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We present a simple method to make multi-year surface temperature forecasts using the 24 

climate change simulations of the CMIP3 database prepared for the IPCC AR4 report. By 25 

calibrating the multi-model ensemble mean with current observations, we are able to 26 

make skillful interannual forecasts of mean temperatures. The method is validated using 27 

extensive hindcast experiments and is shown to perform favorably compared to a recent 28 

forecast method based on a global circulation model with assimilated initial conditions. 29 

Five year forecasts for the global mean temperature, the Northern Hemispheric mean 30 

temperature and the summer sea surface temperatures (SSTs) in the main development 31 

region for hurricanes (MDR) are presented. 32 

33 
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1. Introduction 34 

35 

The latest report of the Intergovernmental Panel on Climate Change (IPCC) (Solomon 36 

2007) presented long-term projections of climate change into the next century. It was 37 

emphasized that most of the observed warming over the past 50 years is attributable to 38 

human activities and that the climate will likely continue to warm. Whereas the 39 

projections of the report are made on the century scale, industry and policy makers are 40 

often interested in a mid-term perspective of 1-10 years to plan their actions.  Therefore 41 

there is also great interest in multi-year forecasts for the climate system.  42 

43 

Global seasonal-timescale climate predictions based on coupled ocean-atmosphere 44 

models are now operational in a large number of meteorological institutes but interannual 45 

forecasts using these models are still in development (e.g. Palmer, Alessandri et al. 2004 46 

and references therein). Recently Smith et al. (2007) presented, for the first time, a mid-47 

term, interannual global forecast which accounts for the effect of external forcing as well 48 

as internal variability.  This decadal climate prediction system (DEPRESYS) is based on 49 

a coupled global climate model and takes into account the observed state of the 50 

atmosphere and ocean in order to predict the internal variability out to decadal time-51 

scales. However, because this kind of forecast system is still developmental, the skill of 52 

the forecast needs to be weighed against the large technical and computing effort needed 53 

to implement such a system. 54 

55 
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We present a very simple approach for interannual temperature forecasts using the 56 

existing output from the large ensemble of coupled ocean-atmosphere models which 57 

participated in the Coupled Model Intercomparison Project (CMIP3). By calibrating the 58 

model output with observed data, we use both the skill of the complex models in 59 

forecasting the anthropogenic contribution to changing temperatures and the skill of 60 

persistence, which is inherent in the temperature timeseries.  Using this precompiled 61 

source of information, with appropriate bias corrections, we are able to make skillful 62 

interannual temperature predictions and we suggest that this simple prediction technique 63 

serve as a benchmark for future prediction experiments. 64 

65 

We demonstrate our prediction technique on three temperature indices: the annual global 66 

mean surface temperature (SAT) which exhibits very small interannual variability due to 67 

the large area mean, the Northern Hemispheric mean SAT, and the summer sea surface 68 

temperature (SST) in the main development region (MDR). SSTs in this Atlantic region 69 

exhibit very strong interannual to multi-decadal variability and are of special interest due 70 

to the possible connection to hurricane frequency and intensity (e.g. Goldenberg, Landsea 71 

et al. 2001; Emanuel 2005). Forecasts of these indices are given for a five-year outlook 72 

and the skill of the interannual forecasts is compared to Smith et al. [2007]. 73 

74 

75 

2.  Data  76 

We use the annual mean Land-Ocean Temperature anomaly Index for the Northern 77 

Hemispheric (NH) and Global mean Temperature (GL) provided by NASA GISS 78 
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(Hansen, Ruedy et al. 2006) (available at http://data.giss.nasa.gov/gistemp/). The 79 

HADISST dataset (Rayner, Parker et al. 2003) is used to extract the MDR SST index (15-80 

70W,10-20N, JAS mean).  We use an anomaly relative to 1951-1980. The three 81 

timeseries are shown in Figure 1a-c. 82 

83 

The model data consists of gridded global monthly SAT and SST from the World 84 

Climate Research Programme's Coupled Model Intercomparison Project multi-model 85 

dataset (CMIP3) (available at http://www-pcmdi.llnl.gov).  86 

 We extract mean temperatures over the seasons and regions which correspond to the 87 

observational data described above to create analogous time series for each model run.  88 

