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INTRODUCTION

The upper ocean ecosystem provides the ‘medium’
for vast amounts of inorganic carbon to be fixed by
phytoplankton and picophytoplankton (~45 gigatons of
CO2 fixed per year; Falkowski et al. 1998), mostly in the

form of organic macromolecules such as proteins, poly-
saccharides, and lipid complexes. The fate of this car-
bon is balanced between transport to the deep and uti-
lization in the upper ocean by bacteria, potentially by
Archaea, and by heterotrophic grazers. Carbon utiliza-
tion by marine bacteria is often inferred through deter-
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ABSTRACT: A 20 d seawater mesocosm experiment was conducted to study microbial loop and car-
bon cycling dynamics in 3 experimental systems of different trophic status. Two mesocosms were
supplemented with phytoplankton (Phaeocystis in one mesocosm and diatoms in another). This
report details the variations in bacterial community composition and in carbon utilization potential
investigated via assays measuring the hydrolysis of complex polysaccharides and a simple peptide
compound. The first half of the study period was dominated by bacterial growth and large shifts in
community composition coinciding with utilization of the organic carbon present at the beginning of
the experiment, as shown by hydrolysis of specific polysaccharides and drawdown of labile dissolved
organic carbon. During the second half of the experiment, bacterioplankton abundance, composition,
and enzymatic activities changed in response to the experimental treatments. Multiple correlation
analyses implicated co-variation between rRNA gene DGGE phylotypes (e.g. Alphaproteobacteria,
Gammaproteobacteria, and Bacteroidetes) and specific combinations of environmental parameters
and carbon resources, indicating phylotypic specialization to the experimental mesocosm conditions.
Similarly, hydrolysis of 3 polysaccharides (xylan, chondroitin, and Isochrysis extract) correlated
significantly with particular phylotypes, providing evidence of species-specific influences on carbon
utilization that varied temporally over the experiment period. Aminopeptidase activity mirrored
biomass accumulation, as indicated by positive correlations (>0.80) with most biomass indicators de-
termined. These results illustrate that combined molecular and biochemical analysis of active micro-
bial communities can illuminate linkages between specific organisms and important ecosystem
processes such as carbon utilization. Additionally, our findings show that trophic status was reflected
in community composition and carbon utilization activities.
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mining growth by measuring thymidine incorporation
into DNA (Fuhrman & Azam 1982) or protein produc-
tion rates by measuring leucine incorporation into pro-
tein (Kirchman et al. 1985). The bulk of bioreactive dis-
solved organic carbon (DOC) in the ocean is of high
molecular weight (Amon & Benner 1994), a significant
portion of which comprises polysaccharides and to a
lesser extent proteins (McCarthy et al. 1996). These
macromolecules are enzymatically hydrolyzed to low-
molecular-weight forms for microbial utilization (War-
ren 1996). Thus, marine bacteria play an important role
in the hydrolysis of macromolecules in the oceans, an
essential step in secondary production processes.

Molecular biological approaches have demonstrated
that marine bacteria are very diverse (Giovannoni &
Rappe 2000), particularly at the population level
(Thompson et al. 2004), as revealed by small subunit
(SSU) rRNA gene surveys. However, the connection
between phylogenetic diversity and ecological func-
tion is typically quite tenuous. Knowledge of bacterial
functional capabilities has mostly been limited to stud-
ies of cultures, which are not necessarily representa-
tive of the diversity found in natural marine systems,
and studies of in situ biogeochemical transformations.
Technological improvements over the past 10 yr are
beginning to provide insight into these previously
obscured connections. Whole genome sequencing of
isolates with important biogeochemical capabilities
that are dominant in the ocean (e.g. Silicibacter
pomeroyi, Pelagiobacter ubique, and Prochlorococcus
sp.), and sequencing of ocean metagenomic systems
(e.g. DeLong et al. 2006), in which new capabilities
and connections between phylogeny and function are
being realized, have been of particular use.

An essential aspect of understanding carbon cycling
in marine systems is knowledge of organism-specific
metabolic capabilities, as well as ecological interactions
with physical, chemical, and biological environmental
conditions. For example, little is known about the spe-
cific microorganisms responsible for hydrolysis of or-
ganic macromolecules. Bacteria typically associated
with particulate matter (such as the marine Cytophaga,
a class of the Bacteroidetes phylum) are implicated fre-
quently in these processes (Cottrell & Kirchman 2000).
The recently sequenced genome of Polaribacter irgen-
sii supports this hypothesis as a large number of
aminopeptidase (9) and glycosidase (4) enzymes have
been identified (A. E. Murray unpubl. results). Another
recently sequenced organism, Silicibacter pomeroyi,
has a high genomic capacity for peptide utilization (4 of
the same aminopeptidases identified in P. irgensii)
compared to high-molecular-weight polysaccharide
hydrolytic capabilities (there are no corresponding gly-
cosidases to those identified in P. irgensii) (Moran et al.
2004), which may reflect its substrate preference.

Extracellular enzyme activity in marine systems has
been assessed using substrate analogs (monosaccha-
rides or amino acids linked to fluorophores) to estimate
the potential importance of proteins and polysaccha-
rides to marine bacteria in different ecosystems and
environmental settings. Increases in hydrolytic activity
in response to phytoplankton blooms have been tied to
community composition (Pinhassi & Hagström 2000)
and an increase in the enzyme (i.e. β-glucosidase)
diversity (Arrieta et al. 2004). Studies of microbial
enzyme activities using polysaccharides rather than
low-molecular-weight substrate proxies (Arnosti 1995)
have found that there can be a high degree of variabil-
ity in the extent to which different polysaccharides are
hydrolyzed (Arnosti 2000, Keith & Arnosti 2001), and
that there is substantial variability in the hydrolytic
capabilities of bacterioplankton communities on latitu-
dinal gradients (Arnosti et al. 2005a).

As part of a multi-faceted study to investigate the
dynamics of autotrophic and heterotrophic seawater
mesocosms, the present paper reports on marine bac-
terial abundance, community structure, and enzymatic
activity. We used PCR-DGGE (polymerase chain reac-
tion-denaturing gradient gel electrophoresis) to assess
the diversity and shifts of the community structure in
these experimental systems, plus a suite of fluores-
cently labeled polysaccharides, as well as a low-mole-
cular-weight peptide analog to measure enzymatic
activity concurrently. Thus, the aim of this study was to
determine the extent to which differences in net meta-
bolic status or phytoplankton species composition are
reflected in the composition and dynamics of the bac-
terial community, and the consequences of such differ-
ences for enzymatic processing of organic matter.

MATERIALS AND METHODS

Mesocosm description and sampling. Details of the
mesocosm experimental design, set-up, and chemical
analyses are described by Passow et al. (2007, this
issue). Briefly, three 1000 l polypropylene mesocosms
were filled with ~800 l of North Sea water sampled
ca. 1 km off Helgoland island, Germany, at 2 m. One-
half of the volume in each mesocosm passed through
1.2 µm cartridge filters; the other half passed through a
50 kDa Pellicon tangential flow filter system (Milli-
pore). This preliminary filtration aimed to remove the
majority of the larger components of the planktonic
assemblage (grazers and algae) and to reduce the col-
loidal carbon in the system. It also reduced the
prokaryotic counts to 2.16 × 104 cells ml–1 at the start of
the experiment and likely the viral particle abundance,
which was 2.76 × 106 cells ml–1 (A. E. Murray pers.
obs.). Equal densities of phytoplankton cultures were
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added to 2 of the mesocosms: 1.5 l of a non-axenic
Phaeocystis globosa culture was added to the Phaeo-
cystis tank, and 3 l each of axenic Chaetoceros deci-
piens and Thalassiosira pseudonana cultures were
added to the Diatom tank along with 15 µmol l–1 of sili-
cic acid as sodium metasilicate. There were no other
nutrient additions. The third mesocosm received noth-
ing else, and is referred to as the No Addition tank.
The experiment proceeded for 20 d, during which each
mesocosm was sampled approximately every other
day for biological and chemical analyses (for accompa-
nying data see Grossart et al. 2007, this issue, Passow
et al. 2007). Data presented reflect the time rounded to
the nearest ‘whole’ day, i.e. Day 3.7 = Day 4.

Seawater samples fixed with glutaraldehyde (1%
final concentration) were stained with DAPI, then
filtered (1 to 5 ml) onto black filters (0.2 µm polycarbon-
ate, Poretics; 2 replicates each), and counted immedi-
ately on a Zeiss microscope at 1000× magnification.
Notes on morphological diversity and cell size were
also taken. In addition, samples for nucleic acid extrac-
tion (10 l) were processed by filtration first through an
in-line 5.0 µm Durapore filter, followed by 0.2 µm Supor
Sterivex cartridges (Millipore), to which 1.8 ml of lysis
buffer (Massana et al. 1997) was added, and then the
filters were stored frozen (–80°C) until extraction.

