfeld,
1913), Norway (Balech and Tangen, 1985), Spain (Fraga and
Sanchez, 1985), Denmark (Moestrup and Hansen, 1988),
Russia (Konovalova, 1991), Egypt (Balech, 1995), Canada
(Cembella et al., 1999) and New Zealand (McKenzie et al.,
1996).

In the light of the threats by the toxic algae that occur at
the coastlines all over the world (Hallegraeff, 1995) numer-
ous monitoring programs have been launched that observe
the phytoplankton composition on a regular basis. This is
done not only to initiate testing of toxin in shellfish, but also
to serve as an early warning system for fish-farms to avoid
economic damage caused by the bloom of a toxic algae that
has the potential to kill the caged fish. With regard to this
the European Union requires that the member states moni-
tor the water at their coastlines for toxin-producing plankton
and toxins in mussels (Directive 91/492d/EC and Commi-
sion Decision 2002/225/EC). Monitoring is very labour in-
tensive and costly. It requires the analysis of large numbers
of samples. Currently, the identification of phytoplankton
cells is done by taxonomy, which is based on a broad ex-
pertise of specially trained staff, expensive equipment like
electron microscopes and is very time consuming. There-
fore, a more rapid, secure and inexpensive method would be
welcome by all monitoring programs. In this respect the ap-
plication of DNA-biosensors could serve the needs of mon-
itoring programs. DNA-biosensors are known from various
areas of interest that take advantage of the hybridisation prin-
ciple e.g., in the face of the mailings of letters containing
Bacillus anthracisin fall of 2001 a biosensor for the spe-
cific identification of the bacterium was developed (Hartley
and Baeumner, 2003). The identification of organisms with
a DNA-biosensor is based on specific probes that target
DNA-sequences that are only present in the organism of in-
terest. In the past decade, numerous probes have been de-
veloped for the identification of phytoplankton and toxic al-
gae, respectively (Scholin and Anderson, 1998; Simon et al.,
2000). Here, we present the adaptation of a DNA-biosensor
for the electrochemical detection of the toxic dinoflagellate
A. ostenfeldiiwith molecular probes. The technical back-
ground of the device was presented in detail previously to
the public in the German patent application DE 10032 042
A1 (Elektrochemischer Einwegbiosensor für die quantitative
Bestimmung von Analytkonzentrationen in Flüssigkeiten).
The system is based on two major parts. The first part is a
disposable sensor chip and a handheld device for the mea-
surement of the electrochemical signal. The disposable sen-
sor chip consisting of a carrier material harbours a work-
ing electrode, on which the detection reaction takes place, a
reference electrode and an auxiliary electrode. The working
electrode has a diameter of 1 mm and consists of a carbon
paste. A biotinylated probe is immobilised in the reaction
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Fig. 1. Principle of the electrochemical detection of nucleic acids by a
sandwich hybridisation.

layer of the working electrode via avidin. The nucleic acids
are detected on the sensor chip via a sandwich-hybridisation
(Zammatteo et al., 1995; Rautio et al., 2003). The underly-
ing principle of this method is that one target specific probe,
here called capture probe, is immobilised on the surface of
the working electrode. If a target nucleic acid is bound to
the immobilised probe on the working electrode, the detec-
tion of the nucleic acid takes place via a hybridisation to
a second target specific probe, which is coupled to digoxy-
genin that is recognized by a digoxigenin specific antibody.
The antibody in turn is coupled to horseradish-peroxidase
that catalyses the reduction of hydrogen peroxide (substrate
of the horseradish-peroxidase) to water. The reduced perox-
idase is regenerated byp-aminodiphenylamin (ADPA), that
functions as a mediator. The oxidised mediator gets reduced
at the working electrode with a potential of−150 mV (ver-
sus Ag/AgCl) (Fig. 1). In this set up it is only possible to
measure an electrochemical signal, if the target nucleic acid
as the link between the two probes is present in the system.