The historical scenario 20C3M as well as the future IPCC-scenarios SRESA1B, SRESA2 89 

and SRESB1 are used.  90 

3. Forecast method 91 

92 

We divide the models into a set which includes historical volcanic forcing and a set 93 

without volcanic forcing. As the volcanic forcing has a strong impact on the temperature 94 

timeseries, especially on the MDR SST  (Santer, Wigley et al. 2006), but is not 95 

predictable in the future, we only use the non-volcanic models in this study to allow for 96 

fair hindcasts.  The historical 20C3M simulations are merged with the future simulations.  97 

The concatenated simulations are then treated as continuous timeseries for the rest of the 98 

study.  The models BCC-CM1 as well as the SRESB1, CSIRO-Mk3.0 runs were removed 99 

from the set to avoid discontinuities in 2000 as they did not restart from the last year of 100 

the 20C3M run. 101 
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102 

For the next decade, the differences in the forcing of the scenarios are small (Zwiers 103 

2002) so, in order to increase the size of our ensemble, we have included runs from all 104 

three.  By taking the mean over all the ensemble members of the models and over these 105 

three scenarios we are able to remove most of the internal variability of the models. The 106 

resulting non-volcanic ensemble mean timeseries are shown in Figure 1a-c together with 107 

the observed timeseries. 108 

109 

In order to create a prediction of a temperature timeseries for the years n+1 onwards, a 110 

bias correction is needed to shift the ensemble mean to the current state of the observed 111 

temperatures.  The current state is estimated using a number of years, N, before the 112 

current date, n.  The correction then involves subtracting an average of the ensemble 113 

mean values over these years (n-N,n-N+1, …, n) and adding an average of the observed 114 

values over these years. 115 

116 

Applying this bias correction, we predict future temperature values from simulated values 117 

for the years n+1 onwards. We call this IPCC/CMIP3 ensemble based method IENS. The 118 

IENS approach is similar to the reference method NOASSIM from Smith et al. [2007], 119 

but the use of our optimized N year baseline takes into account slow natural variability.  120 

121 

As reference predictions, we provide an optimal persistence forecast which is the mean of 122 

the N years before the current date (we call this FLAT), and a simple persistence estimate 123 

which is the value of the year before the forecast (we call this PERSISTENCE). By 124 



7

construction of the FLAT forecast, the IENS forecast will have higher skill if, on average, 125 

the trend of the ensemble mean is realistic.  We note here that a linear trend prediction, 126 

modeled using an optimized window length for the trend fit, was initially included for 127 

comparison.  Although not shown here, the skill of this forecast was always less than that 128 

of the IENS method, and often less than for the FLAT method.   129 

130 

Obviously the forecasts IENS and FLAT depend on the calibration window length, N.  131 

The optimal N depends on the properties of the timeseries as well as on the lead time and 132 

is determined by hindcasting on the historical data where N is defined to be the number 133 

of years which minimizes the root mean squared error (RMSE).  Figure 2 shows the 134 

dependence of the RMSE of 5-year mean hindcasts on N based on hindcasts from 1930-135 

2006. 136 

137 

In terms of forecast error, there is an optimal calibration window, which in this case is 138 

seven years, for all of the IENS hindcasts. The RMSE of the IENS methods are lower 139 

than the RMSE of the FLAT method which shows that the CMIP3 ensemble mean adds 140 

skill to the forecast. How can we explain the shape of the calibration window length 141 

dependence? For very short calibration windows, the mean state is not well estimated and 142 

its large variance dominates the RMSE.  Therefore, as the calibration window increases 143 

the RMSE decreases approximately as the standard error of the mean decreases 144 

(1/sqrt[N]). For long calibration periods, biases between the observations and the model 145 

mean, due to natural variability or structural errors of the models, become important and 146 
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contribute to an increasing RMSE.  A balance between these effects gives the minima 147 

seen in Figure 2.   148 

149 

4. Validation method 150 

151 

To compare prediction methods, we use the RMSE of hindcast experiments.  For each 152 

hindcast, the window length for the FLAT and the IENS method are re-estimated using 153 

all data except an interval of 10 years surrounding the years to be hindcast. This is done 154 

to minimize the artificial inflation of forecast skill which occurs when the window length, 155 

N, is estimated using the same data as is used to validate the forecast.   156 

Because there is a limited hindcast period, we also supply the 90% bootstrapping 157 

confidence intervals to estimate the uncertainty of the RMSE.  These confidence intervals 158 

are derived by randomly sampling (with replacement) m hindcast errors where m is the 159 

total number of hindcasts (e.g. for the quinquennial forecast, m = 73).  This is repeated 160 

