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INTRODUCTION

Fluxes of macroscopic aggregates (marine snow) in
the water column not only regulate new production
and nutrient dynamics in the upper ocean (Eppley &
Peterson 1979), but also help sequester carbon to the
deep ocean. Marine diatoms are common components
of marine snow and the vertical particle flux recorded
by sediment traps during phytoplankton blooms (All-
dredge & Gotschalk 1990, Waite et al. 2005). Source
particles of marine snow interact with their surround-
ing environment and may change their physical and
chemical properties as a result. Many studies have
shown that marine snow is densely colonized by

microbes (Simon et al. 2002 and references therein),
whose activities may degrade and transform these
particles (Azam & Long 2001). High hydrolytic enzyme
activities of heterotrophic bacteria may break down
marine snow, thereby reducing the vertical flux of
organic matter (Smith et al. 1992, Grossart & Ploug
2001). In contrast, heterotrophic bacteria may increase
particle aggregation and stabilize existing aggregates
by exopolymer production (Decho 1990, Heissen-
berger & Herndl 1994). Based on their behaviour, 3
functional types of bacteria have been described (Rie-
man et al. 2000, Kirchman 2002, Grossart et al. 2005):
(1) bacteria that specialize in colonizing particles (‘par-
ticle specialists’); (2) free-living bacteria; and (3) bacte-
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ria that can grow in suspension as well as on particles
(‘generalists’). The predominance of one functional
type of bacteria may be indicative of specific inter-
actions between bacterial and algal communities in the
course of phytoplankton blooms.

The production of source particles and their subse-
quent aggregation is under continuous influence of the
aforementioned microbial processes in the ocean. In
previous studies we have developed an encounter
model to predict the rate at which bacteria colonize
marine snow particles (Kiørboe et al. 2002). Using agar
spheres as model aggregates, we studied bacterial
attachment, detachment, growth, cell–cell interac-
tions, and predation in detail (Kiørboe et al. 2001, 2002,
2003, Grossart et al. 2003b). In the present study we
examined how the microbial community affect marine
snow formation, and in turn how marine snow affects
microbial community composition and activities. We
tested the following specific hypotheses: (1) aggregate
formation is enhanced by the presence of attached
bacteria; (2) the ambient bacterial community will shift
from one dominated by ‘generalists’ to 2 distinct popu-
lations, one of ‘particle specialists’ and one of free-
living bacteria, as aggregate abundance increases;
(3) the attached bacterial community is specific to the
nature of POM (e.g. algal species). Our results show
that the presence of bacteria significantly changes
phytoplankton aggregation, suggesting that the fate of
algal aggregates may hinge on complex mutual effects
between the marine phytoplankton and the ambient
microbial community.

MATERIALS AND METHODS

Algal cultures. Two axenic marine diatoms, Thalas-
siosira weissflogii (CCMP 1053) and Navicula sp.
(CCMP 1703), which are common phytoplankton spe-
cies in the North Atlantic and other temperate waters,
were obtained from Provasoli-Guillard National Cen-
ter for Culture of Marine Phytoplankton (CCMP, ME,
USA). The algae were incubated in batch culture in
Guillard’s f/2 medium at 15°C in 1 l flasks and illumi-
nated for 24 h (daylight bulbs). 

Aggregation experiment. Exponentially growing
diatoms were diluted with raw seawater collected from
the Øresund (55° 10.05’ N, 12° 15.04’ E) and incubated
in 6 replicates in 1 l rolling bottles (3.2 rpm). Initial
algal concentrations were 1 to 2 × 104 cells ml–1. Con-
trols with axenic diatoms were set up in triplicates. All
bottles were sampled daily for aggregate abundance
and size, transparent exopolymer particles (TEP), pro-
teinaceous particles (Coomassie Brilliant Blue stain-
able particles, CSP), and for abundance and commu-
nity composition of free-living and attached bacteria.

In additional experiments agar spheres were exposed
for 1, 2, and 4 d to ambient water of the respective algal
cultures to measure colonization and detachment rates
of the bacteria (Kiørboe et al. 2003). The bottles were
removed from the rolling device daily to measure par-
ticle size spectra. The bottles were submerged in an
aquarium, illuminated with a ca. 1 mm thick sheet of
laser light (650 nm), and viewed from the side with a
CCD video camera equipped with a macro lens
(105 mm). Aggregates inside each bottle were kept
suspended for the duration of their recording (1 to
2 min). We could not avoid sedimentation during
recording on Days 5 and 6, when large aggregates
occurred in the Navicula sp. bottles. From each
sequence, 50 to 100 pictures were captured (every 25th
frame) and analyzed using VirtualDub (v1.6.11) and
ImageJ (freeware by W. Rasband). The view field was
7.37 × 5.42 mm2, which is equivalent to a volume of
40 mm3 per frame. Interlacing was ‘removed’ by Virtu-
alDub. Size calibration for recorded images was done
with standard 25 µm spheres (Lycopodium spores).
Free and cell surface-bound acidic exopolysaccharides
(TEP) and proteins (CSP) were detected during incu-
bation by staining with Alcian Blue (Logan et al. 1994)
and Coomassie Blue (Long & Azam 1996), respectively.
Aliquots of 1 to 5 ml were filtered onto 0.2 µm Nucle-
pore membranes and stained immediately after filtra-
tion. The filters were mounted on frosted slides (Cyto-
clearTM, Poretics) and examined with light microscopy.

