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Seasonal variability of crustal and marine trace elements in the 
aerosol at Neumayer Station, Antarctica 
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ABSTRACT 

Atmospheric trace element concentrations were measured from March 1999 through De-

cember 2003 at the Air Chemistry Observatory of the German Antarctic station Neumayer by 

inductively coupled plasma – quadrupol mass spectrometry (ICP-QMS) and ion chromatogra-

phy (IC). This continuous five year long record derived from weekly aerosol sampling re-

vealed a distinct seasonal summer maximum for elements linked with mineral dust entry (Al, 

La, Ce, Nd) and a winter maximum for the mostly sea salt derived elements Li, Na, K, Mg, 

Ca, and Sr. The relative seasonal amplitude was around 1.7 and 1.4 for mineral dust (La) and 

sea salt aerosol (Na), respectively. On average a significant deviation regarding mean ocean 

water composition was apparent for Li, Mg, and Sr which could hardly be explained by mir-

abilite precipitation on freshly formed sea ice. In addition we observed all over the year a not 

clarified high variability of element ratios Li/Na, K/Na, Mg/Na, Ca/Na, and Sr/Na. We found 

an intriguing co-variation of Se concentrations with biogenic sulfur aerosols (methane sul-

fonate and non-sea salt sulfate), indicating a dominant marine biogenic source for this element 

linked with the marine biogenic sulfur source. 
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The nearly completely ice covered Antarctic continent is virtually free of primary and sec-

ondary aerosol sources while the Southern Ocean is by far the dominant source to the Antarc-

tic aerosol body making atmospheric sea salt and biogenic sulfur the major aerosol compo-

nents (Wagenbach et al., 1998; Minikin et al., 1998). Terrestrial sources are limited to some 

insular rocky regions (on the Antarctic peninsula, in the coastal dry valleys and on high 

mountain ranges) and volcanic activity of Mt. Erebus. Nowadays, minor anthropogenic emis-

sions arising from fossil fuel combustion during research and tourism activities may be con-

sidered as well. On the whole these natural and anthropogenic sources constitute local or 

regional trace element emissions of mineral dust, sulfur, and specific heavy metals which are 

thought to be of minor importance for the overall aerosol budget of Antarctica. Therefore, 

Antarctica offers an outstanding place to study the background composition and the natural 

biogeochemical cycling of aerosol.  

Apart from ion analyses, only limited trace element measurements have been conducted so 

far in Antarctic aerosol samples as: at South Pole (Zoller et al., 1974; Cunningham and Zoller, 

1981; Tuncel et al., 1989), at the Antarctic peninsula (Dick, 1991; Artaxo et al., 1992) and at 

coastal areas  (i.e. Neumayer Station, Görlach, (1988) and Wagenbach et al. (1988)). In recent 

years the need for long term background aerosol studies, especially addressing the trace ele-

ment composition, has been recognized. Certain heavy metals (e.g. Pb, Cd, Cr) can be em-

ployed as valuable tracers for the growing impact of anthropogenic heavy metal emissions for 

remote Antarctica (Wolff and Suttie, 1994; Wolff et al., 1999; Planchon et al., 2002). Fur-

thermore, mineral dust derived trace elements like Fe may act as micronutrients affecting the 

biological activity of the ocean (Jickells et al., 2005), e.g. the atmospheric CO2 burial (Bopp 

et al., 2003; Wolff et al., 2006) and the emission of dimethyl sulfide (DMS) (Turner et al., 

2004), which is globally the most important precursor for natural sulfate aerosol. Finally, 
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mineral dust and sea salt profiles retrieved from polar ice cores have proven to provide a 

wealth of paleoclimatic information (e.g. Petit et al., 1999; Wolff et al., 2006; Fischer et al., 

2007; Ruth et al., 2007). For improving the interpretation of these records, a better knowledge 

about long range transported continental dust and regional derived sea salt would be needed, 

especially including the seasonality of their atmospheric loading and entry into the Antarctic 

continent. Concerning sea salt aerosol, the formation on freshly formed sea ice, associated 

with a significant sea salt fractionation, has been put forward as an alternative source (Rankin 

et al., 2000 and 2002; Wolff et al., 2003) to the accepted process by wind induced bubble 

bursting  over open ocean water (Monahan et al., 1986). If the significance of this source 

proves true, it would entail a paradigm shift in the interpretation of sea salt profiles from polar 

ice cores (Wolff et al., 2003). 

Here, we present atmospheric trace element records mainly associated with mineral dust 

and marine sources which are continuously observed between 1999-2003 at the German 

Antarctic Neumayer Station. Primarily focusing on seasonal aspects, the weekly filter samples 

were analysed by ICP-QMS for the trace element Li, Na, K, Mg, Ca, Sr, Al, La, Ce, Nd, and 

Se. The ICP-QMS results are supported by our regular IC analyses providing complementary 

information on the ionic aerosol composition with respect to methane sulfonate, sulfate, Na+, 

NH4
+, K+, Mg2+, and Ca2+. 

