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Abstract 

 

The Arctic plays a key role in the Earth’s climate system, because global warming is 

predicted to be most pronounced at high latitudes, and one third of the global carbon 

pool is stored in ecosystems of the northern latitudes. The degradation of permafrost 

and the associated intensified release of methane, a climate-relevant trace gas, 

represent potential environmental hazards. The microorganisms driving methane 

production and oxidation in Arctic permafrost soils have remained poorly 

investigated. Their population structure and reaction to environmental change is 

largely unknown, which means that also an important part of the process knowledge 

on methane fluxes in permafrost ecosystems is far from completely understood. This 

hampers prediction of the effects of climate warming on arctic methane fluxes. 

Further research on the stability of the methane cycling communities is therefore 

highly important for understanding the effects of a warming Arctic on the global 

climate. This review first examines the methane cycle in permafrost soils and the 

involved microorganisms. It then describes some aspects of the potential impact of 

global warming on the methanogenic and methanotrophic communities. 

 

 

15.1 Introduction  

 

A better understanding of the global terrestrial carbon cycle has become policy 

imperative, both nationally and worldwide. The Kyoto Protocol recognizes the role of 

terrestrial systems as carbon sinks and sources. Terrestrial and sub-marine 

permafrost is identified as one of the most vulnerable carbon pools of the Earth 

system (Osterkamp 2001; Zimov et al. 2006). About one third of the global soil 

carbon is preserved in northern latitudes (Gorham 1991), mainly in huge layers of 

frozen ground, which underlay around 24% of the exposed land area of the northern 

hemisphere (Zhang et al. 1999). This carbon reservoir is of global climatic 
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importance, in particular due to the currently observed climate changes in the Arctic 

(IPCC 2007; see Chapters 1 and 15.4).  

 Thawing of permafrost could release large quantities of greenhouse gases into 

the atmosphere, thus further increasing global warming and transforming the Arctic 

tundra ecosystems from a carbon sink to a carbon source (Oechel et al. 1993). Trace 

gas fluxes from permafrost ecosystems are influenced by a number of biotic and 

abiotic parameters (Figure 15.1). The decomposition of soil organic matter and the 

generation of greenhouse gases results from microbial activity which is affected by 

habitat characteristics (soil parameters) and by climate-related properties (forcing 

parameters). The way of gas transport determines the ratio between methane and 

carbon dioxide emission to the atmosphere. However, the processes of carbon 

release, their spatial distribution and their climate dependency are not yet adequately 

quantified and understood. 

 

 

 

 

Fig. 15.1 Schematic view of the process variables influencing the formation, 

transport, and release of climate-relevant trace gases in permafrost soils. 

 

 

 The world-wide wetland area has a size of about 5.5 x 106 km2 (Aselman and 

Crutzen 1989). About half of it is located in high-latitudes of the northern hemisphere 

(> 50°N). The atmospheric input of methane from tundra soils of this region was 

estimated to vary between 17 and 42 Tg CH4 yr-1 (Whalen and Reeburgh 1992; Cao 



 3 

et al 1996; Joabsson and Christensen 2001), corresponding to about 25 % of the 

methane emission from natural sources (Fung et al. 1991).  

 In the last decades, numerous studies on methane fluxes were focused on 

tundra environments in Northern America and Scandinavia (e.g. Svensson and 

Rosswall 1984; Whalen and Reeburgh 1988; Bartlett et al. 1992; Liblik et al. 1997; 

Reeburgh et al. 1998; Christensen et al. 2000). Since the political changes in the 

former Soviet Union in the early nineties, the large permafrost areas of Russia were 

integrated into the circum-arctic flux studies (e.g. Christensen et al. 1995; Samarkin 

et al. 1999; Panikov and Dedysh 2000; Tsuyuzaki et al. 2001; Wagner et al. 2003; 

Corradi et al. 2005; Kutzbach et al. 2007; Wille et al. 2008). All these studies 

revealed temporal and spatial variability of methane fluxes, ranging between –1.9 

and 360 mg CH4 m-2 d-1. To understand these dramatic fluctuations, some studies 

focused on the environmental conditions and soil characteristics, comprising the 

water table position, soil moisture and temperature, type of substrate and vegetation 

as well as availability of organic carbon (e.g. Torn and Chapin 1993; Vourlitis et al. 