10,000 times and a RMSE is estimated each time to derive a distribution. 161 

162 

This will not, however, account for systematic errors that may be found in our estimate of 163 

the prediction error.  There are some reasons why the hindcast RMSE may be a 164 

conservative estimate of the forecast RMSE: 165 

1.) If there are no volcanoes during the forecast period, the error may be smaller than 166 

estimated since the hindcast is performed over past periods which did include volcanoes.  167 
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2.) The mean of three scenarios is used for the forecast, but there is only one scenario for 168 

most hindcast years.  Therefore, the residual of the internal variability is smaller for years 169 

after 2000, which might reduce the forecast error. 170 

3.) We perform the validation on all available years (1930-2006) to represent the natural 171 

variability. However, one can argue that the higher ratio, of externally forced change to 172 

natural variability, in recent years will reduce the future error of the IENS approach.  173 

174 

There are also reasons why our hindcast RMSE may be optimistic: 175 

1.) The uncertainty of the future model forcing scenario is only represented by the last 176 

years of the hindcast experiment. 177 

 2.) Some of the model results may be tuned to the observational period causing the IENS 178 

hindcasts to be closer to the observations and artificially lowering the RMSE. 179 

180 

5. Results of validation and forecasts 181 

182 

The estimated RMSE for the different methods are compared in Figure 1d.  These 183 

RMSEs are slightly higher than the minimum RMSE in Figure 1a-c since these errors 184 

also include the uncertainty in the window length estimation.  Figure 1d shows that the 185 

IENS forecast is generally more accurate than the reference methods, FLAT and 186 

PERSISTENCE.  However, the 90% bootstrap confidence interval shown by the error 187 

bars on the IENS value indicates that the ensemble mean forecast is significantly better 188 

than the PERSISTENCE forecast but not necessarily better than the FLAT forecast for 189 

the MDR SSTs.  This is understandable if much of our prediction skill comes from the 190 



10

bias-correction, or estimate of the current state.  The added skill due to the anthropogenic 191 

changes modeled by the ensemble mean is most obvious in the global mean and NH 192 

mean temperature where natural variability is small due to the larger spatial averaging. 193 

This result is consistent with the results from (Lee, Zwiers et al. 2006), who found 194 

decadal climate prediction skill of the global mean temperature due to changes in 195 

anthropogenic forcing. 196 

   197 

Next we compare the skill of our method and the method of Smith et al. (2007). They use 198 

the HadCM3 model, with assimilated inital conditions, to predict temperatures out to 9 199 

years.   200 

Figure 3 shows the RMSE of annual mean global temperature forecasts using the IENS, 201 

FLAT and PERSISTENCE method for lead times from 1-9 years. The hindcasts are 202 

based on the period 1939-2006.  1939 is chosen as the initial year for the hindcasts as we 203 

test window lengths up to 30 years. The IENS method shows the most skill for all lead 204 

times and all three forecast methods show a decrease in skill for longer lead times. The 205 

difference between FLAT and PERSISTENCE RMSE decreases with lead time whereas 206 

the difference between IENS and FLAT increases with lead time.  The reason for this is 207 

that when the bias dominates, for the FLAT and PERSISTENCE models, the better 208 

estimate of the mean state becomes less important. 209 

Since IENS predicts a realistic trend on average, the increase in RMSE with lead time is 210 

slower. In Figure 3b we show the same results using the hindcast years 1983-2004, as in 211 

Smith et al. [2007]. It can therefore be directly compared to Figure 1a) of Smith et al. 212 

[2007].  For this experiment, the optimal window lengths were determined on the data 213 
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prior to 1983 to use completely independent data for the model choice and validation. 214 

Our method shows less skill for one and two year lead times compared to the assimilated 215 

forecast system DEPRESYS from Smith et al. [2007]. For longer lead times the RMSE 216 

compares well with that of their DEPRESYS system, and performs significantly better, 217 

according to their 90% confidence interval, than their reference forecast, NOASSIM. The 218 

reduced skill of our 1-2 year forecasts may be due to the fact that the Smith et al. [2007] 219 

model has skill in predicting El Nino, and that it uses a persistence of the sulphate forcing 220 

and therefore includes parts of the volcanic forcing. As we only use the “non-volcanic” 221 

ensemble for the validation, the eruption of El Chichón in 1982 and Pinatubo in 1991 will 222 

decrease our hindcast skill in comparison to theirs.   223 

224 

Smith et al. [2007] further gives the RMSE derived from hindcast experiments on 225 

different time averages of the global mean temperature, averaged over all lead times. We 226 

perform the same hindcasting experiments, again on the same years used by Smith et al. 227 