 

2.  Methods 

2.1.  Measurement Site and Meteorological Conditions 

 Aerosol sampling was made at the Air Chemistry Observatory, about 1.5 km south of Neu-

mayer station (70o 39' S, 8o 15'W). During the summer months, the bay and the nearby ice 

edge are mainly free of sea ice and there is always open water present. Apart from a few 

nunataks about 100 km south of the station there are no ice-free land surfaces near Neumayer, 
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and the probability of contact with air masses from ice-free continents is small. In general 

there are two different wind regimes: (1) Strong synoptically affected winds are from the East 

with infrequent geostrophically intensified switches to the West and (2) weak katabatic winds 

from southern directions. The air mass transport pattern to Neumayer Station was investigated 

by Kottmeier and Fay (1998) and a more detailed picture on the climatology at Neumayer 

Station can be found in König-Langlo et al. (1998).  

 Aerosol was collected on Whatman 541 cellulose filters which were precleaned by soaking 

in HCl followed by rinsing with de-ionize water until virtually no enhancement of the electro-

lytical conductivity could be detected. The aerosol was continuously sampled at 120 m3 h-1  

by two filters (diameter 240 mm) in series using a ventilated electropolished stainless steel 

inlet stack (total height about 8 m above the snow surface) with a 50% aerodynamic cut-off 

diameter around 7-10 µm at wind velocities between 4-10 m s-1. This high volume sampling 

technique is part of the continuous long-term observation programme carried out since 1983 

at Neumayer. Here we refer to samples taken from March 1999 through December 2003. 

These data were based on a sampling period of typically 7 days which corresponds to a probe 

volume of around 2x104 m3 STP. A more detailed description of the sampling procedure itself 

is given in Wagenbach et al. (1988). 

 Local pollution by vehicles and the base itself is a potential problem for many measure-

ments concerning the background status of the Antarctic troposphere. To ensure contamina-

tion free air sampling, the Air Chemistry Observatory is situated in a clean air facility ap-

proximately 1.5 km south of Neumayer. Due to the fact that northerly wind directions are 

very rare, contamination from the base can be excluded for most of the time. Additionally, the 

power supply (20 kW) is provided by cable from the main station, thus no fuel driven genera-

tor is operated in the observatory vicinity. Finally, contamination-free sampling is controlled 

by the permanently recorded wind velocity, wind direction and by the condensation particle 
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-1 and/or CP concentrations (meas-

ured by a TSI CPC 3022A particle counter) >2500 cm-3 during summer, >800 cm-3 during 

spring/autumn and >400 cm-3 during winter. The CP threshold values were chosen based on 

our more than 20-year long CP record from Neumayer, demonstrating that CP concentrations 

above the corresponding levels can usually be traced back to local pollution. In case of con-

tamination, given by these criteria, an automatic interrupt of the sampling procedure was 

initiated within one second (shut down of the pumps and closing the electromotive valves 

typically needed around 10 seconds). Sampling was restarted after recurrence of clean air 

conditions and a delay of two minutes. However, most of the data loss was provoked by 

blizzards and drifting snow (wind velocity >20 m s-1). During such harsh weather conditions 

aerosol sampling has to be switched off (due to the danger of snow entering the inlet) which 

entailed a downtime of roughly 10% of the observation period. Note, that <2% of data loss 

was actually caused by potential contamination. 

 

2.2.  Analytical Methods 

2.2.1. ICP-QMS Analysis 

 Trace element analysis was performed by means of ICP-QMS (ELAN 6000, Sciex/Perkin 

Elmer) equipped with a cross-flow nebulizer as sample introduction system. The alignment of 

the instrument (plasma torch, ion lens, gas flow, nebulizer) was checked and adjusted before 

analysis by daily performance solutions containing a mixture of 10 ng g-1 Mg, Ba, Ce, Pb, and 

Rh. One half of each filter was used for trace element analysis, while another 1/6 of each filter 

was used for IC analysis (see below). For trace element analyses we chose a total digestion of 

the samples in order to quantitatively dissolve all mineral compounds, which is not been 

given by simple acidic (HNO3) leaching (Lindberg and Harris, 1983; Reinhardt et al., 2003, 
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Table 5 therein). Thus these aliquots were subject to a pressurized digestion system (DAS 

100, Picotrace) at 200°C in a mixture containing HNO
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3 (suprapure, 65%, Merck, sub-boiling 

bi-distilled), HF (suprapure, 40%, Merck, sub-boiling bi-distilled) and H2O2 (suprapure, 30%, 

Merck). With this device a series of 24 samples could be digested in parallel. Each series 

included one filter blank and a certified reference sample (NIST 1648 urban particulate mat-

ter). For calibration we used commercially available standard solutions (104 ppb multielement 

verification standard 1 and 2, Perkin Elmer) which were generally applied in 1 ppb, 10 ppb, 

and 100 ppb concentrations (1 ppb corresponds to 1 ng of each element in 1 g solute). Each 

sample was spiked by 10 ppb Rh as internal standard to normalize the signal intensities and 

compensate instrumental sensitivity variations. The instrumental detection limits (IDL) were 

derived from 60 blank solutions and correspond to three times the standard deviation (std) of 

these blank values (Table 1). Based on the results of the NIST reference material, the retrieval 

for each element to be discussed here was generally between 95% and 100%. When analysing 

the filter samples of the years 2002 and 2003 we were frequently faced with abnormally 

elevated Al-blanks prohibiting further evaluation. Thus the time series of this period appeared 

fragmentary. Due to these unexplained analytical problem, we decided to use the consistently 

measured La as mineral dust tracer and reference element for calculating crustal enrichment 

factors.  