2. Material and methods

2.1. Algal strains

The specificity of the probes targeting the 18S rRNA
of A. ostenfeldiiwas tested with the following strains:A.
ostenfeldiiK0287 and K0324 (Scandinavian Culture Cen-
tre for Algae and Protozoa, University of Copenhagen),
A. ostenfeldii BAH ME 136 (Biologische Anstalt Hel-
goland, Germany),Alexandrium minutumAL3T (Gulf of
Trieste, Italy, A. Beran),Alexandrium lusitanicumBAH
ME91 (Biologische Anstalt Helgoland, Germany),Alexan-
drium pseudogonyaulaxAP2T (Gulf of Trieste, Italy, A.
Beran),Alexandrium andersonii012b,Alexandrium taylori
AY2T (Lagoon of Marano, Italy, A. Beran),Alexandrium
affine CCMP112 (Provasoli–Guillard National Centre for
Culture of Marine Phytoplankton, USA),Alexandrium
tamarenseBAH ME182 (Biologische Anstalt Helgoland,
Germany),Alexandrium catanellaBAH ME217 (Biologis-
che Anstalt Helgoland, Germany),A. tamarense31/4 (Cork
Habor, Ireland, W. Higman),A. tamarenseSZN01 (Gulf
of Naples, 16/06/99),Gymnodinium variansCCMP421
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(Provasoli–Guillard National Centre for Culture of Marine
Phytoplankton, USA) andPyramimonas parkaeCCMP724
(Provasoli–Guillard National Centre for Culture of Marine
Phytoplankton, USA).

2.2. Culture conditions

All algal strains were cultured under sterile conditions in
seawater-based K-medium (Keller et al., 1987). The cultiva-
tion temperature was 15◦C and the cultures were exposed
to a photon irradiance rate of 150�E–200�E provided by
white lamps at a light:dark cycle of 14:10 h.

2.3. Isolation of nucleic acids

Total RNA was isolated from algal cultures with the
RNeasy Plant Mini Kit (Qiagen, Germany). Genomic DNA
was extracted from pure cultures with the DNeasy Plant
Mini Kit (Qiagen, Germany).

2.4. Dot-blot assay

Prior to the dot-blot analysis, the 18S-DNA of the target
organisms was amplified by PCR using the primer 1F and
1528R (Medlin et al., 1988). The PCR-fragments were pu-
rified with the Qiaquick PCR-Purification Kit (Qiagen, Ger-
many). The dot-blot assay was done according to previous
publications (Lange and Medlin, 2002). In this assay, the
hybridisation was carried out for at least 12 h with a probe
concentration of 1 pmol/ml at a hybridisation temperature of
56◦C.

2.5. Immobilisation of the probes on the sensor chip

Subsequent to an equilibration with Buffer 1 (50 mM
NaHCO3, pH 9.6), the working electrode was incubated with
NeutrAvidin [0.5 mg/ml] (Pierce Biotechnology, USA) for
at least 4.5 h at 4◦C. Excessive NeutrAvidin was removed
from the working electrode by washing the sensor with PBS
(BupH phosphate saline pack, Pierce Biotechnology, USA).
In the following the working electrode was blocked with 3%
[w/v] casein in PBS for 1 h and washed afterwards in PBS.
Prior to the immobilisation the probe was dissolved at a
concentration of 10�M in Buffer 2 (0.3 M NaCl/0.1 M Tris,
pH 7.6). The electrode was incubated for 30 min with the
probe at room temperature to immobilise the probe on the
electrode. To avoid evaporation, all incubations have been
carried out in a wet chamber. Excessive probe was removed
by washing the sensor with hybridisation buffer (75 mM
NaCl/20 mM Tris, pH 8.0/0.04% SDS).

2.6. RNA-fragmentation

The fragmentation was carried out in fragmentation buffer
(40 mM Tris, pH 8.0/100 mM KOAc/30 mM MgOAc) at
94◦C.

2.7. Hybridisation

Here, we describe a preliminary protocol that was used
prior to the adaptations that are presented in this publication.
In the following we refer to it as “standard protocol”. The hy-
bridisation mix contained 1× Hybridisation buffer (75 mM
NaCl/20 mM Tris, pH 8.0/0.04% SDS), 0.25�g/�l herring
sperm DNA, 0.1 pmol/�l dig-labeled probe and rRNA at dif-
ferent concentrations. To denature the target nucleic acid,
the hybridisation mix was incubated for 4 min at 94◦C prior
to the application onto the working electrode. The hybridi-
sation was carried out with 2�l of the hybridisation mix
for 30 min at 46◦C. To avoid evaporation the hybridisation
was carried out in a water-saturated wet chamber. Subse-
quent to the hybridisation the sensor chips were washed
with Buffer 3 (50 mM NaH2PO4 × H2O, pH 7.6/100 mM
NaCl).