Enumeration of microorganisms. For algae, flagel-
lates and attached bacteria, 5 ml of sample were fil-
tered through black 5.0 µm pore size Nuclepore mem-
branes; 1 ml of the filtrate was subsequently filtered
through black 0.2 µm Nuclepore membranes to collect
free-living bacteria. All flagellates directly sitting on
the particles were counted as attached flagellates
whereas free-living flagellates were unattached. Sam-
ples were stained with DAPI (4’6’diamidino-2-pheno-
lindole) or PicoGreen (Molecular Probes) and counted
using light and epifluorescence microscopy (Axioplan,
Zeiss) at 200 × to 1000 × magnification. At least 10 mi-
croscopic fields were counted (Grossart et al. 2003b). 

DNA extraction. Particle-bound bacteria and free
bacteria were separated by sequential filtration of
50 ml water samples through 5.0 and 0.2 µm Nuclepore
polycarbonate membranes. Filters were transferred to
sterile Eppendorf tubes and kept frozen at –20°C until
DNA extraction. Samples on Day 0 were taken after
12 h of inoculating the axenic algal cultures with
natural seawater bacteria. DNA of both free-living and
attached bacteria were extracted following the pro-
tocol of Zhou et al. (1996), which includes treatment
with zirkonium beads and a mixture of 60°C hot
phenol-chloroform-isoamylalcohol. DNA extraction
was checked on an agarose gel (1%). 
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Amplification of 16S rRNA genes and denaturing
gradient gel electrophoresis (DGGE). Amplification of
16S rRNA gene fragments and subsequent DGGE
analysis was performed according to Brinkhoff &
Muyzer (1997). An equal amount of DNA was loaded
in each lane (ca. 500 ng). DGGE gels were stained with
SYBRGold (Molecular Probes) for 45 min and illumi-
nated on a UV table (Biometra). Cluster analyses of
the DGGE banding patterns were performed using the
software GelCompare II, Version 3.5 (Applied Maths).
The gels were internally standardized by selecting
sequenced bands as standard. We applied 5 to 20%
background subtraction depending on the signal-to-
noise ratio of the corresponding gel. Patterns were
compared curve-based by using Pearson correlation as
similarity coefficient and UPGMA (unpaired group

method of analysis) to generate the dendrogram. We
used the curve-based approach instead of comparing
single bands because this analysis is more robust
(Ferrari & Hollibaugh 1999).

RESULTS

Abundance of algae, bacteria and flagellates

The development of microorganisms in both Thalas-
siosira weissflogii and Navicula sp. cultures was very
similar (Fig. 1). Both algae showed only a slight initial
increase in abundance and then a decrease. Free-
living bacteria increased until Day 4 and declined
thereafter. In contrast, attached bacteria increased
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continuously throughout the experiment. Free-living
flagellates were detected after 2 d and steadily in-
creased. Flagellates attached to particles were only
detected on the last day of the experiment and were
less abundant than the free-living ones.

The fraction of attached bacteria increased through-
out the incubation and reached up to 20.9 and 16.9%
of all bacteria in the Thalassiosira weissflogii and
Navicula sp. cultures, respectively. The fraction of
algal cells colonized by bacteria increased sharply
after 3 d in T. weissflogii and 2 d in Navicula sp. cul-
tures, during which time aggregates began to form
(see Fig. 1). By the end of the experiment, ca. 80% of
T. weissflogii and 70% of Navicula sp. cells were
colonized by bacteria.