1993; Bubier et al. 1995; Oberbauer et al. 1998; Joabsson et al. 1999; Yavitt et al. 

2000). These factors influence the methane dynamics of tundra environments. 

Although 80 to 90% of total methane emissions originate from microbial activity 

(Ehhalt and Schmidt 1978), only a few investigations dealt with methane production 

and methane oxidation caused by microbiological processes in the course of carbon 

dynamics (Slobodkin et al. 1992; Vecherskaya et al. 1993; Samarkin et al. 1994; 

Schimel and Gulledge 1998; Segers 1998; Frenzel and Karofeld 2000; Høj et al. 

2005; Wagner et al. 2005; Liebner and Wagner 2007; Metje and Frenzel 2007).  

 This review first examines the processes of the methane cycle in permafrost 

soils. It then describes the methane-cycling microorganisms including possible 

impacts of global warming on their structure and function. 

 

 

15.2 Methane Cycle in Permafrost Soils 

 

 The carbon pool estimates for permafrost soils vary between 4 and 110 kg C 

m-2 (e.g. Schell and Ziemann 1983; Tarnocai and Smith 1992; Michaelson et al. 

1996). These large variations can be attributed to different soil types (from mineral to 

peaty soils) and varying depths of measurements (from the upper few centimeters to 

1 m depth). Permafrost soils can function as both a source and a sink for carbon 

dioxide and methane (Figure 15.2). Under anaerobic conditions, caused by flooding 

of the permafrost soils and the effect of backwater above the permafrost table, the 

mineralization of organic matter can only be realized stepwise by specialized 

microorganisms of the so called anaerobic food chain (Schink and Stams 2006). 

Important intermediates of the organic matter decomposition are hydrogen, carbon 

dioxide and acetate, which can be further reduced to methane (methanogenesis) by 
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methanogenic archaea (see Chapter 15.3.1). The fermentation of carbon by 

microorganisms runs much slower than the oxidative respiration. As a result of the 

prolonged anaerobic conditions and low in situ temperatures of permafrost soils 

organic matter accumulates (peat formation) in these environments. 

 

 

 

 

Fig. 15.2: The carbon cycle in permafrost soils: Permafrost soils can be both a 

source and a sink for CO2 and CH4. Under aerobic conditions soil organic matter 

(SOM) is respired to CO2, whereas under anaerobic conditions SOM is decomposed 

via a sequence of microbial processes to CH4. Methane fluxes from anaerobic soil 

horizons to the atmosphere results from diffusion (slow), ebullition (fast), and through 

plant-mediated transport (bypassing the oxic soil layer). Therefore, the way of 

transport determines the amount of methane that is re-oxidized by microorganisms in 

aerobic soil horizons. Photosynthesis poses as an important sink for CO2 in 

permafrost environments. Thereby biomass is produced. In contrast, the 

consumption of atmospheric methane (negative methane flux) in the upper surface 

layer of the soils plays only a minor role for the methane budget. The thickness of the 

arrows reflects the importance of the above processes. 

 

 

 Nervertheless, the quantity of organic matter provides no information on its 

quality. This, however, determines the availability of organic compounds as energy 

and carbon sources for microorganisms (Hogg 1993; Bergman et al. 2000; see also 

Chapter 17). For this purpose the humification index (HIX, dimensionless) for 

instance, is a criterion for organic matter quality and can, therefore, give suitable 
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information with regard to microbial metabolism (Zsolnay 2003). It was demonstrated 

that the availability of organic carbon in permafrost soils decreased with increasing 

HIX (Wagner et al. 2005). It was further shown that the HIX increased continuously 

with depth in Holocene permafrost sediments (Wagner et al. 2007). This indicates 

that the organic carbon is less available for microorganisms with increasing depth 

because of the higher degree of humification. Therefore, beside the quantity also the 

quality of soil organic matter should be taken into account in consideration of 

permafrost environments as a huge carbon reservoir. 

 Wherever oxygen is present in permafrost habitats (upper oxic soil horizons, 

rhizosphere), methane can be oxidized to carbon dioxide by aerobic methane 

oxidizing bacteria (see Chapter 15.3.2). Between 76 % and up to more than 90 % of 

the methane produced in wetlands was oxidized by these specialists before reaching 

the atmosphere (Roslev and King 1996; Le Mer and Roger 2001). Hence, the 

biological oxidation of methane represents the major sink for methane in arctic 

permafrost environments.  