DNA extraction and PCR-DGGE. Nucleic acids from
the free-living fraction (5.0 to 0.2 µm) were extracted
with enzymatic lysis (lysozyme and Proteinase K), fol-
lowed by purification with phenol:chloroform:isoamyl
alcohol (described by Massana et al. 1997). DNA was
quantified by Pico-Green (Molecular Probes) fluo-
rescence on a fluorometer (Labsystems Fluoroskan
Ascent), then stored at –20°C until analyzed. Riboso-
mal RNA gene fragments were amplified using PCR
and primers (GC358F and Bact517R) as described
previously (Murray et al. 1998). Briefly, PCR reactions
(100 µl each) included (at final concentration): deoxy-
nucleoside triphosphates (0.2 mM each), MgCl2
(3.5 mM), primers (1.0 µM each), Taq DNA polymerase
(0.5 U) (AmplitaqGold, ABI), PCR buffer (1×) supplied
with the Taq, and ca. 10 ng of template DNA. Samples
were amplified (ThermoHybaid PCR Express; 28
cycles) following Murray et al. (1998); reactions were
verified by agarose gel electrophoresis, then precipi-
tated in ethanol. The DNA from 2 PCR reactions was
pooled, then quantified using the Pico-Green method
prior to DGGE. Equal amounts of template, low cycle
numbers (Suzuki & Giovannoni 1996), and pooled PCR
reactions were used to reduce biases with PCR ampli-
fication.

Bacterial community PCR-DGGE analysis and inher-
ent limitations of the approach have been previously
described (Schäfer & Müyzer 2001). In the present
study, purified nucleic acid samples (800 ng each) were

separated by electrophoresis using a BioRad DCode
DGGE apparatus on 8%, 1 mm polyacrylamide gels
with 35 to 60% denaturing gradient run at 1000 V × h
following Murray et al. (1996). Gel alignment chal-
lenges were mitigated by running common samples
(from Days 4, 12, and 20 from 2 mesocosms) along with
all samples (10) for 1 mesocosm in the same gel, result-
ing in a total of 3 gels. Gels were then stained in SYBR
Gold (Molecular Probes) for 15 min, UV-illuminated,
and photographed. The 3 digital gel images were then
processed independently using GelComparII (Applied
Maths) to detect bands, relative band fluorescence in-
tensities, and migration distances; together, these mea-
sures facilitated alignment of the gels and band com-
parisons between gels. An empirical cut-off for band
detection was set so that only bands with ≥1% of the to-
tal intensity for a given lane were counted.

DNA sequencing. Most DGGE bands with unique
migration points were excised (totaling 68), including
several with identical melting points in adjacent lanes
or different gels, for DNA sequence analysis. DNA was
eluted into sterile Milli-Q water following beadbeating
for 30 s, and bands were sequenced bidirectionally as
described by Martin et al. (2006), except we used
the original forward primer minus the GC clamp
(Bact358F) and the original reverse primer (Bact517R);
amplification conditions were the same as described
previously. Sequences were compared to the ‘nt’ and
‘env_nt’ nucleotide databases provided by the NCBI
using BLAST (April 2006 update; Altschul et al. 1990)
run locally. The DGGE band partial SSU rRNA gene
sequences have been deposited in GenBank under
accession numbers EU004152 to EU004185.

In a number of cases (18 of 33), co-migrating bands
(with putatively identical sequences) were sequenced
from different samples and mesocosms. In each of these
instances, at least 2 sequences were aligned and found
to be identical; thus, we chose 1 sequence as the ‘type’
sequence for that band. There were also several bands in
which re-amplification and sequencing of the DNA in
the excised DGGE bands did not result in high enough
quality sequences to report here (a total of 12 bands for
which sequences were not determined); these are most
commonly the result of multiple sequences contaminat-
ing the PCR or cycle sequencing reactions.

Measurement of polysaccharide hydrolase activi-
ties. Polysaccharide hydrolase activities were mea-
sured using the method of Arnosti (1995, 2003). In
brief, well-characterized, soluble fluorescently labeled
polysaccharides are added to a sample, and changes in
the molecular weight distribution of the polysaccha-
rides with time are measured. By knowing the initial
concentration and molecular weight distribution of the
added polysaccharide, as well as the incubation time,
hydrolysis rates can be calculated (Arnosti 1995).
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Fluorescently labeled substrates were prepared from
pullulan, laminarin, xylan, fucoidan, and chondroitin
sulfate (all from Sigma or Fluka) using the method of
Glabe et al. (1983), as modified by Arnosti (1995, 2003).
The Isochrysis extract was isolated from a culture of
Isochrysis sp. obtained from Reed Mariculture (Instant
AlgaePremium 3600, www.instant-algae.com), as de-
scribed by Arnosti et al. (2005b). Skeletonema sp.-
derived DOC was provided by H.-P. Grossart; it was
the dialysis product from the medium of a 27 d culture.
The Isochrysis- (16.4 mg) and Skeletonema-derived
(12 mg) DOC fractions were dissolved in 2 ml Milli-Q
water each, filtered (0.45 µm pore size), then fluores-
cently labeled using the method described by Arnosti
(2003).

Water samples (1 l) were collected from each meso-
cosm to monitor enzymatic hydrolysis rates. Mesocosm
water was dispensed in 20 ml portions into clean glass
vials, and a single fluorescently labeled substrate was
dispensed into to each sample vial. The 20 ml samples
were then divided to yield two 10 ml samples per sub-
strate. Substrate addition levels represent 35 nmol
monosaccharide-equivalent per 10 ml water sample;
these levels were increased by a factor of 4 for
fucoidan and chondroitin sulfate in Sets 3 and 4 (see
below). Addition of a substrate effectively doubled dis-
solved total carbohydrate concentrations (see Grossart
et al. 2007), and therefore should be saturating for the
enzymes involved. Samples used to test for activities of
free enzymes (enzymes not attached to bacteria/parti-
cles; laminarin, xylan, and chondroitin) were filtered
through 0.2 µm pore size, surfactant-free cellulose
acetate filters prior to substrate addition. Killed control
samples had 50 µl of a 50 mg HgCl2/20 ml Milli-Q solu-
tion added 5 min prior to substrate addition. Blank
samples, intended to monitor any possible photodegra-
dation of substrate, consisted of 20 ml of 0.2 µm filtered
Milli-Q water plus substrate. Four sets of vials were
incubated during the course of the mesocosm experi-
ment, beginning on the day after phytoplankton addi-
tion to the mesocosms (Mesocosm Day 1), and then on
Days 5, 9, and 13. Each set of vials was sub-sampled at
48, 96, and 144 h after substrate addition; Sets 1 to 3
were also sampled 240 h after substrate addition. The
sets were arranged so that sampling times from differ-
ent sets overlapped, e.g. 240 h of Set 1 was the same
time point as 144 h of Set 2 and 48 h of Set 3. Multiple
sets were required to monitor enzyme activities
throughout the experiment, since substrate hydrolysis
was completed (polysaccharides hydrolyzed entirely to
monomers) on time scales shorter than the length of
the mesocosm experiment. Each vial was sub-sampled
by withdrawing at each sampling time approximately
1.6 ml of sample with a disposable syringe and by fil-
tering the samples through 0.2 µm pore size filters

before freezing in clean glass vials for storage until
analysis. The samples for free enzyme activities (which
were already filtered through 0.2 µm pore size filters)
were not pre-filtered prior to freezing.

Samples were analyzed by gel permeation chro-
matography with fluorescence detection, and enzy-
matic hydrolysis rates were calculated by monitoring
the change in molecular weight distribution of sub-
strate with time, as described in detail by Arnosti
(1995, 2003). Theoretical turnover times of total dis-
solved carbohydrates (TCHO) were calculated by
dividing TCHO concentrations (Grossart et al. 2007) by
the summed enzyme activities for each time point.

Aminopeptidase activity measurements. Following
Hoppe et al. (1988), stock solutions of 0.5 and 5 mM
leucine-methyl-coumarinylamide-hydrochloride (Leu-
MCA) were made up in methyl cellosolve (ethylene
glycol monomethyl ether) obtained from Fluka and
Sigma-Aldrich. Leu-MCA from the stock solutions was
added to a series of 20 ml samples from the mesocosms
to achieve final Leu-MCA concentrations of 0.1 to
200 µM. From each vial, 2.5 ml was immediately
removed, and, to this, 200 µl of pH 10 buffer was
added, and the initial fluorescence was read on a
spectrofluorometer (excitation and emission wave-
lengths of 364 and 445 nm, respectively). Final fluores-
cence was measured on a second aliquot after 3 h of
incubation in the dark. The increase in fluorescence
over the incubation was used to calculate the velocity
of hydrolysis of the Leu-MCA substrate (in µM Leu-
MCA h–1). Michaelis-Menten curves were fit through
the data using the curve-fitting protocol of SigmaPlot
(Version 9.0) to yield the maximum potential hydro-
lysis rate (Vmax), and the half-saturation constant (Km),
for each mesocosm at each sampling date. Hydrolysis
rates of dissolved combined leucine at each time point
were also calculated via the Michaelis-Menton equa-
tion, v = (Vmax × S)/(Km + S), where v is the hydrolysis
rate at substrate concentration S. Turnover times of
dissolved combined leucine were obtained by dividing
the concentration of dissolved combined leucine at
each time point (Grossart et al. 2007) by v for that time
point.