Aggregation patterns

Aggregation of Thalassiosira weissflogii and Navic-
ula sp. was most evident when a substantial fraction of
the cells had been colonized by bacteria on Days 4 to 5.
The size of T. weissflogii aggregates remained small
on Days 0 and 1, and slightly increased on Days 2

and 3. It was different on Days 4 and 5
when large aggregates became evi-
dent (Fig. 2). This coincided with a
sharp increase in the fraction of T.
weissflogii cells that were colonized by
bacteria (Fig. 1). Temporal develop-
ment of the size spectra of Navicula sp.
aggregates was similar to that of T.
weissflogii, with a strong decrease in
small particles and a corresponding
slight increase in large particles
through time. Large aggregates were
visible in the Navicula sp. culture but
were not abundant enough to be
detected by our video system. Epifluo-
rescence microscopy revealed that
microcolonies of bacteria appeared to
glue individual algal cells together to
form aggregates. In contrast, axenic
cultures of T. weissflogii did not aggre-
gate even after 14 d of incubation.
Aggregation of axenic cultures of
Navicula sp. did not differ greatly from
that of non-axenic cultures and
showed increasing numbers and sizes
of aggregates throughout the incuba-
tion (data not shown). Aggregates of
axenic Navicula sp. did not disinte-
grate with vigorous shaking of the bot-
tles, indicating that the algae were
themselves highly sticky. No signifi-

cant amounts of free TEP or CSP were observed and
the aggregates were only slightly stained by the re-
spective histological dyes.

Bacterial community composition

Except for the Thalassiosira weissflogii culture on
Day 0, the free-living and attached bacterial communi-
ties were clearly different (Fig. 3). Banding patterns of
attached bacteria also revealed significant differences
between the 2 algal cultures. Throughout the incuba-
tion bacterial communities on both kinds of particles
became increasingly complex and different from those
in the ambient water, indicating the development of
highly specialised populations of attached bacteria
on the respective aggregates. In contrast, temporal
variations in community structure of free-living bacte-
ria in both algal cultures were much smaller. Differ-
ences in community composition of free bacteria
between the 2 algal cultures, however, increased on
Days 3 to 5 when the number of phytoplankton aggre-
gates and the fraction of colonized algal cells rapidly
increased.
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Bacterial colonization and detachment

Bacteria from the ambient water of both algal cul-
tures colonized agar spheres on Days 1 and 2 in a
similar manner as previously described by Kiørboe et
al. (2002). The number of attached cells increased at
a decelerating rate towards a (temporary) steady state
in which colonization was balanced by detachment
(Fig. 4). The level of the steady states decreased for
both cultures, with increasing incubation time indi-
cating differences in the behaviour of the respective
bacterial communities over time. The diffusivity of
the bacteria and their specific detachment rates
(Table 1) were estimated by fitting the model of Kiør-
boe et al. (2002) to the observations. There was a
decline in bacterial diffusivity between Days 1 and 2
in both algal cultures. The difference between
detachment and growth (d – μ), however, did not sig-
nificantly change between Days 1 and 2 in Thalas-
siosira weissflogii cultures whereas it significantly
increased in Navicula sp. cultures, indicating differ-

ent bacterial behaviour in the 2 algal cultures. On
Day 4 bacterial abundances did not saturate on our
model particles within the observation period, sug-
gesting that detachment was rapidly compensated by
presumably bacterial growth since bacteria colonized
the agar spheres at an overall lower rate on Day 4
than on Days 1 and 2.
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Fig. 3. Diatom culture experiments with non-axenic Thalassiosira weissflogii (ThWe) and Navicula sp. (NaSp). Cluster analysis of
DGGE banding patterns of free-living (FL) and attached bacteria (AT) over a 5 d incubation period. Samples on Day 0 were taken 

after 12 h of inoculating the axenic algal cultures with natural seawater bacteria

Phytoplankton  Day D d – μ
culture (10–5 cm2 s–1) (104 s–1)

Thalassiosira weissflogii 1 1.4 ± 0.3 1.4 ± 0.5
Thalassiosira weissflogii 2 0.4 ± 0.1 1.2 ± 0.5
Thalassiosira weissflogii 4 – –

Navicula sp. 1 2.1 ± 0.4 1.2 ± 0.6
Navicula sp. 2 0.5 ± 0.1 3.4 ± 0.6
Navicula sp. 4 – –

Table 1. Estimates (mean ± SD) of bacterial diffusivities (D)
and differences between detachment and growth rates (d – μ) 

for bacteria from the phytoplankton cultures (see Fig. 4)
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DISCUSSION

Heterotrophic bacteria are important for aggrega-
tion of phytoplankton cells, especially of marine
diatoms (Simon et al. 2002 and references therein,
Grossart et al. 2006). Previous studies (Deccho 1990,
Griebe 1991, Heissenberger & Herndl 1994) show that
bacteria colonizing marine diatoms produce large
amounts of exopolymeric substances, which increase
phytoplankton cell stickiness and aggregation. A simi-
lar aggregation pattern has also been observed in
rolling tank experiments with another diatom, Thalas-
siosira eccentrica (Griebe 1991). In our experiments we
have only observed small amounts of exopolymeric
material that was stained by either Alcian Blue or
Coomassie Brilliant Blue, indicating that attached

bacteria may produce different exopolymers (Böckel-
mann et al. 2002) and/or have other mechanisms to
influence surface properties of the algal cells (Becker
1996, Stürmeyer et al. 1998). Epifluorescence micro-
scopy revealed that bacteria often formed micro-
colonies embedded in an organic matrix that was
slightly stained by DAPI but not by the histological
dyes we used. We also observed that these micro-
colonies connected single algal cells with each other,
thus forming aggregates.