 Vegetation is another important factor occupying a central position for 

microbial processes and the transport of methane. Plants can have both enhancing 

and attenuating effects on methane emission. Through the aerenchyma of vascular 

plants, oxygen is transported from the atmosphere to the rhizosphere, thus 

stimulating methane oxidation in otherwise anoxic soil horizons (Van der Nat and 

Middelburg 1998; Popp et al. 2000). In opposite direction, the aerenchyma is a major 

pathway for methane transport from the anoxic horizons to the atmosphere, 

bypassing the oxic/anoxic interface in the soil, where methane oxidation is most 

prominent. It was shown that up to 68% of the total methane release from wet 

permafrost soils is transported through sedges like Carex aquatilis (Kutzbach et al. 

2003). Furthermore, the vegetation provides the substrates for methanogenesis such 

as decaying plant material and fresh root exudates (Whiting and Chanton 1992; 

Joabsson et al. 1999). 

 

 

15.3 Microbial Communities of the Methane Cycle 

 

The biological formation and consumption of methane are carried out by very 

specialized microorganisms, methanogens and methanotrophs. Thereby, methane 

production results solely from the activity of members of the kingdom Euryarchaeota, 

the so called methanogenic archaea (methanogens). The group of microorganisms 

capable to consume methane (methanotrophs), however, is more complex 

comprising obligate aerobic members of the phyla Proteobacteria (Bowman et al. 

1999), and Verrucomicrobiaea (Dunfield et al. 2007; Pol et al. 2007), as well as 

anaerobically methane oxidizing archaea in marine habitats (e.g. Boetius et al. 2000), 

and bacteria of a yet unknown phylum carrying out methane oxidation in the 
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presence of very high nitrate and methane concentration in freshwater habitats 

(Raghoebarsing et al. 2006). The dominant methane consuming microorganisms in 

permafrost soils are those of the Proteobacteria phylum. Because of the pronounced 

distribution of methanogenic archaea and methanotrophic Proteobacteria in Arctic 

permafrost soils (reviewed by Wagner 2008, Fig. 15.3) and their significance for the 

global methane budget, these two groups are of particular attention in this review. 

 

 

 

Fig. 15.3 Phylogenetic relation (based on 16S rRNA gene sequences) of 

methanogenic archaea and aerobic methanotrophic bacteria. Grey squares illustrate 

groups including sequences from arctic tundra environments. Trees represent 

maximum likelihood trees using the PhyML algorithm (Guindon and Gascuel, 2003) 

and the ARB software package.  

 

 

15.3.1 Methanogenic Archaea 

 

Methanogenic archaea represent a small group of strictly anaerobic microorganisms 

(Hedderich and Whitman 2006). They can be found either in temperate habitats like 

paddy fields (Grosskopf et al. 1998), lakes (Jurgens et al. 2000; Keough et al. 2003), 

freshwater sediments (Chan et al., 2005), in the gastrointestinal tract of animals (Lin 

et al. 1997), or in extreme habitats such as hydrothermal vents (Jeanthon et al. 

1999), hypersaline habitats (Mathrani & Boone 1995) or permafrost soils and 
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sediments (Rivkina et al. 1998; Kobabe et al. 2004). In cold environments, two main 

pathways of energy-metabolism dominate: (i) the reduction of CO2 to CH4 using H2 

as a reductant and (ii) the fermentation of acetate to CH4 and CO2 (Conrad 2005). 

However, only a few psychrophilic (cold-adapted) strains of methanogenic archaea 

have been described so far (Simankova et al. 2003; Cavicchioli 2006). 

 Although permafrost environments are characterized by extreme climate 

conditions, it was recently shown that the abundance and composition of the 

methanogenic population is similar to that of communities of comparable temperate 

soil ecosystems (Wagner et al. 2005). The highest cell counts of methanogenic 

archaea were detected in the active layer of permafrost, with numbers of up to 3 x 

108 cells g-1 soil (Kobabe et al. 2004). Methanogenic archaea represented between 

0.5% and 22.4% of the total cell counts. Phylogenetic analyses revealed a great 

diversity of methanogens in the active layer, with species belonging to the families 

Methanobacteriaceae, Methanomicrobiaceae, Methanosarcinaceae, and Methano-

saetaceae (Høj et al. 2005; Metje and Frenzel 2007; Ganzert et al. 2007; Fig. 15.3). 