 The variability of the filter procedure blanks clearly governed the overall accuracy as well 

as the analytical detection limits. These estimates were derived from the variation of 49 iden-

tically processed procedure blanks and include possible contributions by the previously 

cleaned filters and any effects arising from handling and storage. We conservatively estimated 

the method detection limits (MDL) as three times the standard deviation (std) of these overall 

blank values (Table 1). In addition to this blank induced uncertainty, relative ICP-QMS cali-

bration errors were considered. In short, the combined uncertainty was found to be approxi-
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mately between ±8% and ±12% for element concentrations above three times the correspond-

ing MDL. It increased from around ±(15-20)% approaching 3xMDL level to roughly (+50/-

100)% close to the MDL. The final atmospheric concentrations (in ng m
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-3 or pg m-3) were 

calculated from the blank corrected element amounts and the corrected sampled air volume to 

standard conditions (273.16 K and 1013 hPa). 

 

2.2.2. IC Analysis 

The extraction of the aliquots for IC analysis included soaking and shaking in 50 ml MilliQ 

water, followed by ultrasonic treatment for 15 minutes. All samples were analyzed for meth-

ane sulfonate (MS), Cl-, Br-, NO3
-, SO4

2-, Na+, NH4
+, K+, Mg2+, and Ca2+ by IC analysis. For 

details concerning IC set up, the determination of accuracy and detection limits see Piel 

(2004). Errors were determined from the blank variability, the typical IC error (calibration 

error and baseline noise), and the error from the sample air volume. In short, the combined 

uncertainty was between ±5% and ±11% for the components MS, Cl-, NO3
-, SO4

2-, Na+, K+, 

Mg2+, and Ca2+ and approximately ±27% for species Br- and NH4
+. Non-sea salt sulfate (nss-

SO4
2-) concentrations were calculated by subtracting the concentration of the sea salt derived 

sulfate from the total SO4
2- concentration (in ng g-1). We used Na+ as sea salt reference spe-

cies and the sulfate to sodium ratio in bulk sea water of 0.252 for November to February, and 

due to the potential impact of sea salt fractionation by frost flower formation a factor of 0.07 

for winter (March – October) samples (Wagenbach et al., 1998). Note that with our sampling 

technique, gaseous HCl, HBr, HNO3, and NH3 were partly collected on the filter material and 

contributed to the reported Cl-, Br-, NO3
-, and NH4

+ concentrations. 

 For the elements Na, K, Mg, and Ca an inter-comparison with the corresponding concentra-

tions measured by IC was possible. A reduced major axis regression (RMA) revealed a good 

agreement between ICP-QMS and IC for Na and Mg, while the ICP-QMS systematically 
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provided higher K and lower Ca concentrations (Table 2). For these two elements the results 
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interferences from Ar carrier gas of the plasma), a possible explanation in case of Ca may be 

the formation of hardly soluble CaF
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2 during digestion. The relatively high scatter of the data 

around the regression line, expressed by somewhat low regression coefficients r2 (Table 2), 

may partly be due to the fact that ICP-QMS and IC analyses were performed with different 

aliquots of the corresponding filters.  

 

 

3.  Results and Discussion 

3.1.  Classification of Trace Elements  

 We first calculated for each element M the so-called crustal EFcrust and sea salt EFss enrich-

ment factors, respectively as: 

ss

aerosol
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crust
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crust )Na/M(
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For reasons discussed in the analytical section, we chose as marker for mineral dust La and 

refer to the crustal composition reported in Wedepohl (1995). Note that at Neumayer Ca is 

largely sea salt derived (see below) and thus an unfavourable tracer for mineral dust. For the 

corresponding EFss we rely on standard mean ocean composition reported in Holland (1993). 

In Fig. 1 the results are presented for winter and summer. Because the ocean is well mixed, 

even small deviations from the standard mean ocean composition indicate that either the 

given component was only partially associated with sea salt or a sea salt fractionation during 

aerosol formation/transport occurred. The situation is intrinsically much more complicated in 

case of mineral dust. First of all the crustal composition of the earth exhibits a pronounced 
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variability (Wedepohl, 1995). Apart from this, weathering and mineral dust generating proc-

esses usually entail a distinct fractionation. Also the crustal element composition may signifi-

cantly differ between mean crust, soil and the small (clay) particles being readily long range 

transported. Here, we conservatively assume that EF
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crust values above 10 point at a negligible 

mineral dust source. The enrichment factors indicate crustal material as the main source for 

the elements Al, Nd, and Ce, while, on the other hand, Li, K, Mg, Ca, and Sr were primarily 

sea salt derived elements, though this dissection appears equivocal for Li. Selenium in con-

trast was found to be highly enriched relative to crust, but also with respect to (sea salt) Na 

pointing to anthropogenic or biogenic sources. 