2.8. Detection

The initial step of the detection reaction was an incubation
of 30 min of the sensor chip with horseradish-peroxidase,
which was coupled to an antibody that recognised Digox-
igenin (Anti-Dig POD). The sensor chip was incubated
with 1.5�l of the horseradish-peroxidase solution (7.5 U/ml
in PBS, pH 7.6/0.1% BSA [w/v]/0.05% Tween 20 [v/v]).
Prior to the detection, excessive enzyme was removed
by washing the sensor chips with Buffer 3. Subse-
quent to the washing step the sensor chip was connected
to the potentiostat and 20�l of the substrate solution
(4-aminophenylamine hydrochloride [44�g/ml]/0.44%
ethanol [v/v]/0.048% H2O2 [v/v]/50 mM NaH2PO4 ×
H2O/100 mM NaCl) was applied to the working elec-
trode. The electrochemical signal of the detection reaction
was measured directly after the application of the sub-
strate solution for 10 s at a potential of−150 mV (versus
Ag/AgCl).

3. Results

3.1. Probe design

For the sandwich-hybridisation two probes that specifi-
cally bind to the 18S-rRNA ofA. ostenfeldii(Table 1) have
been designed using the ARB software package (Ludwig
et al., 2004). The probes have at least two mismatches
against all non-target organisms listed in the ARB database.
The overall specificity of the probes was tested by doing
a BLAST search (Altschul et al., 1990) against all public
available sequences. To avoid possible effects of degra-
dation of the target nucleic acid the chosen probes were
located in close proximity to each other. The distance be-
tween the binding sites of the probe set that we present here
for A. ostenfeldiiwas 50 bp.



1352 K. Metfies et al. / Biosensors and Bioelectronics 20 (2005) 1349–1357

Table 1
Sequences of theA. ostenfeldiispecific probes and the helper oligo H3

Probe Probe sequence Position in 18S rRNA Tm (◦C)

AOST1 CAA CCC TTC CCA ATA GTC AGG T 180 64.3
AOST2 GAA TCA CCA AGG TTC CAA GCA G 232 66
H3 GCA TAT GAC TAC TGG CAG GAT C 210 58.5

3.2. Specificity of the probes

The specificity of the probes was tested separately for each
probe in a dot-blot-assay. The probes were tested against
PCR-fragments of the 18S-DNA of those species that had
the lowest number of mismatches and that were the nearest
neighbour in a phylogenetic tree (John et al., 2003). Addi-
tionally the probes were tested against more distantly related
species of the genusAlexandrium, G. variansandP. parkae.
The dot blot assay exhibited that both of the probes forA.
ostenfeldiiare highly specific. It was possible to observe
a hybridisation signal for all testedA. ostenfeldiistrains,
whereas no hybridisation signal could be observed for any
of the non-target organisms (Fig. 2).

Fig. 2. Dot-blot hybridization. Two filters (A, B) were used for hybrisation.
A-AOST1: hybridisation of filter A with AOST1. B-AOST2: hybridisation
of filter B with AOST2. A-EUK1209/B-EUK1209: control hybridisation
of both filters to the eukaryotic probe Euk1209 (Lim et al., 1993) to
ensure equal loading of the target DNA. All filters were spotted with the
following pattern: A1:A. ostenfeldiiK0287, A2:A. ostenfeldiiK0324, A3:
A. ostenfeldiiBAH ME 136, A4: A. ostenfeldiiAOSH1, B1:A. minutum
AL3T, B2: A. lusitanicumBAH ME 91, B3: A. pseudogonyaulaxAP2T,
B4: A. andersonii012b, C1:A. taylori AY2T, C2: A. affineCCMP 112,
C3: A. tamarenseBAH ME 182, C4:A. catanellaBAH ME 217, D1: A.
tamarense31/4, D2: A. tamarenseSZN01, D3: G. varians CCMP 421
and D4:P. parkaeCCMP 724.