Other sequences detected were affiliated to the euryarchaeotal Rice Cluster II and V 

(Hales et al. 1996; Grosskopf et al. 1998; Ramakrishnan et al. 2001) as well as to the 

Group I.3b of the uncultured Crenarchaeota (non-methanogenic archaea; 

Ochsenreiter et al. 2003). Environmental sequences from the Laptev Sea coast form 

four specific permafrost clusters (Ganzert et al. 2007). Permafrost Cluster I was 

recovered mainly from cold horizons (with temperatures of less than 4°C) of the 

active layer and was related to Methanosarcinacea. Permafrost Clusters II and III 

were related to Methanomicrobiales and Permafrost Cluster IV was related to Rice 

Cluster II. It was hypothesized that these clusters comprise methanogenic archaea 

with a specific physiological potential to survive under harsh environmental 

conditions. The phylogenetic affiliation of the sequences recovered in this study 

indicated that both hydrogenotrophic and acetoclastic methanogenesis exist in 

permafrost soils. Recent studies on perennially frozen permafrost deposits from the 

Lena Delta (Siberia) revealed significant amounts of methane which could be 

attributed to in situ activity of methanogenic archaea (Wagner et al. 2007). Another 

study on frozen ground on Ellesmere Island reported an archaeal community 

composed of 61% Euryarchaeota (methane producing archaea) and 39% 

Crenarchaeota, suggesting the presence of a diverse archaeal population also in the 

perennially frozen sediments (Steven et al. 2007). 

 Methanosarcina spec. SMA-21, which is closely related to Methanosarcina 

mazei, was recently isolated from a Siberian permafrost soil in the Lena Delta. The 

organism grows well at 28°C and slowly at low temperatures (4°C and 10°C) with 

H2/CO2 (80:20, v/v, pressurised at 150 kPa) as substrate. The cells grow as cocci, 

with a diameter of 1-2 µm. Cell aggregates were regularly observed (Fig. 15.4 a). 

Methanosarcina SMA-21 is characterized by an extreme tolerance to very low 

temperatures (-78.5°C), high salinity (up to 6 M), starvation, desiccation and oxygen 
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exposure (Morozova and Wagner 2007). Furthermore, this archaeon survived for 

three weeks under simulated thermo-physical Martian conditions (Morozova et al. 

2007; see also Chapter 22).  

 

 

 

 

 
   

 

 

 

 

Fig. 15.4 Methane-cycling microorganisms isolated from permafrost environments: 

(A) Methanosarcina sp. SMA-21 (D. Wagner and D. Morozova, AWI; bar: 10µm); (B) 

permafrost strain SMA-23 (D. Wagner and D. Morozova, AWI); (c) Methylobacter 

tundripaludum (Wartiainen et al. 2006a); (d) Methylocystis rosea (Wartiainen et al. 

2006b) 

 

 

 Methanogenic activity was observed at low in situ temperatures with rates of 

up to 39 nmol CH4 h
-1 g-1 soil in the active layer of permafrost (Wagner et al. 2003; 

Høj et al. 2005; Metje and Frenzel 2007). The highest activities were thereby 

measured in the coldest zones of the profiles. Furthermore, it could be shown that 

methane production is rather limited by the quality of soil organic carbon than by the 

in situ temperature (Wagner et al. 2005; Ganzert et al. 2007). Another important 

A B 

C D 



 9 

factor affecting methanogenic communities in permafrost soils is the water regime. 

Along a natural soil moisture gradient, changes in archaeal community composition 

were observed, which suggest that the differences in these communities were 

responsible for the large-scale variations in methane emissions observed with 

changes in soil hydrology (Høj et al. 2006).  

 

 

15.3.2 Methane Oxidizing Proteobacteria  

 

Based on their function as the major sink for methane in arctic permafrost affected 

wetlands and tundra, methane oxidizing Proteobacteria are also of importance for the 

greenhouse gas (GHG) budget of these environments.  