Data analysis. The key to community composition
analysis is the recognition that all profiling approaches
have limits in sensitivity of detection. Estimates for
DGGE suggest bands representing >1 to 1.5% of a
complex assemblage can be detected (Murray et al.
1996). However, depending on the number of rRNA
operons per cell or species, DGGE can be even more
sensitive, allowing taxa comprising as little as 0.1 to
0.4% of the community to be detected (Kan et al.
2006). Presence/ absence of rRNA gene phylotypes
from the DGGE analyses were used to calculate Søren-
son’s index pairwise similarity values (CS; Magurran
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1988, adapted to DGGE analysis by Murray et al. 1996)
such that: CS = 2j/(a + b), where j is the number of
sequences found in common to both sites, a is the num-
ber of sequences at Site A, and b is the number of
sequences at Site B. The presence/absence, relative
band intensity, and enzyme hydrolysis data were also
used in multidimensional scaling (MDS) analyses (Sta-
tistica, v. 6.0, StatSoft; Kruskal 1964) to determine rela-
tionships over time in the mesocosms between the
community profiles and between the different hydro-
lytic activities. Scree plots were generated to deter-
mine the optimal number of dimensions (Kruskal &
Wish 1978), and a stress evaluation table (Sturrock &
Rocha 2000) was consulted to verify that the stress val-
ues observed were not the result of randomly arranged
data. Non-metric MDS stress in 2 dimensions with 30
objects (tested here) would have a 1% chance of being
random if the value was >0.328. To take further advan-
tage of the information in the DGGE gels, which is not
quantitative per se due to issues with PCR amplifica-
tion, we utilized the relative band intensity data as
others have done with DGGE data (Fromin et al. 2002),
ARISA (Hewson et al. 2007), and T-RFLP data (i.e.
Osborn et al. 2000). The relative band intensity data
were clustered in 2 dimensions (between DGGE
phylotypes and between the mesocosms over the 10
sampling dates) using the program Cluster based on
non-parametric Spearman rank correlations (Eisen et
al. 1998). Multiple correlation analysis based on the
Pearson correlation coefficient (Statistica, v. 6.0, Stat-
Soft) was conducted with phylotype relative intensity
data, the Leu-MCA hydrolysis rates, the polysaccha-
ride hydrolysis rates in comparison to 43 other meso-
cosm chemical and biological variables (Passow et al.
2007), and DOC constituents (amino acids and carbo-
hydrates; Grossart et al. 2007) to identify putative
relationships between organisms, rates, and environ-
mental conditions. A family error rate was used since
multiple tests were performed to account for correla-
tions arising by coincidence. Significant results for p <
0.01 and p < 0.001 are reported. Significant correla-
tions were validated by visual inspection of the data to
ensure that the correlations were attributed to non-
spurious data points.

RESULTS

Experimental setting

The goal of the present study was to follow carbon
utilization patterns and the structure of the free-living
bacterial community over the 20 d experimental
period. In the Diatom tank a significant bloom devel-
oped (55 µg chl a l–1 at the end of the experiment) fol-

lowing a long lag period, whereas the Phaeocystis tank
produced a small bloom (up to 2.1 µg chl a l–1) during
Days 10 to 14, which was then likely held under control
by grazing (Passow et al. 2007). Since we waited nearly
1 d for the systems to completely mix, the comparisons
are conducted with respect to Day 1 of the experiment.
A sample from the No Addition tank at the start of the
experiment was collected and analyzed by PCR-DGGE
along with the No Addition tank sample on Day 1 (data
not shown). The results suggest that there was very lit-
tle change in the phylotype richness in the first 18 h of
the experiment (CS = 0.94) in the No Addition tank. In
contrast, bacterial communities in both the Phaeocystis
and Diatom tanks were between 42 and 45% different
from the No Addition tank at T0 by Day 1 of the exper-
iment (CS = 0.58 and 0.55, respectively).

Bacterioplankton abundance

In all 3 tanks, bacterial numbers increased rapidly
and concurrently from their initially low abundances
over the first 4 d of the experiment, resulting from
ultrafiltration of half of the tank water (Fig. 1). This
rapid increase in abundance continued until Day 6 in
the Diatom tank, while it leveled off after Day 4 in the
other 2 mesocosms. In all mesocosms there was a peak
in bacterial abundance at Day 6, ranging from ca. 1 ×
106 cells ml–1 in the Phaeocystis and No Addition tanks,
to 2 × 106 cells ml–1 in the Diatom tank. Initially, long
cells dominated the bacterial population and by Day 4,
dividing bacteria were observed frequently in all
3 mesocosms. In the Diatom tank, bacteria were
observed to colonize senescent-looking diatoms.
Whereas bacterial abundances fell after Day 6 in the
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No Addition and Diatom tanks, they held steady in the
Phaeocystis tank through Day 12. During this period
the size of bacteria decreased in all 3 mesocosms.

After Day 12 bacterial concentration increased in the
Phaeocystis tank and remained higher than in the
other 2 mesocosms until Day 18 (Fig. 1). In the Diatom
tank a more continuous accumulation of bacteria was
observed between Days 12 and 20, whereas the No
Addition tank was characterized by only a small
increase in bacterial numbers after Day 12. These
accumulations of bacteria in all 3 mesocosms were
accompanied by a short-lived rise in morphological
diversity of bacteria, with numerous large cells by
Day 10 in the Diatom tank and by Day 14 in the No
Addition and Phaeocystis tanks. Overall, periods of
decreasing or constant bacterial numbers were associ-
ated with a low morphological diversity and a popula-
tion dominated by small cells, as is typical for a heavily
grazed population (2imek et al. 1997), whereas more
diverse morphotypes of bacteria emerged when bacte-
ria accumulated.

Bacterioplankton composition

Bacterial DNA (and plastid SSU rRNA genes) readily
amplified from the 5 to 0.2 µm free-living fraction.
Visual inspection of the denaturing gradient gel
showed that there were cosmopolitan bands (referred
to hereafter as phylotypes), as well as clear shifts in all
3 mesocosms over the experimental period (Fig. 2).

Overall, 55 unique phylotypes (both bacterial and plas-
tid) were detected: 36 in the No Addition tank, 40 in
the Phaeocystis tank, and 44 in the Diatom tank. The
total number of bands (in a lane or a set of lanes) is
referred to as the phylotype richness (Murray et al.
1996). The total phylotype richness declined in each
mesocosm from 17–21 to 15–18 phylotypes over the
first 6 d (though richness in the Phaeocystis tank was
already recovering after a low on Day 4), while at the
same time bacterial numbers increased in each meso-
cosm (Fig. 1). Subsequently, the phylotype richness in-
creased to between 22 and 23 phylotypes by Day 10 in
the No Addition and Diatom tanks, and, simultane-
ously, the bacterial abundance declined precipitously
to 9.3 × 105 and 5.9 × 105 cells ml–1, respectively. The
trend was weaker in the Phaeocystis tank, with the
richness increasing to 18 phylotypes, while bacterial
abundance stayed constant through Day 12. The
inverse relationship between richness and abundance
is not significant over the 20 d experimental period,
though over the first 10 d the 2 variables were nega-
tively correlated (r = –0.65, p = 0.04 for the No Addition
and Diatom tanks; r = –0.51, p = 0.05 for all 3). It
appeared that bacterial cell numbers were under con-
trol of grazers in the latter half of the experimental
period (Fig. 1); grazer abundance did not correlate
with phylotype richness.

Despite differences in mesocosm treatments and dy-
namics, 7 bacterial phylotypes were present through-
out all mesocosms on all dates (those across the hori-
zontal axis; Fig. 3), though some phylotypes were either
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Fig. 2. DGGE profiles of PCR amplified SSU rRNA gene fragments from free-living bacterioplankton during 3 parallel mesocosm
experiments sampled over a 20 d period: (A) a No Addition tank, (B) a second tank with a small Phaeocystis globosa bloom, and
(C) a third tank dominated by a diatom bloom over the last 6 d of the experiment. Days sampled are noted above each lane. DNA
sequences were obtained for those bands marked with numbers, while arrows point to bands excised that resulted in failed

sequencing reactions. This image is a composite of 3 DGGE gels
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more dominant in the earlier (E*) or later
(L*) parts of the experiment (Table 1).
Phylogenetic affiliation of these cosmo-
politan sequences was spread among
commonly encountered marine bacterial
groups, including 3 Gammaproteobacte-
ria (closest relatives were Glaciecola,
Colwellia, and OM182 sequences), 2 Bac-
teroidetes (1 in the Flavobacteriales),
a Roseobacter-related Alphaproteobac-
terium, and a rather distantly related
Betaproteobacterium phylotype. NA6-2,
the Glaciecola-related phylotype, was
the most dominant band in the No Addi-
tion and Diatom tanks and the second
most dominant band in the Phaeocystis
tank, and D6-1, the Flavobacteria-related
sequence, was the second or third most
abundant phylotype in the 3 tanks.