[2007]. Our RMSE results are 0.106 (IENS) compared to 0.105 (DEPRESYS) for annual 228 

averages, 0.059 (IENS) compared to 0.066 (DEPRESYS) for 5-year means and 0.044 229 

(IENS) compared to 0.046 (DEPRESYS) for 9-year means. By construction, the only 230 

multi-decadal variability that our model predicts is due to persistence.  Since the IENS 231 

method performs similar to the model of Smith et al. [2007], which models natural 232 

variability for lead times larger than two years, suggests that most of the skill of the 233 

DEPRESYS model comes from their assimilated initial conditions.   234 

235 
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It should be noted that it is difficult to make such a comparison using only the time 236 

period after 1982.  As the global mean temperature was dominated by a relatively linear 237 

trend in these years this period might be too short to represent the effect of decadal to 238 

multidecadal natural variability on the hindcast. 239 

The actual IENS forecast for 2007-2011 is shown in Figure 1 a-c and in Table 1.  240 

Compared to the recent decade, GL is predicted to increase more than the other 241 

temperature predictions. This is due to the model ensemble mean prediction of a stronger 242 

temperature increase in GL than in NH. One reason for this may be a slight decrease in 243 

the Atlantic Thermohaline Circulation (THC) in the models as a response to increasing 244 

CO2 [Schmittner et al., 2005]. The THC reduction has a stronger effect on NH than on 245 

GL (Knight, Allan et al. 2005) and would therefore partly offset the warming trend in the 246 

NH timeseries.  For the MDR SST, our model predicts a slight cooling compared to the 247 

last five year mean.  The reason for this is that the last four years were exceptionally 248 

warm compared to the optimal calibration timescale of seven years, and that the 249 

amplitude of the externally forced trend in this region is smaller than that of the GL or 250 

NH temperature trends.  For this reason the RMSE of this forecast, which are given in 251 

Table 1, show that the uncertainty of the MDR forecast is high compared to the errors of 252 

the other predictions. 253 

. 254 

255 

256 

257 
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6. Conclusions 258 

259 

260 

Our simple technique of using the CMIP3 ensemble mean, bias-corrected to the current 261 

climate as a prediction for future temperatures, compares favorably with both statistical 262 

predictions and the predictions from a complex forecast model by Smith et al. [2007].  263 

We attribute this skill to the combination of a bias-correction, which accounts for the 264 

longer-scale natural variability, and the mean of the CMIP3 ensemble, which, while 265 

averaging out the internal variability of each model, predicts the response due to 266 

anthropogenic forcing. As our technique uses the predictability of the response to 267 

anthropogenic forcing it has an advantage predicting variables where anthropogenic 268 

effects dominate natural variability.  269 

270 

The results of our quinquennial forecasts, for the global and northern hemispheric mean 271 

temperatures of 2007-2011, predict unprecedented warmth.  However, a slight decrease 272 

in MDR SSTs compared to the last five years is also predicted. Compared to the last 273 

decade the global mean temperature is predicted to increase faster than the NH mean 274 

temperature which may be due to a slight decrease in the thermohaline circulation which 275 

some models are simulating as a response to increasing CO2.  276 

277 

Since we envision that dynamical forecasting using assimilated initial conditions is 278 

actually the future for predictions on these time scales and yet acknowledge the huge 279 
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technical and computing resources that this requires, we suggest that the presented simple 280 

forecasting method can serve as a benchmark for future prediction schemes.   281 

282 

283 

284 
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Figure captions 

Figure 1.  1a-c show the observed timeseries (thin line), the 5 year mean of the observed 

timeseries (thick line) and the ensemble mean of the non-volcanic model runs (dashed 

line). The corresponding indices are MDR SST (a), the NH temperature (b) and GL 

temperature (c). All timeseries are anomalies from 1951-1980 and the ensemble mean 

timeseries is shifted by 0.75K for easier visual comparison with the observations. 

Additionally the 2007-2011 forecast of the IENS method is shown as horizontal thick 

line. The RMSE associated with each prediction using IENS (white), FLAT (gray) and 

PERSISTENCE (black) is shown in 1d. The error bar on the IENS RMSE value is the 

90% bootstrap confidence interval. 