 

3.2.  Overview on the Trace Element Concentrations measured at Neumayer Station 

 Table 3 gives a compendium of the trace element concentrations measured five years at 

Neumayer Station. In addition individual time series of trace elements representative for sea 

salt aerosol (Li, Na, Sr) and mineral dust (Al, La, Ce, Nd) species are presented in Figures 2 

and 3. Generally, trace element concentrations at Neumayer exhibited a striking inter-annual 

and seasonal variability. Apart from the general sparseness of data available from other Ant-

arctic sites, the intrinsic strong variability makes a coherent assessment of the inter-site differ-

ences a difficult task. Especially the extraordinarily high atmospheric Se and Al levels re-

ported by Artaxo et al. (1992) remain unexplained (Table 4).  

 Görlach (1988) used acid extractable Mn and Wagenbach (1996) combined Mn and Al as 

mineral dust proxy at Neumayer. Converting the reported Mn from Görlach (1988) into corre-

sponding La concentrations (using a mean crust composition given in Wedepohl (1995), i.e. 

Mn/La = 23.9) resulted in a summer maximum of around 1.1 pg m-3 and a winter minimum of 

0.21 pg m-3. This is systematically lower (by 0.21 pg m-3 and 0.35 pg m-3, respectively) but 

still in fair agreement with our La results (Table 3). A pronounced seasonal Al (i.e. mineral 
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dust) maximum during austral summer was evident at all sites, with a mineral dust entry 

tentatively higher at coastal Neumayer compared to continental South Pole (Table 4). The 

data from the Antarctic Peninsula tip appeared contradicting, and the mentioned outstanding 

high Al values reported by Artaxo et al. (1992) might most probably be caused by sporadic 

local dust production from the rocky adjacencies. In contrast to the observed marginal gradi-

ent from coastal to continental Antarctica for mineral dust related trace elements, Na (i.e. sea 

salt) concentrations were about an order of magnitude higher at coastal sites.  

 

3.3.  Seasonal Aspects 

3.3.1.  Synopsis of the seasonality of the aerosol budget at Neumayer 

 In order to assess the relative composition of the aerosol (by mass) and its seasonality, we 

included the relevant ionic compounds. Therefore we considered the aerosol compounds sea 

salt (calculated from the measured Na) mineral dust (calculated from the measured La) and 

further MS, nss-SO4
2-, Cl-, NO3

-, and NH4
+ from the IC analyses. Clearly, the aerosol at Neu-

mayer was dominated by sea salt particles (Fig. 4), even during summer when biogenic sulfur 

emissions reach their distinct annual maximum (Minikin et al., 1998), while mineral dust was 

generally a minor compound with a maximum mass fraction of about 5% during summer. 

Figure 5 shows in more detail the annual cycle of the compounds sea salt, mineral dust and 

biogenic sulfur (sum of MS and nss-SO4
2-). In terms of aerosol composition (biogenic, sea 

salt, and mineral dust) the polar winter seemed confined between April and end October with 

the turn of the seasons occurring in March/April and October/November. 

 

3.3.2.  Seasonality of mineral dust and sea salt entry at Neumayer 

 Figures 2 and 3 indicate that mineral dust and sea salt derived trace elements (Al, La, Ce, 

Nd, and Li, Na, K, Mg, Ca, Sr, respectively) were characterized by distinct mean annual 
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cycles. In Figure 6 the mean seasonal cycle of the crustal and sea salt reference are displayed 

in monthly concentrations (± standard deviation). The seasonality was most pronounced for 

the crustal elements with a distinct concentration maximum from October through March, 

while for sea salt aerosol a broad maximum between April and September was evident. The 

mean relative seasonal amplitude, i.e. the mean maximum normalized to the corresponding 

annual mean, was around 1.7 and 1.4 for mineral dust (La) and sea salt aerosol (Na), respec-

tively. In addition, enrichment factors also exhibited a distinct seasonality, with higher EF
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but lower EFss in winter and vice versa (Figure 1). A possible reason for this finding might be 

the seasonality of dust and sea salt entry observed at Neumayer. During the seasonal maxi-

mum of atmospheric dust entry in summer and sea salt concentrations in winter, the corre-

sponding enrichment factors were lowest due to the dilution of a given enrichment effect by 

enhanced crustal dust or sea salt material, repectively. 