CS values comparing the presence/
absence of SSU rRNA gene phylotype
profiles for each sample indicate that
large shifts occurred over the first 4 d of
the experimental period, particularly in
the Phaeocystis and Diatom tanks (CS

within each mesocosm Day 1 vs. 4, No
Addition = 0.70, Phaeocystis = 0.38,
Diatom = 0.51). By the end of the experi-
ment, the No Addition (NA) community
had continued to shift away from the
starting composition such that CS

dropped to a low of 0.51 when Days 1
and 20 were compared. CS in the other 2
mesocosm communities (P: Phaeocystis;
D: Diatom) was more variable, such that
CS ranged between 0.67 and 0.44 for
comparisons of Days 1 vs. 12 and 1 vs. 18
for the Phaeocystis tank and from 0.62 to
0.46 for comparisons of Days 1 vs. 10 and
1 vs. 18 for the Diatom tank. Changes
were evident by gains and losses of spe-
cific phylotypes. For example, several
phylotypes (NA1-5, affiliated with the
Gammaproteobacteria; and P8-2, affili-
ated with the Alphaproteobacteria and
with P6-4, a Roseobacter-related phylo-
type with high relative intensity) were
present in the first 10 d of the experiment
(Table 1, Fig. 3). Others, such as D18-3
(which was identical over 137 bases to
an environmental Sulfitobacter-related
clone), D14-1 (a relatively strong phylo-
type), and NA1-3 (most closely related to
oligotrophic isolates from the Oregon
coast, OM182 and SAR92 Gammapro-
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teobacteria groups), and another Gammaproteobacte-
ria sequence (P18-2) were detected mostly during the
latter part of the experiment.

A few phylotypes appeared to be specific to the 2
phytoplankton addition mesocosms, including a Sulfi-
tobacter-related phylotype (P14-3) that was present in
all Diatom samples, as well as 3 Phaeocystis samples
taken during and after the Phaeocystis growth period,
and P14-2, a Gammaproteobacteria-related phylotype
from Plum Island Sound. A few ‘rare’ phylotypes were
specific to particular experimental mesocosms, includ-
ing 2 Gammaproteobacteria-related phylotypes (NA8-
1 and NA14-1) that were only present in the No Addi-
tion tank and D18-2 and D20-1 (Alpha- and
Betaproteobacteria) that were unique to the Diatom

tank. There were also a few new phylotypes that only
appeared in the last 2 d of the experiment (D20-3 and
P18-5; both were Gammaproteobacteria).

Additional information can be gleaned from the
DGGE profiles upon clustering the data (Fig. 3) in the
second dimension (comparing the sample profiles) to
look for relationships between the samples over the
experimental period. The results here suggest that
(1) samples taken over the first half of the experiment
changed substantially and grouped in some cases
according to trophic status of the mesocosm (NA6 and
NA8; P4, P6, and P8; D6 and D8 clustered together).
(2) The mesocosms separated into 2 different groups
during the second half of the experiment — NA in one
group and phytoplankton addition in the other.
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Phylotype GenBank Temporal Group Relative GenBank
acc. no. category

P20-3T, NA1-4 EU004185 A(L*) Bacteroidetes Uncultured Bacteroidetes bacterium clone 131677; AY922211.1 (93%)
NA6-2T, P6-3, D6-2 EU004155 A Gammaproteobacteria Uncultured Glaciecola sp. clone F4C48; AY794210.1 (100%)
NA8-2T, D8-2 EU004157 A(E*) Alphaproteobacteria Uncultured marine bacterium ZD0207; AJ400341.1 (95%)
NA12-3T, D10-1 EU004159 A(L*) Gammaproteobacteria Marine gammaproteobacterium HTCC2188; AY386344.1 (97%)
D4-2T, P6-1 EU004163 A(E*) Betaproteobacteria Uncultured betaproteobacterium clone C319a-R8C-F6; AY678527.1 (94%)
D6-1T, P16-1 EU004165 A Bacteroidetes Uncultured Flavobacteria bacterium clone SIMO-635; AY712172.1 (100%)
D4-3 EU004164 A(E*) Gammaproteobacteria Colwellia rossensis strain ANT9271; AY167332.1 (96%)
NA1-5 EU004154 E Gammaproteobacteria Uncultured marine bacterium COL-25; AY028186.1 (96%)
P8-3T, NA1-6 EU004179 E Alphaproteobacteria Uncultured alphaproteobacterium clone CONW51; AY828396.1 (94%)
P1-4 EU004176 E Alphaproteobacteria Uncultured marine bacterium D049; AF177568.1 (97%)
P6-4 EU004177 E Alphaproteobacteria Uncultured alphaproteobacterium clone FFP66; AY828368.1 (97%)
NA1-3T, NA12-2, D16-1 EU004153 L Gammaproteobacteria Marine gammaproteobacterium HTCC2180; AY386343.1 (92%)
D14-1T, NA12-1 EU004168 L Gammaproteobacteria Marine gammaproteobacterium HTCC2207; AY386335.1 (95%)
D18-3T, NA16-1 EU004171 L Alphaproteobacteria Uncultured Sulfitobacter sp. clone IAFDn44; AY090122.1 (100%)
P18-2T, NA18-2 EU004183 L Gammaproteobacteria Uncultured gammaproteobacterium clone PI_4z10d; AY580739.1 (96%)
NA18-3T, P18-3 EU004161 L (D) Not available Uncultured marine eubacterium HstpL37; AF159638.1 (89%)
NA8-1 EU004156 NA Gammaproteobacteria Uncultured gammaproteobacterium clone D063; AF367390.1 (92%)
NA10-1 EU004158 NA* Plastid Uncultured plastid MoDE-20; AF419370.1 (88%)
NA14-1 EU004160 NA* Gammaproteobacteria Uncultured gammaproteobacterium clone PI_4z10d; AY580739.1 (91%)
D6-3T, P4-1 EU004166 P4, D4-8 Alphaproteobacteria Marine bacterium SE62; AY038920.1 (96%)
P14-3 EU004182 P/D* Alphaproteobacteria Uncultured alphaproteobacterium clone 131676; AY922210.1 (96%)
D18-1T, P12-1, D12-2 EU004169 P/D* Plastid Uncultured plastid MoDE-41; AF419391.1 (97%)
P14-2 EU004181 P/D* Gammaproteobacteria Uncultured gammaproteobacterium clone PI_RT172; AY580758.1 (93%)
P18-5T, D20-4 EU004184 P18-20, D20 Gammaproteobacteria Uncultured gammaproteobacterium clone SIMO-1143; AY710583.1 (97%)
D20-3T, P20-2 EU004174 D20, P20 Gammaproteobacteria Uncultured marine bacterium COL-31; AY028190.1 (91%)
D1-1 EU004162 D1 only Betaproteobacteria Uncultured marine bacterium ZD0202; AJ400339.1 (97%)
D12-1 EU004167 P/D* Plastid Uncultured phototrophic eukaryote clone JL-SCS-M59; AY664064.1 (94%)
D18-2 EU004170 D18 only Alphaproteobacteria Marine bacterium B250-22b; AF076890.1 (97%)
D20-1 EU004172 D20 only Betaproteobacteria Uncultured betaproteobacterium clone PI_RT99; AY580390.1 (96%)
NA1-2T, P1-2, D1-3, EU004152 Random Bacteroidetes Uncultured Bacteroidetes bacterium clone PI_RT79; AY580614.1 (94%)
P1-3 EU004175 Random Bacteroidetes Uncultured marine eubacterium OTU_A; AF207850.1 (100%)
P8-2 EU004178 Random Alphaproteobacteria Uncultured alphaproteobacterium clone CONW51; AY828396.1 (94%)
P10-1 EU004180 Random Gammaproteobacteria Uncultured bacterium clone ARKDMS-58; AF468261.1 (94%)
D20-2T, D1-2 EU004173 Random Gammaproteobacteria Uncultured gammaproteobacterium clone GWS-K5-4; AY515460.1 (90%)

Table 1. Phylogenetic affiliation and temporal categories of SSU rRNA gene sequences from excised DGGE bands (phylotypes) in 3 experi-
mental mesocosms varying in trophic status. DGGE phylotypes are named by the tank of origin (NA: No Addition; P: Phaeocystis; D: Diatom)
and day sampled (1 to 20) followed by the band number in that lane (1 to 5; refer to Fig. 2 to match up the band numbers). In cases where >1 co-
migrating band was sequenced either from the same gel or a different gel, we selected 1 ‘type’ (T) sequence to represent each phylotype; these
designations are then referenced in the text and other tables. Temporal categories were assigned to those phylotypes with dominant patterns in
all (A) tanks; those found predominantly early (E; Days 1 to 10) or late (L; Days 12 to 20) during the experimental period, those dominant within
a particular tank and/or only on certain dates are indicated. Asterisks indicate particularly dominant bands with high relative intensities;

D indicates a predominance of the particular phylotype in the Diatom tank
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Despite very different growth regimes in the Phaeo-
cystis and Diatom tanks, the bacterial community com-
position appears to have followed a similar pattern of
succession. (3) The P1 sample was quite distinct from
all others, as was D18 when the richness was low
(16 phylotypes). The different composition of the P1
sample, possibly attributable to bacteria added to the
non-axenic Phaeocystis globosa culture, became much
more similar to the NA and D communities by Day 4
(CS between 0.68 and 0.74, respectively).