Figure 2.  Impact of the bias correction window length on the hindcast skill. The RMSE 

of the GL temperature, the NH temperature and the MDR SST five year means are shown 

for the IENS method (continuous line) and for the FLAT method (dashed line)  

Figure 3. Dependence of the hindcast skill on lead time.  RMSE for annual global mean 

temperature are shown. a) using IENS-forecast (continuous), FLAT forecast (long 

dashed) and using PERSISTENCE forecast (dotted). b) as in a) but the validation years 

are restricted to 1982-2004 to allow for a direct comparison with Figure 1a of Smith et al. 

[2007]. 
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Tables 

Table 1.  The predictions for the 2007-2011 surface temperature mean from the 

IENS technique. Additionally the estimated RMSE of the forecast and the optimal 

calibration window length used are given. 

GL SAT    NH SAT  MDR SST  

Forecast, relative to 1951-1980 (˚C) 0.63 0.77 0.44 

Forecast error, RMSE (˚C) 0.084 0.107 0.171 

Calibration window length (years) 7 7 7 
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Figure 2: 
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Figure 3: 
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Comparison to Smith et al. 2007, using a 16 member ensemble. 

As shown in main text, the presented IENS method performs significantly better than the 
NOASSIM reference approach from Smith et al. 2007 and is comparable to his 
DEPRESYS approach. Here we investigate whether the skill from IENS is due to the 
larger ensemble mean, which reduces the remaining natural variability, or due to the bias 
correction. The full IENS method uses 21 multimodel ensemble members for the years 
preceding 2000 and 54 ensemble members from 2000 onwards as we use three scenarios 
for the simulations after 2000. 

To test the influence of the ensemble size we investigate a reduced version of IENS by 
using 16 member ensemble means. The NOASSIM method from Smith et al. [2007] uses 
4 ensemble members starting in 4 seasons for each year. As the evaluation is on annual 
and multiannual timescales, we treat the seasons as ensemble members, and therefore use 
16 annual members.  For this experiment we restrict ourselves to the SRES A1B scenario. 
As an exhausting permutation of 16 runs from the available 21 runs is not possible given 
our current computing power, we calculate the skill for 500 randomly sampled 16 
ensemble means. 

The results are shown in Figure 1S and 2S. Figure 1S corresponds to Figure 3 of the main 
manuscript and shows the dependence of the hindcast skill on lead time evaluated on the 
annual global mean temperature. The effect of the reduced ensemble members is very 
small and the full IENS result is close to the average of the reduced ensemble 
experiments. The spread of the results shows the dependence on individual model runs. 
For lead times larger than two years, every tested combination of model runs has a 
smaller RMSE than the NOASSIM method from Smith et al. [2007] 

In Figure 2S, histograms of the hindcast RMSE are shown evaluated on the same years 
and the same temporal averages as Smith et al. [2007].  Even with the reduced ensemble 
size, the RMSE are smaller than the NOASSIM RMSE for all permutations. The skill of 
the full ensemble IENS method is inside the center of the reduced member skill 
distribution.  



The study using the 16 ensemble members shows that the main skill difference between 
IENS and NOASSIM from Smith et al. [2007] is caused by the bias correction and not by 
the larger ensemble size. However one has to note that we are using multimodel 
ensemble means which could have a positive effect on the hindcast skill compared to 
single model ensemble means. 

References: 

Smith, D.M., S. Cusack, A.W. Colman, C.K. Folland, G.R. Harris, and J.M. Murphy, 
Improved surface temperature prediction for the coming decade from a global climate 
model, Science, 317 (5839), 796-799, 2007. 

Figure Captions: 

 Figure 1S  Dependence of the hindcast skill on lead time (see Fig. 3 of the main 
manuscript). RMSE for annual global mean temperature are shown. a) using IENS-
forecast (continuous), FLAT forecast (long dashed) and using PERSISTENCE forecast 
(dotted). b) as in a) but the validation years are restricted to 1982-2004 to allow for a 
direct comparison with Figure 1a of Smith et al. [2007]. Additionally the results for the 
16 ensemble experiments are shown as grey lines.   

Figure 2S Histogram of the hindcast skill (RMSE) for the 16 member IENS experiments. 
The results are shown mean global temperature for annual (a), 5 yr means (b) and 9 yr 
means (c), averaged over all lead times. The continuous vertical line shows the 
NOASSIM skill from Smith et al. [2007], the dashed vertical line shows the skill of 
DEPRESYS from Smith et al. [2007] and the dotted vertical line the skill of the full 
member IENS hindcast.
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Figure 2S: 
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