 The observed seasonality for mineral dust appeared consistent with previous studies from 

Neumayer (Görlach, 1988; Wagenbach et al., 1988, Wagenbach, 1996), as well as South Pole 

(Cunningham and Zoller, 1981; Tuncel et al., 1989), where Mn and Al was used as tracer for 

mineral dust, respectively. A thorough evaluation of sea salt aerosol concentrations measured 

at various coastal stations was given in Wagenbach et al. (1998). In agreement with our find-

ings, these authors reported a broad Na maximum during winter at Neumayer, which has also 

been observed at South Pole (Tuncel et al., 1989). In general, an annual cycle of aerosol 

components observed at remote, source free sites can be attributed to a combination in the 

seasonality of the source strength and atmospheric transport processes. While for sea salt 

aerosol regional or even local sources have to be considered, the source regions for mineral 

dust on the surrounding continents are more than 4000 km away and consequently long range 

transport, most probably via the free troposphere, is decisive (Genthon, 1992; Krinner and 

Genthon, 2003). It is believed that the main provenances for Antarctic mineral dust are the 
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Patagonian loess regions (Smith et al., 2003). The seasonal contrast of Patagonian dust fluxes 

seems by far not as distinct as those of the atmospheric rare earth element (equivalent to 

mineral dust) concentrations at Neumayer, though a broad maximum between October and 

March is discernible (Gaiero et al., 2003, Figure 14 therein). In addition to this somewhat 

ambiguous source strength seasonality, we may expect a clear annual cycle in the atmospheric 

mixing height above continents (typically maximum during summer). Since long range dust 

transport to Antarctica is favoured via the mid troposphere, a more effective transfer of dusty 

boundary layer into high altitudes during the summer half year would be consistent with a 

Neumayer summer maximum as well. This explanation is supported by measurements of a 

basically similar seasonality seen at this site for the long lived 
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222Rn decay product 210Pb 

(Wagenbach et al., 1988), known to have a rather constant (continental) emission rate and to 

be less effectively washed out than the typically coarse mode mineral dust particles. Therefore 

the observed mineral dust maximum at Neumayer is probably a combined result of the sea-

sonality in dust generation and the more efficient uplift of dust loaded air into the free tropo-

sphere in summer.  

 The most efficient global mechanism producing sea salt aerosol is bubble bursting during 

whitecap formation and dispersion of wave crests by surface winds over open ocean waters 

(Monahan et al., 1986). Thus, sea salt production exhibits a strong dependency on wind speed 

(Fitzgerald, 1991). Compatible with this perception is the fact that storminess and wind veloc-

ity exhibit a broad maximum during the winter months at Neumayer (Fig. 7). However, as for 

the individual data points there was virtually no correlation between wind velocity and ob-

served Na concentrations (r2 = 0.07). Note that this was also true for our low volume aerosol 

samples taken at daily resolution between October 2003 and February 2007 (teflon-nylon 

filter combinations, analysed by IC). It seems that the general weather situation over the 

South Atlantic was decisive and the most efficient sea salt production occurred during passing 
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cyclones (Wyputta, 1997). However, the sea salt aerosol loading at Neumayer should also 

depend on the efficiency of the transport process, removal by wet deposition, and the actual 

sea-ice cover. The interplay of these factors may have blurred a simple correlation with the 

local wind speed. In this regard, however, we have to bear in mind that particles above an 

aerodynamic diameter of around 7-10 µm, which may constitute a significant if not dominant 

fraction of the sea salt aerosol mass from nearby sources, were not adequately sampled due to 

the cut-off of our air inlet. 

 The formation of sea salt aerosols by frost flowers and associated processes suggested by 

Wolff et al. (2003) should be most active between March and September, consistent with the 

observed Na seasonality. Again it can be assumed that high wind velocities are still necessary 

to finally create sea salt aerosols by dispersion and mobilisation of frost flowers, a process 

which is actually not yet clarified. 

 

3.3.4.  Sea salt fractionation 

 There is some evidence that during wind induced sea salt aerosol generation over open 

ocean waters, a fractionation of major ions (Na+, Mg2+, K+, Cl-, and SO4
2-) relative to bulk 

seawater is negligible, except for Ca2+ which appeared significantly enriched (Keene et al., 

2007). On the other hand, sea ice formation entails considerable sea salt fractionation which 

could influence sea salt aerosol composition if freshly formed sea ice acts as a significant 

source. Below -6.3°C solid Na2SO4·10H2O (mirabilite) crystallizes, followed by CaSO4·2H2O 

(gypsum), and NaCl·2H2O (hydrohalite) precipitation at -22.2°C and -22.9°C, respectively 

(Marion and Farren, 1999). A complete mirabilite precipitation, probably the dominant frac-

tionation process on freshly formed sea ice, would lead to a Na depletion of about 11.8% by 

mass. Assuming simply that no fractionation would occur for the sea salt compounds Li, K, 

Mg, and Sr, a corresponding increase of the enrichment factors EFss to around 1.12 should be 
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expected in sea salt aerosol for this species during winter when sea salt fractionation is most 

probable. In fact, Rankin et al. (2000) found Mg and Ca enrichment factors in frost flower 

samples near Halley Station (EF
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ss(Mg) = 1.16, and EFss(Ca) = 1.15), roughly compatible with 

mirabilite precipitation but indicating, if at all, a negligible gypsum precipitation. Also analy-

ses of individual aerosol particles sampled at the coastal Syowa Station evidenced fraction-

ated Mg-rich (and Ca-rich) sea salt particles (Hara et al., 2005). 