Multidimensional scaling (MDS) results (Fig. 4A)
show similar patterns to 2-dimensional clustering,
though a pattern of temporal succession is more evi-
dent; this is most pronounced in the No Addition tank
in which a relatively straight line can be drawn from
NA1 to NA8, then from NA8 to NA14. The MDS results
calculated with both presence/absence and relative
phylotype abundance (not shown) demonstrate an
overall partitioning between the first 8 d and the last
10 d of the experiment. Other than the first 2 time
points (NA1 and NA4), the No Addition tank is distinct
in comparison to the Phaeocystis and Diatom tanks,
which have more points overlapping in 2-dimensional
space. The last 4 d sampled (Days 16 to 20) cluster
together for each mesocosm, and are positioned sepa-
rately from each other, with the Phaeocystis tank at an
intermediate point.

Polysaccharide hydrolysis

The enzymatic hydrolysis measurements for 7 differ-
ent polysaccharide substrates demonstrate that the
bacterial community was actively hydrolyzing sub-
strates at the beginning of the experiment, suggesting
that the community was responding to DOC in the
North Sea water used in the experiment. Although
responses varied among substrates, as well as with
time, these variations were very similar among the 3
mesocosms (Fig. 5A–F). Activity patterns in the meso-
cosms can be divided by substrate into 3 general
groups: (1) relatively constant throughout the experi-
ment at intermediate (Skeletonema DOC: 4 to 9 nmol
monomer l–1 h–1) or very low (pullulan: 0.5 to 1.5 nmol
monomer l–1 h–1) levels; (2) increasing activity through-
out the experiment (chondroitin: increasing from ca. 5
to >10 nmol monomer l–1 h–1; laminarin: increasing
from ca. 2 or 3 to 6 nmol monomer l–1 h–1); and (3) gen-
erally decreasing (Isochrysis extract: from ca. 3 to
1 nmol monomer l–1 h–1) or strongly decreasing activity
(xylan: from a high near 20 to lows near 1 nmol
monomer l–1 h–1) throughout the experiment. Fucoidan
was not detectably hydrolyzed at any time point in any
of the mesocosms. The killed controls also showed no
signs of hydrolysis. The blank samples used to monitor
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absence phylotype analyses in 2 and 3 dimensions produced
stress values of 0.184 and 0.121, respectively. Interpretations
of the configuration of the 2- and 3-dimensional plots were
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dimensional plot. (B) Two-dimensional MDS of poly-
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dase activities are shown. For the enzyme hydrolysis MDS,
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though, as with the phylotype data, the interpretation of the
configuration between the 2 plots was not different, and the
data were presented in a 2-dimensional plot. Symbols corre-
spond to No Addition (d), Phaeocystis (n), and Diatom ( )

tanks and the date sampled (Days 1 to 20)
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possible photodegradation of substrates showed a
reduction in signal intensity over the course of the
incubation, likely due to photobleaching of the fluo-
rophore, but there was no indication of substrate
hydrolysis. The summed activities of all substrates
increased from the first to second time point, and
changed relatively little throughout the duration of
the experiment (Fig. 5G), in part because declining
activities (xylan, Isochrysis extract) were compensated
by increasing activities (chondroitin) of specific
enzymes; the contributions of the individual activities
underlying the summed enzyme activities therefore
changed with time.

Hydrolysis rates (described above) were measured
for all substrates using unfiltered water, which should
include activity of enzymes associated with microbial
cell surfaces, as well as enzymes freely released in
seawater. Activity patterns were remarkably similar
among all 3 mesocosms; lower hydrolysis of the Skele-
tonema DOC in the Diatom tank was the most notable
difference among the mesocosms (Fig. 5). Isochrysis
DOC hydrolysis was also higher in the No Addition
tank through Day 5, and xylan and chondroitin hydro-
lysis rates were higher on Day 20 in the Diatom tank.

Although hydrolysis in the bulk water was similar
among mesocosms, the extent to which dissolved
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enzymes contributed to hydrolysis differed greatly
among substrates, and differed somewhat among
mesocosms (Fig. 6). Overall, a high percentage of
laminarinase activity could be attributed to dissolved
enzymes, while very little of the xylanase activity was
measurable in the dissolved fraction in any mesocosm
(Fig. 6A). Chondroitin activity (measured only at 4 time
points) contributed to a high percentage of total activ-
ity in all mesocosms, averaging 36% of total activity in
the Diatom tank, 56% in the Phaeocystis tank, and
73% of the No Addition tank. These differences in rel-
ative contributions of filtered chondroitin hydrolysis
activity among the 3 mesocosms (Fig. 6B) contrast with
the similar patterns of total activity (Fig. 5B). Likewise,
the extent of laminarinase activity in the filtered frac-
tion differed to a greater extent among the 3 meso-

cosms (Fig. 6C) than did total activity (Fig. 5C). The
differences in contribution of dissolved enzymes may
relate to ‘phase differences’ among the microbial
communities (see below). Filtered activity was not
detectable for xylan, with the exception of the last 2
time points in the Diatom tank, and the last time point
for all 3 mesocosms, when total activity was generally
low (Figs. 5A & 6A).

Theoretical turnover times of TCHO were calculated
assuming that the total dissolved carbohydrate pool
could be hydrolyzed by at least one of the enzyme acti-
vities contributing to the summed enzyme activities
(Fig. 5G). Initial turnover times of TCHO were on the
order of 8 d for the No Addition and Diatom tanks, and
slightly >4 d for the Phaeocystis tank (Fig. 7A). Subse-
quently, in the No Addition and Diatom tanks, there
was a rapid decrease in turnover such that by Day 5
the turnover time was 2.8 and 4.1 d for the 2 meso-
cosms, respectively. Turnover times varied between 3
and 9 d over the course of the experiment, with most of
the variations (in particular, the longer turnover times
of TCHO in the Phaeocystis tank between Days 9 and
15) being driven by changes in TCHO concentration
(Grossart et al. 2007), rather than variations in summed
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enzymatic hydrolysis rates. Turnover times of TCHO
converged close to 6 d for the No Addition and Phaeo-
cystis tanks and to 4.4 d for the Diatom tank, on Day 19
of the experiment.

The polysaccharide hydrolysis rates corresponded
with individual biological and chemical features. For
example, the chondroitin activity coincided with
phytoplankton and flagellate growth and associated
measured features (Appendix 1, available as Supple-
mentary Material online at www.int-res.com/journals/
suppl/a049p123_app.pdf), the xylan activity was more
weakly, but significantly, related to decreases in
DFCHO (dissolved free carbohydrates), DFAA (dis-
solved free amino acids), and DCAA (dissolved com-
bined amino acids) concentrations, and the laminarin
activity correlated negatively with DOP and total P.
When all enzymatic activities (polysaccharide hydroly-
sis and aminopeptidase) were considered together and
analyzed by MDS, a temporal distinction was appar-
ent, with samples separating into 2 clusters: one
including samples through Day 11 and the other com-
mencing with Day 13 (Fig. 4B). Other samples that
stood apart from the clustered activities were the activ-
ities measured on Day 3 in each mesocosm (the Diatom
tank point clustered with the later half of the experi-
ment) and on Days 15 and 19 in the Diatom tank.

Aminopeptidase activity

Aminopeptidase activity estimated by measuring
hydrolysis rates of Leu-MCA at saturating concentra-
tions indicated that Vmax were quite similar (0.10 to
0.35 nM h–1) among mesocosms from Day 6 (the first
day of these measurements) through Day 12, and
increased significantly after Day 12 in the Phaeocystis
and Diatom tanks (Fig. 5H), reaching nearly equal
hydrolysis rates (1.7 µM h–1) on Day 18. The hydrolysis
rate in the Diatom tank then almost doubled on Day 20,
coinciding with a tripling of the chlorophyll concentra-
tion, while the activity in the Phaeocystis tank
decreased to 1.0 µM h–1. Positive correlations with
chlorophyll, oxygen production, POC (particulate
organic carbon), PON (particulate organic nitrogen),
POP (particulate organic phosphorous), TEP (transpar-
ent exopolymer particles), both photoautotrophic and
heterotrophic flagellates, and nutrient drawdown
(negative correlation with phosphate, silica, total phos-
phorus) were observed for the Leu-MCA hydrolysis
activities (Appendix 1).