3.3. Optimisation of the hybridisation protocol

The probes that have been previously shown to be spe-
cific for A. ostenfeldiiin the dot-blot-assay have been used
for a sandwich hybridisation of rRNA on a sensor chip. The
hybridisation was carried out according to the protocol de-
scribed in theSection 2. It was possible to measureA. osten-
feldii rRNA isolated from a laboratory strain with the hand-
held device. A calibration curve was established for different
rRNA concentrations (Fig. 3). The signal intensity was pro-
portional to the rRNA concentration applied to the sensor.
However, the calibration curve revealed a detection limit of
∼100 ng/�l rRNA for the handheld device. At this concen-
tration the signal is∼2× above the signal of the negative
control. In average, it was possible to isolate 0.02 ng rRNA
from a single cell (data not shown). If it is considered, that
250 cells/l ofAlexandriumcells would be the limit for a clo-
sure of a muscle-bed, a detection level of 100 ng/�l would
require at least a sampling volume of 40 l to gain enough
rRNA for a detection of this cell concentration with the hand-
held device. Therefore, the existing hybridisation protocol
needed to be optimised in order to increase the sensitivity
of the method. With this regard, parameters of the hybridis-
ation protocol that were known from literature to influence
the result of a hybridisation reaction have been optimised.
The quantitative results shown in the following sections are
based on measurements from eight independent hybridisa-
tions originating from two different RNA isolations.

3.4. Salt concentration and hybridisation temperature

The hybridisation of two single stranded nucleic acids
is determined by the salt concentration in the hybridisation
buffer and the hybridisation temperature. In the standard
protocol 46◦C hybridisation temperature and a salt concen-
tration of 75 mM were suggested as hybridisation condi-
tions. However, a determination of the melting temperature
(Breslauer et al., 1986) of the probes forA. ostenfeldiire-
vealed that 46◦C is ∼20◦C below the calculated melting
temperature of the probes, which is 64.3◦C for AOST1 and
66◦C for AOST2. Therefore, different hybridisation tem-
peratures and salt concentrations were tested in respect to
their effect on the hybridisation signal. Hybridisation sig-
nals resulting from hybridisations at 46◦C, 50◦C, 55◦C
and 60◦C were compared to each other. The strongest reli-
able improvement of the hybridisation signal was observed
at 55◦C. A hybridisation temperature of 55◦C was discov-
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Fig. 3. Calibration curve of different rRNA concentrations. The indicated rRNA concentrations have been hybridised to the sensor according to the
standard protocol.

ered to increase the hybridisation signal 2.9-fold. In addi-
tion, NaCl-concentrations of 75 mM, 150 mM, 300 mM and
600 mM were tested to optimise the hybridisation signal.
The strongest improvement of the hybridisation signal was
observed for a NaCl-concentration of 150 mM. At this con-
centration the hybridisation signal was increased 2.3-fold
in comparison to the original salt concentration of 75 mM
(Fig. 4).

3.5. Helper oligonucleotides

In previous publications, it has been discussed that the
secondary structure of the 16S-rRNA could entail problems
in hybridisation experiments (Fuchs et al., 1998; Behrens
et al., 2003). It was reported for FISH (fluorescence in situ
hybridisation) that the problems caused by the higher-order
structure could be overcome by the addition of unlabeled
helper oligonucleotides that bind in close proximity to the
probes. In this respect, the helper oligonucleotides have
a synergistic effect for the probe binding (Fuchs et al.,
2000). Here, we present a detection system that targets the
18S-rRNA, which is also known to form intense higher order
structures (Behrens et al., 2003). It was examined, if the ap-

Fig. 4. Optimised hybridisation conditions. All experiments were done with rRNA from the same isolation. The final concentration of the rRNA was
194 ng/�l.

plication of a helper oligonucleotide would also improve the
result of the sandwich hybridisation on the sensor chip. With
this regard a helper oligonucleotide was designed (Table 1),
which has a similar hybridisation temperature like the target
specific probes. The binding site of the oligonucleotide is lo-
cated in-between the two 18S-rRNA targeted probes. How-
ever, the sequence of the oligonucleotide is not specific for
the target organism. If the helper oligonucleotide was added
in a hybridisation experiment it could be observed that the
hybridisation signal in the presence of the helper oligonu-
cleotide was 1.8× higher than the signal observed for a hy-
bridisation in absence of the helper oligonucleotide (Fig. 4).