 Combining our ICP-QMS and IC results allows to determine sea salt fractionation for an 

extended number of sea-salt related trace elements. In our approach we first corrected Li, K, 

Mg, Ca, and Sr concentrations for the minor crustal contribution (which were generally be-

tween 1% and 8%) to derive enrichment factors EFss(ssM) exclusively for the sea salt portion 

of these elements. To be consistent, we generally referred ssK and ssCa values to ssNa all 

taken from IC analyses, while for the other elements (Li, Mg, Sr) we relied on the ICP-QMS 

results and related them to ssNa also determined by ICP-QMS. In this way we circumvent 

potential discrepancies caused by systematic analytical differences of both methods (see 

section 2.2.2). 

 All Nass based EFss(ssM) values were strikingly variable throughout the year and, except 

Ca, did not exhibit a significant seasonality as would have to be expected from a depleted 

ssNa reference during winter (Figure 8). It is important to note that in terms of analytical 

accuracy departures beyond ±20% (in the worst case, at very low concentrations, beyond 

±50%) from standard mean ocean water (SMOW) should be regarded as significant. Another, 

but hardly conceivable reason for the scatter of EFss(ssM) could be more than an order of 

magnitude higher crustal M/La ratios (M = Li, Na, K, Mg, Ca, Sr) than reported by Wedepohl 

(1995), which would strongly increase the crustal corrections and thus the uncertainty of the 

calculated ratios. Concerning the medium departures of EFss(ssM) from SMOW, Figure 8 

reveals that ssLi and ssMg were enriched by a factor 2.2 and 1.2, respectively, while ssSr was 
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depleted throughout (EFss(ssSr) = 0.72). For ssK and ssCa the (median) deviation from 

SMOW was not significant, except for the winter values of ssCa (EF
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ss(ssCa)winter = 1.34). In 

double-logarithmic plots of ssM (M = Li, K, Mg, Ca, Sr) versus the ssNa reference it becomes 

apparent that departures from SMOW occurred equally over the whole measured concentra-

tion range and that for ssLi, ssMg, and ssSr the data points were displaced from the SMOW-

line (Fig. 9). Obviously, the high variability of EFss(ssM) in general, as well as the median 

departures from SMOW for ssLi and ssSr cannot be explained by mirabilite precipitation 

alone. Finally the scatter of the enrichment factors (Figures 8 and 9) were strikingly higher 

than the results from recent laboratory investigations on sea salt aerosol formation over a 

realistic air/sea interface (Keene et al., 2007). In summary, our results suggest that in the 

present case additional unknown fractionation processes occurred during sea salt aerosol 

production over the whole year at the interface air/sea or air/sea-ice or subsequently during 

atmospheric transport and sampling.  

 

3.3.4.  Source and seasonality of atmospheric Se 

 It is believed that natural sources like sea spray, volcanoes, and the biosphere dominate the 

global budget of atmospheric Se by around 60%, while the remaining anthropogenic sources 

(basically fossil fuel combustion and mining) are mainly concentrated in the northern hemi-

sphere (Mosher and Duce, 1987). As noted by Mosher (1986), the natural and anthropogenic 

Se cycles are closely linked through the biosphere. The distinct seasonal Se concentration 

maximum during summer observed at Neumayer suggests a potential biogenic source. 

Amouroux et al., (2001) have demonstrated that the production of gaseous selenium species 

coincided with phytoplankton blooms responsible for dimethyl sulfide (DMS) emission. It 

was found, that the sulfur atom in DMS can be substituted by selenium (Mosher et al., 1987; 

Amouroux et al., 2001). Consequently, atmospheric Se should be closely coupled to the DMS 
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turnover. In fact we observed a significant correlation between Se and the end products of 

photochemical DMS oxidation, MS and nss-SO
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4
2- (r(MS) = 0.66; r(nss-SO4

2-) = 0.67). The 

co-variation of Se and MS time series is shown in Fig. 10. Even the inter-annual variability 

largely coincided. Atmospheric Se concentrations found at South Pole were significantly 

lower (Table 4) but showed the same seasonality with maximum values of 8.4±1.6 pg m-3 

during summer (winter concentration: 4.8±0.8 pg m-3 (Tuncel et al., 1989)), in accordance 

with a prominent marine biogenic source which should be less discernible in continental 

Antarctica. 