Turnover times of dissolved combined leucine
(Fig. 7B), calculated from v and dissolved combined
leucine concentrations (see ‘Materials and methods’)
decreased markedly between Days 6 and 20 for all 3
mesocosms (Fig. 7B). Turnover times on Day 6 were

close to 9 d for the No Addition and Phaeocystis tanks
and 1.7 d for the Diatom tank. Turnover times dropped
rapidly with time for the No Addition and Phaeocystis
tanks, and ultimately decreased also for the Diatom
tank, reaching values of 1.7, 0.58, and 0.02 d for the No
Addition, Phaeocystis and Diatom tanks, respectively,
on Day 20. During this time interval, dissolved com-
bined leucine averaged a relatively constant 5.4 to
5.8% of total DCAA, and DCAA concentrations
increased from ca. 2.3 to 3 µmol l–1 on Day 6 to
between 4.1 and 4.4 µmol l–1 on Day 20 (Grossart et al.
2007). The decrease in dissolved combined leucine
turnover time during the course of the mesocosm
experiment was therefore driven by increasing rates of
hydrolysis, rather than changes in dissolved combined
leucine concentrations.

Bacterioplankton, hydrolytic activity, and mesocosm
feature correlations

Relationships between bacterioplankton, hydrolytic
activities, and a number of biological and chemical
parameters potentially involved in the ecology of these
systems were explored with multiple correlation
analyses (Table 2). The strongest correlations were
found between phylotype signals and dissolved free
carbohydrates (DFCHO; sum of the monomers), of
which an average (±SD) positive correlation between 4
different phylotypes was 0.69 ± 0.08. In this case, the
strongest correlation, and the highest found in this
analysis (r = 0.80, p < 0.001), was found between P18-2
(a gammaproteobacterium that was present during the
later part of the experiment) and DFCHO. There were
a number of positive and negative correlations
between dissolved inorganic and organic phosphorus.
Two phylotypes (P20-3, affiliated with the Bac-
teroidetes, and D18-3, a Sulfitobacter relative) corre-
lated negatively with nitrate and phosphate, while a
betaproteobacterium-related phylotype (D4-2) and a
phylotype closely related to a Glacicola environmental
clone (NA6-2) were positively correlated with the
same nutrients. Two Alphaproteobacteria-related phy-
lotypes (D18-3 and P8-3) had a number of significant
correlations with features tested. Of the 5 correlations
they had in common (total P, DFCHO, DF [dissolved
free]-rhamnose, xylan hydrolysis rate, and heterotro-
phic nanoflagellates), each was significant in an oppo-
site direction between the 2 phylotypes.

In addition, of particular relevance to this study were
the findings that in at least 4 cases positive correlations
were found between bacterial phylotypes (NA6-2 and
P8-3; NA18-3; and P6-4) and specific polysaccharide
hydrolysis rates (xylan HR, chondroitin HR, and
Isochrysis extract HR, respectively). The correlation
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Measured feature P20-3 D4-2 NA8-2 NA6-2 D18-3 D4-3 NA18-3 P6-4 D18-1 NA12-3 D6-1 D14-1 P8-3 P18-2

NO3
– –0.64 0.51 0.59 0.55 –0.62

(0.001) (0.009) (0.002) (0.005) (0.001)

NO2
– –0.53

(0.007)

PO4 –0.57 0.59 0.77 0.52 –0.68 0.65
(0.003) (0.002) (0.007)

DOP 0.60 –0.58 –0.63 0.70*
(0.002) (0.003) (0.001)

POP 0.74 –0.55
(0.006)

TOTALP –0.62 –0.55 0.56 0.51 –0.54 0.71
(0.001) (0.003) (0.002) (0.006) (0.004)

PON –0.55 0.53
(0.003) (0.004)

POC –0.53 0.51
(0.005) (0.007)

DOC –0.67 0.65

MCHO 0.50
(0.005)

DFCHO –0.55 0.68 0.69 –0.66 0.60 –0.70 0.80
(0.002)

PCCHO –0.60 –0.50
(0.005)

PCAA –0.50
(0.007)

DC-fucose 0.65 –0.57

DF-rhamnose 0.63 –0.64

DF-glucose 0.69

PC-glucose 0.63

DC-γ-aminobutyric acid 0.61

DF-Gln –0.57

Xylan HR –0.66 0.57 –0.66 0.67
(0.002)

Chondroitin HR –0.52 0.59 –0.53 –0.57
(0.006) (0.001) (0.005) (0.002)

Isochrysis HR –0.51 0.53
(0.008) (0.005)

Laminarin HR –0.56 –0.59
(0.003) (0.001)

Aminoeptidase activity 0.65 –0.63
(0.002) (0.002)

Bacterial abundance –0.57
(0.001)

HNAN 1–5 0.53 –0.50 –0.57 –0.60
(0.003) (0.005) (0.001) (0.001)

PNAN 1–5 0.56
(0.001)

PNAN 6–10 –0.53
(0.003)

Table 2. Multiple correlations between DGGE phylotype band intensity values and mesocosm chemical and biological features. Correlation co-
efficients >0.50 or <–0.50 are reported; significant values (p < 0.0001) are in bold, for p < 0.01 specific p-values are provided. DOP: dissolved or-
ganic phosphorus; POP: particulate organic phosphorus; TOTALP: total phosphorus; PON: particulate organic nitrogen; POC: particulate or-
ganic carbon; DOC: dissolved organic carbon; MCHO: total monosaccharides; DFCHO: dissolved free carbohydrates; PCCHO: particulate
combined carbohydrates; PCAA: particulate combined amino acids; DC: dissolved combined; DF: dissolved free; PC: particulate combined;
HR: hydrolysis rate; HNAN: heterotrophic nanoflagellate abundance, size 1 to 5 µm; PNAN: phototrophic nanoflagellate abundance, sizes 1 

to 5 or 6 to 10 µm
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between P8-3 (an alphaproteobacterium) and xylan
hydrolysis (r = 0.67, p < 0.001) was the most significant.
A significant correlation between NA18-3 (an uniden-
tified phylotype, only 89% related to nearest relative)
and aminopeptidase activity was also found (r = 0.65,
p = 0.002). This phylotype also correlated strongly with
DFCHO, DC-γ-aminobutyric acid, chondroitin hydro-
lysis, and small phototrophic nanoflagellates.

DISCUSSION

This study investigated the bacterial community
and related activities over a 20 d mesocosm experi-
ment in seawater collected from the North Sea. Over
the course of the experiment a significant diatom-
dominated bloom developed in the Diatom tank, and a
much smaller Phaeocystis globosa bloom developed in
the Phaeocystis tank (Passow et al. 2007). Initial
increases in bacterial abundance were more variable
between tanks following Day 6. Grazers likely influ-
enced microbial (prokaryotic and eukaryotic) growth,
morphological diversity, and cell size in each system,
although the effect was most significant for the Phaeo-
cystis tank (Passow et al. 2007). Viruses, which are
known to play significant roles in controlling bacterial
growth (reviewed by Wommack & Colwell 2000), may
also have affected bacterioplankton growth, although
the ratio of virus-like particles to bacteria decreased in
all mesocosms (by a factor of 10 in the No Addition
tank, by a factor of 4 in the Phaeocystis and Diatom
tanks) as the experiment progressed (A. E. Murray
unpubl. data). The findings of this study can be crystal-
lized into 5 points: (1) rapid increases in bacterial
growth in all tanks over the first 6 d were followed by
different controlled growth patterns in each meso-
cosm. Growth was likely mediated by grazer and,
potentially, by viral control. (2) Over the period stud-
ied, phytoplankton species composition (Phaeocystis
vs. diatoms) influenced the bacterial assemblage com-
position more than the hydrolytic potential, with
changes most evident during the last few days of the
experiment. (3) The most obvious differences over the
experiment were shifts in phylotype composition and
high-molecular-weight carbon utilization midway
through the study; these changes were coincident with
increases in heterotrophic grazer abundance in all 3
mesocosms. (4) Microbial community composition
influenced hydrolytic capabilities; specific activities
can, at times, be attributed to particular community
constituents. (5) Hydrolysis patterns of different poly-
saccharides evolved in distinct patterns with time, sug-
gesting that enzymes with high specificity for substrate
structural features were produced by the bacterial and
potentially archaeal community.