 Methane oxidizing Proteobacteria represent a subset of methylotrophic 

bacteria. Through the activity of their specific enzyme, methane monooxygenase, 

they are specialized to utilize methane as single carbon and energy source (Hanson 

and Hanson, 1996). The group of methane oxidizing Proteobacteria comprises the 

three families Methylococcaceae, Methylocystaceae, and Beijerinckiaceae (Bowman 

1999; Dedysh et al. 2000; 2001; 2002; 2004). The only exception is Crenothrix 

polyspora, a filamentous, sheathed microorganism recently discovered to be 

methanotrophic (Stoecker et al. 2006). Methylococcaceae include the genera 

Methylobacter, Methylomonas, Methylomicrobium, Methylosarcina, Methylosphaera, 

Methylohalobius, Methylosoma, Methylothermus, Methylococcus, and Methylocaldum 

(Hanson and Hanson 1996; Bowman et al. 1997; Wise et al. 2001; Heyer et al. 2005; 

Tsubota et al. 2005; Rahalkar et al. 2007). They belong to the gamma-subdivision of 

the Proteobacteria phylum and are termed type I methanotrophs, except for the last 

two, which are also known as type X methanotrophs. The families Methylocystaceae, 

and Beijerinckiaceae include the genera Methylosinus, Methylocystis, Methylocella, 

and Methylocapsa (Hanson and Hanson 1996; Bowman et al. 1999; Dedysh et al. 

2000; 2001; 2002; 2004). Members of the Methylocystaceae and Beijerinckiaceae 

are termed type II methanotrophs and belong to the alpha-subdivision of the 

Proteobacteria phylum. Except for their phylogeny, type I and type II methanotrophs 

can also be distinguished by their carbon assimilation pathway, the structure of their 

intracytoplasmic membranes, their resting stages, G+C-content, the constitution of 

their methane monooxygenase, and by their major phospholipid fatty acids (PLFAs). 

 Several studies revealed that methanotrophs are abundant and active also 

under very harsh environmental conditions of cold environments (review by 

Trotsenko and Khmelenina 2005). Viable methane oxidizers were even detected in 

deep Siberian permafrost sediments with ages of 1000-100,000 years (Khmelenina 

et al. 2001). Numerous psychrophilic and psychrotrophic methanotrophs, primarily 

affiliated to the type I group, are known such as Methylobacter psychrophilus, 

isolated from Siberian tundra (Omelchenko et al. 1996), Methylobacter 
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tundripaludum, isolated from Arctic wetland soils (Fig. 15.4, Wartiainen et al. 2006a), 

Methylosphaera hansonii, isolated from Antarctic, marine salinity, meromictic lakes 

(Bowman et al. 1997), and Methylomonas scandinavica, isolated from deep igneous 

rock ground water (Kaluzhnaya et al. 1999). Type I methanotrophs were also 

recovered to dominate in arctic permafrost affected soils (Wartiainen et al. 2003; 

Wagner et al. 2005; Liebner and Wagner 2007). Within the type II group, 

Methylocystis rosea, isolated from an Arctic wetland soil (Fig. 15.4, Wartiainen et al. 

2006b), and representatives of the acidophilic genera Methylocella and 

Methylocapsa were reported to be psychrotrophs (Dedysh et al. 2002; 2004).  

 Methane oxidizing Proteobacteria were shown to be highly abundant in 

permafrost soils of the Lena Delta, Siberia, with cell numbers ranging between 3 x 

106 and 1 x 108 cells g-1 soil and contributing up to 10 % to the total number of 

microbial cells (Liebner and Wagner 2007). In the same area, specific clusters of 

methane oxidizing Proteobacteria closely related to Methylobacter psychrophilus and 

to Methylobacter tundripaludum were detected indicating a micro-diverse community 

on the species level (Liebner et al. 2008). Also, highly divergent functional gene 

sequences of these methanotrophs were found in soils of the high Canadian Arctic 

(Pacheco-Oliver et al. 2002). In contrast, the diversity of methane oxidizing 

Proteobacteria in an arctic wetland on the island of Svalbard was observed to be 

restricted to only two genera (Wartiainen et al. 2003), whereas most methanotrophic 

Proteobacteria were detected in a Russian sub-arctic tundra (Kaluzhnaya et al. 