3.6. Fragmentation of the rRNA

As an alternative strategy to overcome the problems
caused by higher-order structures it was tested if a fragmen-
tation of the RNA would positively influence the hybridi-
sation signal. By the generation of smaller sized nucleic
acids a fragmentation of the RNA could avoid higher-order
structures and antagonise negative effects on the hybridis-
ation efficiency caused by steric hindrance because of the
size of the target nucleic acid. For fragmentation, the RNA



1354 K. Metfies et al. / Biosensors and Bioelectronics 20 (2005) 1349–1357

was incubated at 94◦C over periods of 5 min, 10 min and
35 min. It could be observed that a short incubation of the
RNA over a period of 5 min resulted in an increased signal
intensity of 5.7× compared to the non-fragmented RNA
(Fig. 4). However, the signal decreased if the incubation
was extended to 10 min and falls even below the signal
intensity of the non-fragmented RNA if it is incubated for
35 min (data not shown).

3.7. Combination of the optimised hybridisation
conditions

In the previously described experiments various param-
eters that influence a hybridisation have been optimised. It
was expected that a combination of parameters that antag-
onise the negative influence of the secondary structure on
hybridisations like temperature, helper oligonucleotide and
fragmentation of the rRNA, would have a synergistic effect
on the signal intensity. However, it was observed that only
the combination of the helper oligonucleotide with the frag-
mentation step had a weak synergistic effect in comparison
to the fragmentation alone (Fig. 4). This led us to the con-
clusion that the optimal hybridisation protocol consists of
a fragmentation step with an incubation of 5 min at 94◦C,
a hybridisation temperature of 46◦C and the addition of a
helper oligonucleotide that binds in close proximity to the
target specific probe (Fig. 4). With the optimised protocol it
was possible to increase the signal intensity 6.3× in com-
parison to the standard protocol.

3.8. Application of the detection system

The specificity of the optimised protocol was examined
in accordance to the dot-blot-assay. The rRNA isolated from
three different strains ofA. ostenfeldiiand the nearest neigh-

Fig. 5. The specificity of the DNA-biosensor was tested using RNA of the followingAlexandriumspecies:A. ostenfeldiiK0324, [0] K0287, BAH ME
136; A. minutumAL3T, A. lusitanicumBAH ME 91, A. andersonii012b,A. taylorii AY2T, A. tamarenseBAH ME 182. The concentration of the rRNA
was 250 ng/�l for all tested species.

bours in the phylogenetic tree (John et al., 2003) were used
for the sandwich hybridisation on a sensor chip. The results
of the hybridisation reveal that the normalised signal of the
rRNA isolated from different strains ofA. ostenfeldiiis sig-
nificantly higher than the signal of all non-target organisms
(Fig. 5). However, there is a weak cross hybridisation of the
probes withA. minutum(AL3T) and A. lusitanicum(BAH
ME91), which are the nearest neighbours ofA. ostenfeldii
in a phylogenetic tree analysis (John et al., 2003).

4. Discussion

Here, we present a chip-based electrochemical biosensor
for the identification of the toxic dinoflagellateA. osten-
feldii via a sandwich hybridisation on molecular level. The
biosensor is an inexpensive, easy and rapid technology for
the identification of phytoplankton. Electrochemical read-
ings of the handheld device and the protocols are unam-
biguous and even for a scientific layperson easy to use and
interpret. Therefore, this system has great potential to serve
as an alternative to conventional methods that are time con-
suming and expensive. In this publication, the sandwich hy-
bridisation is based on two probes that specifically target
the 18S-rRNA ofA. ostenfeldii. Probes that target rRNA se-
quences are routinely applied for the detection of microalgae
e.g., in combination with fluorescentin situ hybridisation or
dot-blot-assays (Guillou et al., 1999; Simon et al., 2000).
The use of rRNA for the identification of organisms with
the DNA-biosensor is advantageous because the molecule is
present in high numbers in a cell. In prokaryotes up to 80%
of the RNA is rRNA (Woese, 1987). This circumvents an
amplification of the target sequence, which is part of other
DNA-biosensor protocols (Baeumner et al., 2003; Hartley
and Baeumner, 2003; Litaker et al., 2000).
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4.1. Probes