 Apart from this overall consistent picture there remain several open questions. First of all, 

we have to consider that the sampling efficiency of total Se is not well specified. Inspecting 

some of our Whatman 541 back-up filter showed no Se concentrations above the typical blank 

value, in agreement with results by Mosher et al. (1987) who used Whatman 41 filters. In 

contrast, Mosher (1986) reported on low sampling efficiencies (65%-45%) for this filter type 

in his thesis. Apart from this, knowledge on speciation of atmospheric Se is poor. Apparently, 

DMSe, elemental Se, as well as SeO2 can be chemically transformed into water soluble se-

lenite (SeO3
2-) and selenate (SeO4

2-) in the atmosphere (Wen and Carignan, 2007). In marine 

environments an enrichment of Se-compounds in sub-micron aerosol particles (mainly sea 

salt particles) was suggested (Wen and Carignan, 2007). It is not clarified to what extend 

volatile organic and inorganic Se species (e.g. DMSe, Se, SeO2) are retained and likely 

chemically transformed on the used filter material during the typical sampling interval of 7 

days. Another issue are considerable Se background concentrations measured during polar 

night (at Neumayer and South Pole) when regional biogenic activity ceases. This is in contrast 

to negligible MS concentrations generally observed during winter (Figure 10). Hence we 

tentatively assign wintertime atmospheric Se levels at Neumayer mainly to the global back-

ground load of Se. According to Cunningham and Zoller (1981), the atmospheric load of 
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volatile elements like As and Se at South Pole could also be influenced by volcanic emissions. 

These authors ascribed a distinct Se peak in their time series to the explosive eruption of 

Ngauruhoe volcano in New Zealand that happened in 1975. In our case, however, the contri-

bution of volcanic Se emissions should be, if at all, of minor importance due to the distance of 

the sole presently active but calm volcanoes Mt. Erebus and Mt. Melbourne. Above all, the 

observed seasonality of the Se signal at Neumayer can hardly be explained by volcanic impact 

but might partly be responsible for background Se concentrations. Interestingly, wintertime 

Se levels at Neumayer were about a factor of three higher compared to South Pole, where the 

impact of Mt. Erebus should be more pronounced. For mineral dust derived trace elements 

(Al, La) a similar but weaker gradient is apparent (Table 4), suggesting that the more pro-

nounced and deeper stable inversion layer at South Pole hampers down mixing of long range 

transported trace compounds. In addition further minor, yet unexplained Se sources (local 

contamination, still active regional biogenic emissions) possibly have to be considered at 

Neumayer. 

 

 

5.  Conclusion 

In contrast to the ionic composition of Antarctic aerosol, corresponding continuous long 

term observations of atmospheric trace element concentrations are so far restricted to South 

Pole and Neumayer. Even from these sites, complete year round data records do not cover 

more than 5 years in series. Our results revealed a distinct and contrary seasonality of mineral 

dust and sea salt load at Neumayer which, along with previous results, seems to be valid for 

coastal as well as continental Antarctica. At coastal sites, mineral dust load appeared some-

what more pronounced. More observations from different sites are necessary to establish a 

potential difference between continental and coastal Antarctica in trace element entry. Pro-
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vided that mineral dust is widely uniformly distributed in the free troposphere above Antarc-

tica, this could give us some information on the role of the stable inversion layer, which is 

most pronounced in continental Antarctica, as a barrier against air mass down mixing. This 

would be especially interesting to scrutinize and constrain models addressing aerosol deposi-

tion in Antarctica. Another interesting point was the striking variability of the measured 

ssM/ssNa ratios for M = Li, K, Mg, Ca, and Sr, suggesting that apart from sea salt formation 

in sea ice covered regions itself, sea salt aerosol fractionation processes are not sufficiently 

clarified. As a consequence we are still lacking a tracer to reliably assess sea salt production 

on sea ice, a crucial point for the interpretation of sea salt records in polar ice cores. Marine 

biochemistry was most probably the dominant source for Se. An interesting open question is, 

how much Se is persistently deposited in polar snow and may serve as a proxy for biogenic 

activity in polar ice cores. Clearly, more investigations on the atmospheric photochemistry of 

marine biogenic selenium as well as the chemical nature of particulate atmospheric Se are 

required. 
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608 

609 

610 

Table 1. Instrumental ICP-QMS detection limits (IDL, n=60) and overall method detection 

limits (MDL, n=49) corresponding to a typical, total sampling volume of 2.0x104 m3. (MDL 

for IC-analysis given in parenthesis) 

 

element IDL MDL 
Li[pg m-3] 0.12 0.21 
Na[pg m-3] 16 1800 (300) 
Mg[pg m-3] 0.44 300 (170) 
K[pg m-3] 32 330 (100) 
Ca[pg m-3] 5.0 1300 (140) 
Sr[pg m-3] 0.02 12 
Al[pg m-3] 10 220 
La[pg m-3] 0.005 0.07 
Ce[pg m-3] 0.002 0.17 
Nd[pg m-3] 0.006 0.09 
Se[pg m-3] 2.7 3.1 

611 

612 

613 

614 

615 

616 

617 

 

 

 

Table 2. Inter-comparison of trace elements measured by IC versus ICP-QMS: Results refer 

to a reduced major axis regression (RMA) with slope = m, y-axis intercept = b, regression  

coefficient = r2.  