2002). Still, diversity and composition of methane oxidizing bacteria in permafrost 

soils are only poorly explored. Also, it remains unknown whether psychrophilic or 

cold-adapted mesophilic methantrophs are responsible for methane oxidation at low 

and subzero temperatures in permafrost sediments (Trotsenko and Khmelenina 

2005). A recent study, though, observed a shift between a mesophilic 

methanotrophic community near the surface and a psychrophilic methanotrophic 

community near the permafrost table of Siberian permafrost soils (Liebner and 

Wagner 2007). This indicates that depending on the environmental conditions both 

mesophilic as well as psychrophilic methanotrophs are active in Siberian permafrost 

soils. 

 

15.4 Methane-cycling Communities under Global Climate Change 

 

Arctic surface temperatures on average increased to a greater extent than those of 

the rest of the earth (IPCC 2001), causing a particular susceptibility of arctic 

permafrost to degradation. Global warming could degrade 25 % of the total 

permafrost area by 2100 (Anisimov et al. 1999). Also, Nelson et al. (2001) predicted 

a high potential of large areas of Siberian permafrost to be degraded, which would 

primarily lead to a thickening of the seasonally thawed layer (active layer). In the 

period 1956-1990, the active layer in Russian permafrost already increased by on 
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average 20 cm (IPCC 2007). By the end of the 21st century, an increase of mean 

annual ground temperature by up to 6 °C and of active layer depth by up to 2 m is 

expected for East Siberia (Stendel et al. 2007). Although the estimated size of the 

carbon pool in Arctic permafrost affected tundra varies between 190 and, in more 

recent studies, approximately 900 Gt, it accounts for at least 13-15 % of the global 

carbon pool in soils (Post et al. 1982; Zimov et al. 2006). Thawing of 10 % of the total 

Siberian permafrost carbon reservoir was suggested to initially release about 1 Pg 

carbon followed by respiration of about 40 Pg carbon to the atmosphere over a 

period of four decades (Dutta et al. 2006). Model calculations suggest that methane 

currently emitted from Arctic permafrost environments may enhance the greenhouse 

effect with a portion of approx. 20 % (Wuebbles and Hayhoe 2002). Palaeoclimate 

reconstruction combined with biogeochemical biomarker analysis, for example, 

revealed an increase in production and release of methane from the terrestrial 

biosphere during the Palaeocene-Eocene thermal maximum, a period of intense 

global warming 55 million years ago (Pancost et al. 2007). It was also shown that an 

increase of the permafrost temperature in Holocene permafrost deposits of northern 

Siberia would lead to substantial rise in microbiologically produced methane (Wagner 

et al. 2007). Serious concerns are thus associated with the potential impact that 

thawing permafrost may have on the global climate system through release of 

greenhouse gases (Friborg et al. 2003; Christensen et al. 2004; Wagner et al. 2007). 

Methane flux models do indeed predict increasing methane emissions in latitudes 

above 60° N by 19-25 % (Cao et al. 1998; Walter et al. 2001; Zhuang et al. 2004). 

These estimates are challenged, though, by other studies suggesting that increasing 

methane fluxes from Russian permafrost regions will change atmospheric methane 

concentrations by only 0.04 ppm (2.3 %) leading to 0.012 °C temperature rise 

globally (Anisimov 2007). 

 Models on modern methane emissions from arctic wetlands determine 

methane production and methane oxidation rates primarily as functions of substrate 

availability, substrate concentration, and temperature as well as indirectly of water 

table and thaw depth (Walter et al. 2001; Zhuang et al. 2004; Anisimov 2007). 

Changes of these parameters will consequently lead to short-term alterations of 

methane production and methane oxidation rates. Whether, however, the currently 

observed global climate change will effectively alter modern methane fluxes from 

arctic permafrost affected wetlands will particularly depend on its long-term impact on 

the methane cycling communities and their ability to adapt to the new environmental 

conditions. This ability is very likely dependant on the level of specialisation and 

diversity of the indigenous microbial communities. It was observed that an increase of 

temperature and precipitation altered the community structure and relative 

abundance of methane oxidizers in rice, forest and grassland soils (Horz et al. 2005; 

Mohanty et al. 2007). Also, the overall relative abundance and diversity of 

methanogenic archaea in a high Arctic peat from Spitsbergen increased with 
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increasing temperature, in accordance with a strong stimulation of methane 

production rates (Høj et al. 2008). In contrast, the population structure of 

methanogenic archaea in a permafrost affected peat in Siberia remained constant 

over a wide temperature range (Metje and Frenzel 2007). Also, a psychrophilic and 

little diverse methanotrophic community as detected near the permafrost table of 

Siberian polygonal tundra soils (Liebner and Wagner 2007; Liebner et al. 2008) will 

likely require more time for resilience than the diverse mesophilic-psychrotolerant 

methanogenic community detected in permafrost soils of the same region (Ganzert et 

al. 2006).  