The probes were designed using the ARB software pack-
age (Ludwig et al., 2004). The specificity of the probe set
was determined theoretically by comparing the sequences
with the sequences in the local ARB database and by doing a
blast-search against all public available sequences (Altschul
et al., 1990). In practice, the specificity of the probes was
shown in a dot-blot-assay and with the DNA-biosensor it-
self. In accordance to the theory, with both methods the sig-
nal for the target species was always significantly above the
signal for any non-target organism. To test the specificity of
the probes those species have been tested that had the low-
est number of mismatches to the target species and were the
closest relatives in the phylogenetic tree. It was set aside to
test more distantly related species because those species with
the lowest number of mismatches would have the highest
probability to result in an unspecific signal. High numbers
of mismatches antagonise probe binding. Therefore, more
distantly related species with higher numbers of mismatches
are not very likely to bind to the probe. It is unlikely that
a probe, which does not bind to a close relative of a target
species, would bind to more distantly related species, which
would have more mismatches. However, a weak cross hy-
bridisation was observed with the biosensor forA. lusitan-
icum andA. minutum, which are the next neighbours ofA.
ostenfeldiiin the phylogenetic tree. The main goal of the
biosensor is the detection of a toxic algae.A. minutumand
A. lusitanicumare synonyms for the same species (IOC,
2002) with the potential to cause paralytic shell fish poison-
ing (Chang et al., 1997; Hold et al., 2001). Even if a signal
would be only derived fromA. minutumit would still ac-
count for a serious threat. However, it has to be considered
that the number of sequences available in the databases re-
flects only a small amount of the number of species present
in the environment. Therefore, it is important to re-evaluate
the specificity of rRNA targeted probes on a regular basis
in respect to the continually growing number of algal 18S
rRNA sequences in public databases e.g., in the ribosomal
database project (RPD) (Maidak et al., 2001). The probes for
the sandwich hybridisation have been chosen with regard to
the distance of their binding sites in the 18S-rRNA molecule.
RNA is highly susceptible to degradation. To avoid effects
of degradation on the success of the sandwich hybridisation,
it was intended to choose a specific probe set with binding
sites in close proximity to each other. A sandwich hybridis-
ation based on probes that are located at a bigger distance to
each other are probably more vulnerable to effects of degra-
dation because it is very likely that a larger molecule is frag-
mented, which would prevent the two probes from binding
to the same molecule.

4.2. Optimisation of the hybridisation protocol

A preliminary hybridisation protocol had to be optimised
with regard to the sensitivity of the method. Single param-

eters of the hybridisation protocol like NaCl-concentration
in the hybridisation buffer, hybridisation temperature, addi-
tion of a helper-oligonucleotide, or a fragmentation of the
rRNA prior to the hybridisation were optimised separately
in regard to the hybridisation signal. However, a combina-
tion of the optimised parameters resulted only in a weak
synergistic effect if the fragmentation was combined with
an addition of the helper oligonucleotide. The weak syn-
ergistic effect of the optimised parameters could be ex-
plained in the way that the optimised hybridisation param-
eters aim all to break up the higher-order structures of the
target molecule. It is likely that the secondary structure was
already almost dissolved if a single optimised hybridisa-
tion parameter was applied and therefore, leaves only lit-
tle scope to further increase the signal intensity by com-
bining two optimal factors. However, with the optimised
protocol it was possible to increase the signal intensity by
a factor of 6.3. As a consequence, the detection limit of
the device is decreased accordingly. If the detection limit
of the device was 100 ng/�l with the standard protocol, it
is ∼16 ng/�l with the optimised protocol. With an average
yield of 0.02 ng/cell this equals 800 cells or a sampling vol-
ume of 6.4 l to get a detectable amount of rRNA from 250
cells/liter.

4.3. Limitations of the system

Besides the good performance of the device for the
identification of laboratory strains, it has to be determined,
how the device performs in field tests. This means in
particular, that it has to be examined, if it is possible to
correlate signal intensities with cell counts from water
samples. Currently, the system is limited by the manual
isolation of rRNA. It is possible that differently experi-
enced users could isolate different amounts of rRNA from
the same number of algae cells, resulting in signal inten-
sities that do not reflect the real situation in terms of cell
counts. In order to ensure reliable and reproducible results
it is desirable to automate the isolation of rRNA. Also,
the system has to be adapted to the wide variety of toxic
algae.

5. Conclusion

A DNA-biosensor was adapted to the electrochemical de-
tection of the toxic dinoflagellateA. ostenfeldiiand the sen-
sitivity of the DNA-biosensor was increased by an optimi-
sation of the hybridisation conditions. The electrochemical
DNA-biosensor presented in this publication is a proof of
principle for a DNA-handheld device that possesses the po-
tential to serve as a quick and easy method for the identi-
fication of toxic algae. The device could facilitate the work
that must be done in the course of monitoring toxic algae
by eliminating the need to count algae and reduce the need
for mouse bioassay.
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