Relationships between bacterioplankton community,
activity, and mesocosm trophic status

Phylotype richness and MDS (based on band pres-
ence/absence) indicated that the Phaeocystis tank was
intermediate in overall bacterial richness and phylo-
type composition at the end of the experiment com-
pared to the other 2 mesocosms. This position poten-
tially reflects the differing trophic status of the
experiments determined by oxygen production and
respiration determinations (NA: heterotrophic, P: bal-
anced system, and D: autotrophic; Grossart et al. 2007)
and the partitioning of the 3 mesocosms following 2-
dimensional clustering of experimental biological and
chemical parameters, as discussed by Passow et al.
(2007). The effect of phytoplankton (in the balanced or
net autotrophic mesocosms) could also explain the dif-
ferences seen in bacterial community succession
between the phytoplankton addition mesocosms ver-
sus the No Addition tank. The Phaeocystis and Diatom
tank communities varied in a non-linear fashion in
comparison to the NA community, which shifted pro-
gressively away from initial composition (Fig. 4A) and
clustered separately over the last 8 to 10 d (Fig. 3). This
change corresponds to the nutrient and carbon (i.e.
drawdown of organic phosphorus, organic carbon,
and total dissolved carbohydrates) and biological
(algal and heterotrophic grazer) dynamics that were
more variable in the phytoplankton addition meso-
cosms (Grosshart et al. 2007, Passow et al. 2007). This
pattern contrasts with the hydrolysis rate determina-
tions, in which the similarities among the experimental
treatments were stronger than the differences
between them.

If the phytoplankton blooms had exhausted nutrient
supplies (as began to occur in the Diatom tank on the
last 2 d), a change in phytoplankton exudates might
have catalyzed differences in enzymatic dynamics
among the mesocosms. Measurements assessing
potential aminopeptidase activity, however, did reflect
the differences in mesocosm trophic status to a greater
degree after Day 10 of the experiment, when the
phytoplankton addition mesocosms had increased
activity levels compared to the No Addition tank. Inter-
estingly, though the aminopeptidase activities were
similar in both the Phaeocystis and Diatom tanks, the
substrates being hydrolyzed in the Phaeocystis tank
came from the senescence of the bloom, whereas they
came from growing phytoplankton in the Diatom tank
(Grosshart et al. 2007). Changes in bacterial commu-
nity structure in response to phytoplankton additions
(Riemann et al. 2000, Pinhassi et al. 2004) or in
response time to different phytoplankton additions
(Sanders & Purdie 1998) have been observed in other
studies.
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Temporal changes in microbial community
composition

Despite initial non-congruent shifts in community
composition of the 3 mesocosms over the first 18 h of
the experiment, the most dominant changes in bacter-
ial communities in all mesocosms were concurrent
shifts in community structure during Days 8 to 10
(Figs. 2, 3 & 4A) and in microbial activity during Days
11 to 13 (Fig. 4B). This timing coincided with develop-
ment of nanoflagellate grazers in all 3 mesocosms and
preceded the major growth period in the Diatom tank.
In other studies, bacterial community structure was
shown to be influenced both by confinement in a No
Addition experiment and by grazer-induced mortality
(Schäfer et al. 2000) and in a study investigating the
influence of light on bacterioplankton (Schwalbach et
al. 2005), both of which appear to be similar to what we
observed at least for the first half of the experiment.

Temporally varying chemistry of the mesocosm sys-
tem yielded clues to ecological relationships between
the bacteria and their resources. For example,
DFCHO, which accumulated over the course of the
experiment, correlated with several phylotypes. In
addition, organic phosphorus measurements (DOP,
POP), PO4, and total P covaried with phylotypes identi-
fied (Table 2). Passow et al. (2007) concluded that the
bacterial community utilized organic phosphorus
(there was almost no utilization of PO4 in the No Addi-
tion tank). Although we are not aware of instances in
which inorganic phosphorus has been reported as a
sole controlling factor influencing bacterial community
structure, inorganic nutrient addition experiments
(combining nitrate, phosphate, and ammonium) have
been shown to affect bacterial community structure
(Schäfer et al. 2001), although not to the extent
observed when carbon substrates are supplemented
with inorganic nutrients (Carlson et al. 2002, Ovreas et
al. 2003). Correlations of individual phylotypes with
different forms of phosphate suggest that in a system
not limited by carbon, these phylotypes may have uti-
lized different P-sources over the experimental period
as availability and competition changed.

Glaciecola-related NA6-2, which was detected
throughout the experiment in all mesocosms, had a
signal 3 times higher over the first half of the experi-
ment and correlated with DOP, nitrate, phosphate, and
xylan hydrolysis. The Glaciecola genus is not particu-
larly well known, except for 2 species (Bowman et al.
1998), which were reported to have starch, α-galactosi-
dase, and β-galactosidase hydrolytic activities, as well
as alkaline phosphatase activity. In contrast, several
rather dominant Gammaproteobacteria phylotypes
(e.g. NA1-3 and D14-1) seemed to be favored in the
later part of the experiment, particularly in the phyto-

plankton addition mesocosms. Relatives of these phy-
lotypes and NA12-3 are members of the Oligotrophic
Marine Group (Cho & Giovannoni 2004), a newly rec-
ognized group of potentially important marine oligo-
heterotrophic bacteria. This group is thought to thrive
in low-nutrient conditions; however, in our case, levels
of most macronutrients were relatively high, with
phosphorus suspected to be the most limiting macro-
nutrient (Passow et al. 2007), and, though DOC con-
centrations dropped throughout the experiment, final
concentrations were still ~100 µmol C l–1 (Grossart et
al. 2007).

Both natural marine systems and manipulated meso-
cosm studies have described phytoplankton–bacterio-
plankton associations (Pinhassi & Hagström 2000, Hold
et al. 2001, Zubkov et al. 2001, Grossart et al. 2005) or
bacteria that are affiliated with phytoplankton-derived
detritus (Van Hannen et al. 1999, Bidle & Azam 2001).
Here, we detected a Sulfitobacter-related phylotype,
P14-3, along with P14-2 affiliated with the Gammapro-
teobacteria in the phytoplankton addition mesocosms.
Members of the Roseobacter–Sulfitobacter–Silicibacter
clade have, in several instances, been reported to be
affiliated specifically with marine algae (e.g. Riemann
et al. 2000). Another Sulfitobacter-related phylotype,
D18-3, was detected after Day 10 in all 3 mesocosms,
which is not likely to be the result of a phytoplank-
ton–bacterioplankton association (the No Addition
tank had negligible phytoplankton growth). This phy-
lotype signal did correlate positively with DFCHO, DF-
rhamnose, and small heterotrophic nanoflagellates,
and negatively with NO3

–, PO4, DOP, and total P, which
were being drawn down during this time.

Correlation between community composition and
hydrolytic activity

Although a large number of investigations have
studied the hydrolytic capabilities of marine microbial
communities (e.g. Riemann et al. 2000, Kirchman et
al. 2004, Pinhassi et al. 2004) and isolated bacteria
(e.g. Martinez et al. 1996, Alderkamp et al. 2007),
knowledge of links between individual members of
complex communities and hydrolysis of specific high-
molecular-weight substrates ⎯ rather than substrate
proxies ⎯ is still extremely sparse. In one study using
substrate proxies, Kirchman et al. (2004) found that
community structure (represented as groups of Alpha-,
Beta- and Gammaproteobacteria, and Cytophaga)
explained much of the variance in ectoenzyme activity
observed. The results presented here take these stud-
ies one step further by establishing links between
hydrolysis of specific polysaccharides and specific
microbial phylotypes in a complex community.
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Temporal changes in hydrolysis patterns of specific
polysaccharides were quite large; these changes were
remarkably concordant among all 3 mesocosms,
despite differences in their plankton communities.
This concordance suggests that specific enzyme
activities were under the control of distinct member(s)
of the microbial community and/or their predators, and
were affected to a lesser extent by the presence or
nature of the algal community. MDS (Fig. 4B) showed
that (1) there was a difference between the activities
measured (polysaccharide hydrolysis and aminopepti-
dase) over the first 11 d and the last 7 d of the experi-
ment and (2) the activities detected in the Diatom tank
on Days 15 and 19 were distinct from all the other sam-
ples. Furthermore, individual hydrolytic activities cor-
related with specific biological and chemical features
of the mesocosms (Appendix 1).

The shifts in community structure around Days 11 to
13 coincided with a very large decline in xylan hydro-
lysis and an increase in chondroitin hydrolysis, while
Isochrysis extract hydrolysis continued to decline. At
this time, phylotype NA6-2 (related to the Glaciecola
sp. clone) decreased significantly in intensity (dis-
cussed above), and phylotypes P8-3 and P6-4 (related
to 2 alphaproteobacterium clones) dropped below de-
tection levels. NA6-2 and P8-3 correlated significantly
with xylan hydrolysis, and P6-4 with Isochrysis DOC
hydrolysis. Conversely, phylotype NA18-3, distantly re-
lated (89% sequence identity) to Deltaproteobacteria
and Verrucomicrobia phylotypes, was detected and
correlated significantly with the chondroitin hydrolysis
rate. The patterns of the 2 alphaproteobacterium phylo-
types correlated negatively with small heterotrophic
grazers, suggesting that they were potentially grazed
from the system. Thus, the reduction in xylan hydro-
lysis activity could have been the result of specific
grazing of organisms capable of hydrolyzing xylan.