 There is, however, a lack of experimental research investigating the long-term 

effect of simulated climate change on the methane cycling communities in permafrost 

soils, which would be essential to prove or disprove the previously mentioned 

assumptions. Also, an account of the entire plant-microbe-animal system and the 

interactions between metabolic networks, which are important for methanogenesis is 

missing in modern methane flux models (Panikov 1999). Due to this poor knowledge 

it is worthy to consider microbial communities in the scope of global climate change 

in general. Simulating the affects of warming on the competition between 

psychrophilic and mesophilic sub-populations of Pseudomonas, for example, 

displayed a high degree of stability of this artificial community (Panikov 1999). 

Psychrophiles dominated the bacterial community under cold conditions, and an 

increase in temperature by 5 °C did not affect their domination. Further warming of 

another 5 °C resulted in a rapid 50 % substitution of psychrophiles by mesophiles 

over two years finally reaching a stable coexistence between the two sub-

populations. In the same model, the main effect of rising temperatures on the carbon 

balance of the ecosystem was a considerable activation of organic matter 

decomposition due to higher production of hydrolytic enzymes. Experimental setups 

revealed a rather low direct impact of rising temperatures on the decomposition of 

soil organic matter but rather attributed increased decomposition rates most strongly 

to be due to changes in local substrate characteristics and vegetation type (Zhang et 

al. 2005; Bokhorst et al. 2007). Still, a warming induced shift in the microbial 

community structure was again observed at least in the first study. 

 To summarize, there is an urgent need for modelling the response of methane 

cycling communities in permafrost regions to global climate change on the one hand 

and to validate these models by empirical data on the other hand. This is not only 

due to the importance of these communities for the atmospheric methane budget and 

thus for the global climate. It is also inevitable given the close connection between 

physiology and function of these communities in permafrost soils that allows for a 

general understanding of how important is the stability of microbial communities for 

the GHG budget of arctic permafrost affected wetlands. 
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15.5 Conclusions and Future Perspectives 

 

Permafrost soils and sediments are unique systems in the context of biogeochemical 

cycling of carbon, particularly due to the enormous amount of organic carbon stored 

in these environments. Recent studies demonstrate the close relationship between 

apparent methane fluxes and the modes and intensities of microbiological processes 

of methane production and oxidation in permafrost ecosystems. Methane producing 

and consuming microorganisms are widespread, highly active and abundant in 

permafrost soils, despite the harsh environmental conditions they are exposed to. 

The permafrost environment forces an adaptation of the methane cycling 

communities to low temperature conditions often yealding species, which have not 

been detected in temperate ecosystems so far. In addition to soil characteristics and 

climate conditions, the activity and physiology of these well adapted microbial 

communities dictate trace gas fluxes in permafrost soils. The future development of 

permafrost environments as a source of methane, therefore, primarily depends on 

the response of the methanogenic and methanotrophic microorganisms to a 

changing environment. 

 Anticipating this response, however, is difficult as the sensitivity of microbial 

communities to permafrost degradation is completely unknown. At first, there is lack 

of experimental and theoretic studies on what determines microbial stability in 

general and in particular in permafrost environments. At second, the consequences 

of thawing permafrost on hydrology and morphology that indirectly influence microbial 

communities and its activity are very difficult to predict. 

 International projects such as ACD (Arctic Coastal Dynamics) and CALM 

(Circumpolar Active Layer Monitoring), which examine the impact of global warming 

on permafrost environments should thus be linked more closely to microbiological 

process studies and biodiversity research. Microbial parameters important for the 

assessment of carbon turnover (e.g. cell numbers, activities, biodiversity and stability 

of microbial communities) should be analysed at observation areas in the Arctic, 

where long-term monitoring programs are undertaken. The evaluation of microbial 

ecology and its correlation to climatic and geochemical data represent the basis for 

an understanding of the role of permafrost soils in the global system, in particular in 

terms of feedback mechanisms related to fluxes of material and greenhouse gases in 

the scope of a warming Earth. 
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