In contrast to Thalassiosira weissflogii, cells of the
diatom Navicula sp. secrete high amounts of exopoly-
meric substances (de Brouwer & Stal 2002), which
increases cell stickiness and aggregation even in the
absence of bacteria (Passow & Alldredge 1995). A
similar pattern was observed for the marine diatom
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Skeletonema costatum (H. P. Grossart & G. Czub
unpubl.) and is also frequently observed during aggre-
gation events of marine diatom blooms (Dam & Dra-
peau 1995, Grossart et al. 2003a, Waite et al. 2005).
Our microscopic studies revealed that the algal cells
were increasingly colonized by heterotrophic bacteria,
which accounted for a significant bacterial fraction at
the end of the incubation. Even though attached bacte-
ria are often characterized by extremely high rates of
cell-specific protease activities and bacterial produc-
tion rates (Smith et al. 1992, 1995, Grossart & Simon
1998, this study), they did not seem to alter aggrega-
tion dynamics of Navicula sp. in our study. However,
we observed that the axenic as well as non-axenic
algal cells were embedded in a kind of exopolymer
matrix that was stained neither by Alcian Blue nor
Coomassie Brilliant Blue. By using the 2 algae with dif-
ferent aggregation patterns, it becomes clear that the
role of heterotrophic bacteria for phytoplankton aggre-
gation and vertical sinking flux can vary greatly
among algal species. In natural and more diverse algal
and bacterial communities different mechanisms may
even exist at the same time. 

There is still uncertainty as to whether free-living
and particle-associated bacteria form distinct phylo-
genetic groups. Whereas Hollibaugh et al. (2000) did
not find significant differences between free-living
and attached bacteria, other authors demonstrate the
presence of distinct compositions between the two
fractions (DeLong et al. 1993, Bidle & Fletcher 1995,
Crump et al. 1999, Riemann et al. 2000, Grossart et al.
2005). In the present study, using diatom aggregates,
we demonstrated a change in the marine snow bacte-
rial community over time. Our experiments on colo-
nization of agar spheres with bacteria from both algal
experiments indicate that the rates of colonization sig-
nificantly decreased throughout the incubation, sug-
gesting that the population of ‘particle specialists’ in
the ambient water decreased with time. These results
were corroborated by the DGGE results, which
showed that the attached bacteria were increasingly
different phylogenetically from the free bacteria. Our
findings imply that the presence of marine snow may
induce a divergence of the ambient bacterial commu-
nity to 2 distinct populations of ‘particle specialists’
that are increasingly associated with the aggregates,
and ‘free bacteria’ that remain in suspension. Un-
coupling between POM hydrolysis and subsequent
uptake of hydrolysis products has been previously
reported for attached bacteria and result in DOM
release from marine aggregates (Smith et al. 1992,
Grossart & Simon 1998, Grossart & Ploug 2001), which
may stimulate the growth of even the surrounding
free bacteria (Grossart & Simon 1998, Kiørboe et al.
2001).

Bacterial abundance on marine snow particles is
initially driven by a balance between bacterial attach-
ment and detachment (Kiørboe et al. 2002), and subse-
quently by bacterial growth on the particle surfaces
(Kiørboe et al. 2003). In the present study, percentages
of attached bacteria greatly changed over time. In
addition to bacterial colonization and growth, preda-
tion may also affect bacterial abundance and commu-
nity composition on marine snow (e.g. Caron et al.
1982, 2imek et al. 2003). Microscopic observations
revealed that when flagellates were present bacterial
distribution tended to be patchy on the agar spheres,
indicating a selection for grazing-resistant bacteria
and their subsequent growth into patches. 

In summary, the presence of heterotrophic bacteria
can lead to dramatic changes in phytoplankton aggre-
gation. In cultures of Thalassiosira weissflogii bacteria
are a prerequisite for the formation of aggregates
whereas in cultures of Navicula sp. bacteria seem to be
of minor importance for algal aggregation. Varying
roles of heterotrophic bacteria in phytoplankton
aggregation can be explained by differences in algal
exopolymer release, cell stickiness, and presumably
bacterial community composition (Grossart et al. 2005).
Through the interactions with algal aggregates and
particles the bacterial community increasingly diverge
into 2 specialized groups of bacteria: free-living and
attached bacteria, which are highly restricted to their
respective microenvironments. The development of
these separate communities has profound implications
for biogeochemical processes such as particle aggre-
gation and degradation but also for trophic inter-
actions.
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