Changes in community composition may also occur at
maxima in enzyme activities measured by small sub-
strate proxies (Fandino et al. 2001), although those stud-
ies did not link activities to specific organisms and did
not probe specific polysaccharide hydrolase activities.
The results here suggest phylotype-activity correlations
that could be tested in the future using cultivated isolates
of the organisms identified here. Our understanding of
hydrolytic capabilities has also been enhanced through
genome sequencing. For example, a comparison be-
tween 16 marine alpha- and gammaproteobacterial
genomes plus a Cytophaga genome (Appendix 2,
available as Supplementary Material online at
www.int-res.com/journals/suppl/a049p123_app.pdf), using
the comparative annotation features of Integrated Micro-
bial Genomes (Markowitz et al. 2006), suggests that
several Gammaproteobacteria are capable of xylan
hydrolysis (to the exclusion of the other genomes sur-

veyed) — which is consistent with the finding here that
the Glaciecola-related phylotype correlated with xylan
hydrolytic activity.

Leu-MCA activity, which reached the highest rates
observed on Days 18 and 20 in the Diatom tank, corre-
lated positively with phylotype NA18-3 (as did chon-
droitin hydrolysis), at the same time when the diatom
bloom peaked and the Phaeocystis tank was in a rela-
tively balanced growth state. The specificity of en-
zymes capable of hydrolyzing the Leu-MCA bond has
not been well characterized, and likely extends beyond
just leucyl-aminopeptidase activity. As the genome
comparisons show (Appendix 2), aminopeptidases are
common features of marine bacterial genomes: 12 of 17
genomes surveyed encoded this enzyme. Other meso-
cosm studies (Riemann et al. 2000, Pinhassi et al. 2004)
have shown increases in aminopeptidase activity as
measured by Leu-MCA, which closely reflected phyto-
plankton growth in the mesocosm experiments.
Though the intent in our investigation was to measure
bacterial amino acid utilization, it is possible that the
increases seen in the Phaeocystis and Diatom tanks
were due, in part, to algal aminopeptidase activity.
Although rarely studied, algal peptide hydrolysis has
been demonstrated in the pelagophyte Aureococcus
anophagefferens (Mulholland et al. 2002). In addition,
the Thalassiosira pseudonana genome encodes several
homologs of leucine aminopeptidase (Armbrust et al.
2004), supporting the notion that various algal species
may be capable of peptide hydrolysis. The changes ob-
served in patterns of hydrolysis coinciding with
changes in bacterial communities point to the impor-
tance of specific phylotypes in relation to specific en-
zyme activities, which has been noted by others (Mar-
tinez et al. 1996, Fandino et al. 2001). Further, some
linkages were undoubtedly missed, as this study fo-
cused analysis on the community structure of the free-
living bacterioplankton community, even though some
of the hydrolytic enzyme activities determined could
have been derived from the attached community as
Riemann et al. (2000) have reported. The significant
contribution of dissolved free enzymes to laminarin
and chondroitin hydrolysis, however, suggests that en-
zymes released from bacteria (whether through active
release or as a result of viral lysis or grazing) can also
contribute substantially to hydrolytic activities.

Utilization of different polysaccharides by microbial
communities

A comparison of the polysaccharide hydrolase activ-
ities measured during the course of this experiment
highlights the complexity of microbial responses to
high-molecular-weight substrates. These data include,

138



Murray et al.: Bacterial succession and polysaccharide hydrolysis

for the first time, enzymatic hydrolysis rates of DOC
derived from phytoplankton and the Skeletonema-
derived substrate. In comparison to the purified poly-
saccharides, the Skeletonema-derived substrate and
Isochrysis extract are both a step closer to the complex
heterogeneous organic matter naturally available as
substrates to marine microbial communities. Such data
have not previously been obtained, since other investi-
gations of the activity of carbohydrate-hydrolyzing
enzymes during natural and induced phytoplankton
blooms (e.g. Pinhassi et al. 1999, Riemann et al. 2000)
have used small substrate proxies (e.g. MUF α- and β-
glucose) rather than polysaccharides to estimate
enzyme activities; the relationship between rates mea-
sured with such proxies and hydrolysis rates of the
macromolecules they are intended to represent is
uncertain (Warren 1996).

Some polysaccharides with similar bulk composi-
tional characteristics (soluble linear glucose poly-
saccharides: pullulan, laminarin) and roles (storage
polysaccharides: laminarin, Isochrysis extract) were hy-
drolyzed at very different rates. Low hydrolysis rates of
pullulan contrasted with relatively rapid hydrolysis of
laminarin (Fig. 5). These substrates differ solely in the
linkage position and orientation of their glucose chains:
α(1,4) and α(1,6) linkages for pullulan and β(1,3) link-
ages for laminarin. The comparatively low hydrolysis
rate of the Isochrysis extract was also surprising, since
the Isochrysis extract (like laminarin) is likely a phyto-
plankton energy-storage product. It constitutes a large
fraction of the original plankton biomass (13% of cell
mass) and is predominantly (65%) composed of glu-
cose, with lesser contributions of arabinose, galactose,
mannose, and xylose (7, 5, 4, and 2%, respectively;
Arnosti et al. 2005b). The composition and the linkage
analysis (showing 1,3-linked components with branch
points; C. Arnosti unpubl. data) suggest that the extract
could be chrysolaminarin, an energy-storage product of
haptophytes (Raven 2005), which is structurally similar
to the laminarin found in diatoms.

Complexity or heterogeneity of structure, however,
is not a direct indication of bioavailability, as shown by
the relatively rapid hydrolysis of the Skeletonema-
derived DOC and the lack of hydrolysis of fucoidan.
High-molecular-weight Skeletonema-derived DOC
contains a heterogeneous mix of carbohydrate con-
stituents: Biersmith & Benner (1998) found that the
high-molecular-weight fraction (>1000 Da) DOC of a
Skeletonema culture was 74% carbohydrate, approxi-
mately half of which could be identified as neutral
aldoses (predominantly glucose, some mannose and
fucose, and smaller amounts of ribose, rhamnose,
galactose, xylose, with traces of lyxose and arabinose).
Fucoidan, a sulfated fucose-containing marine poly-
saccharide, was not hydrolyzed in any mesocosm,

despite the fact that its source organism (algae of the
genus Fucus) is common in the marine environment.

The extent to which dissolved enzymes contributed
to hydrolysis also varied among substrates, and was
considerable for specific substrates and time points
(Fig. 6). The extent to which enzymes in general are
freely released into solution by microbial communities
is not precisely known. A previous investigation in the
Delaware River and Bay showed that the contribution
of dissolved laminarinase and xylanase enzymes to
total enzyme activities could be quite high (up to 100%
of total activity), but varied by season, site, and sub-
strate (Keith & Arnosti 2001). Release of enzymes, in-
cluding laminarinase, has been observed in cultured
isolates (Alderkamp et al. 2007), and has been linked
to the microbial growth phase (Antranikian et al. 1987)
or could be a response to starvation (Albertson et al.
1990), a result of viral lysis (Karner & Rassoulzadegan
1995), or a result of grazing (Bochdansky et al. 1995).
Since the ultimate source of these enzymes is the bac-
terial community, differences between the tanks in the
extent to which activity was attributable to free en-
zymes (e.g. laminarin) may thus be related to slight
‘phase shifts’ between the tanks, i.e. slight differences
in growth phase, susceptibility to grazers, or viruses.
The relative uniformity of patterns across mesocosms
and substrates — moderate to substantial contributions
of free laminarinase enzymes, substantial contribution
of chondroitin hydrolase enzymes, and a lack of contri-
bution of free xylanase enzymes — suggests that in the
mesocosm, the extent to which activity is associated
with a cell is not random but is under specific control,
either of the bacteria, or of their predators. Since the
active lifetime of an enzyme released into solution is
unknown, the dissolved enzyme activity could be due
to specific events releasing enzymes that then per-
sisted in solution, retaining their activity over time, or
it could reflect continual production of dissolved en-
zymes, balanced by deactivation.

SUMMARY

In these mesocosms, bacterial community structure, to
a greater extent than enzymatic potential of the commu-
nity, was influenced by the nature and development of
the primary producer community. Despite the effect of
the primary producers on the mesocosm food web biol-
ogy and chemistry (Grosshart et al. 2007, Passow et al.
2007, present study), all 3 mesocosms exhibited a signif-
icant concordant shift in bacterial community structure
and hydrolytic potential midway through the experiment
that was coincident with depletion of initial carbon re-
sources (Grosshart et al. 2007) and grazer control (Pas-
sow et al. 2007) of the experimental systems.
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