 

Element m b [ng m-3] r2

Na 1.00±0.05 24± 35 0.52 
K 0.76±0.04 -0.71±1.4 0.43 

Mg 1.14±0.07 -5.94±6.5 0.35 
Ca 1.51±0.09 -2.05±2.1 0.42 

618  
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624 

 

Table 3. Summary of trace element composition of the aerosol measured during five years 

(March 1999 through December 2003) at Neumayer Station via ICP-QMS, except for Ca and 

K which were taken from IC-analysis. Atmospheric mean concentrations (±std) refer to stan-

dard pressure (1013 hPa) and 273.16 K.  

 

element overall mean winter 
Apr. to Oct. 

winter 
range 

summer 
Nov. to Mar. 

summer  
range 

Li[pg m-3] 6.1±4.1 6.9±4.5 0.2–26.5 4.9±3.1 0.17–15.0 
Na[ng m-3] 330±340 400±400 41-3860 220±160 0.3-820 
Mg[ng m-3] 52±66 62±80 6.8-760 31±22 0.17-10 
K[ng m-3] 16±15 17±13 0.1*-6.1 14±17 0.1*-12 
Ca[ng m-3] 15±15 19±17 0.14*-67 11±8.6 0.14*-26.4 
Al[ng m-3] 1.0±0.7 0.84±0.6 0.22*-3.2 1.3±0.7 0.23-3.7 
Sr[ng m-3] 0.29±0.27 0.36±0.31 0.012*-2.6 0.19±0.13 0.012*-0.53 
La[pg m-3] 0.86±0.7 0.56±0.5 0.07*-3.1 1.32±0.8 0.07*-5.8 
Ce[pg m-3] 1.6±1.3 1.0±0.8 0.17*-5.5 2.5±1. 5 0.17*-10.5 
Nd[pg m-3] 0.7±0.6 0.47±0.45 0.09*-2.7 1.1±0.6 0.09*-4.4 
Se[pg m-3] 19±18 16±11 3.1*-82 25±24 3.1*-160 

625 
626 

*  method detection limit (MDL) 
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Table 4. Al, La, Na, and Se concentrations (±std) measured in Antarctic aerosol samples.  

 

element winter summer sampling period sitea  
 

Al 
[pg m-3] 

- 
300±40 
320±110 

- 
9470b

840±600 
 

570±170 
830±410 
730±240 
194±19 
13290b

1270±700 
 

10/1970 
1971/75/76/78 
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Fig. 1:  (a) Mean element enrichment factors with respect to earth crust (EFcrust) and (b) sea 

salt composition (EFss) of Neumayer aerosol samples dissected for summer (November 

through March) and winter (April through October), respectively. 

 

Fig. 2:  Atmospheric Na, Li, and Sr concentrations measured at Neumayer Station at weekly 

time resolution. The grey bars mark the method detection limits.  

 

Fig. 3:  Same as Figure 2 but for Al, La, Ce, and Nd.  

 

Fig. 4:  Pie diagram of the aerosol composition (weight percent referring to the sum of the 

measured species) at Neumayer during winter and summer, respectively. 

 

Fig. 5:  Mean annual cycle of major mass fractions in Neumayer aerosol samples: Sea salt 

(circles), biogenic sulfur (i.e. the sum of MS and nss-SO4
2-, drawn line), and mineral dust 

(diamonds) portion. 

 

Fig. 6:  Seasonality of monthly concentration mean of sea salt (Na) and mineral dust (La) 

reference elements. Values correspond to 5 years of observation (i.e. about 20 samples per 

month). Error bars indicate the respective standard deviation.  

 

Fig. 7:  Time series of wind velocity at Neumayer during the sampling period displayed in the 

same temporal resolution as filter sampling (seven days, thin line), and 6 points moving aver-

age (bold grey line).  
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Fig. 8:  Notched box plots for enrichment factors respecting standard mean ocean water com-

position for the sea salt portion of Li, K, Mg, Ca, and Sr. Lines in the middle of the boxes 

represent sample medians (values are given aside), lower and upper lines of the boxes are the 

25th and 75th percentiles, whiskers show the range of the sample values while outliers are 

marked by “+” signs. The widths of the notches indicate the confidence interval of the me-

dian.  
 

Fig. 9:  Double-logarithmic plot of ssLi, ssMg, and ssSr vs. ssNa. Bold grey lines represent 

the relation for standard mean ocean water. 

 

Fig. 10:  Time series of Se and MS (shifted y-axis) concentrations measured at Neumayer. 

The grey bar marks the method detection limit for Se.  
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Figure 1: (a) Mean element enrichment factors with respect to earth crust 
(EFcrust) and (b) sea salt composition (EFss) of Neumayer aerosol samples 
dissected for summer (November through March) and winter (April through 
October), respectively.

EF
cr

us
t(

La
)

(a)

winter

summer

0.1

1.0

10

100

1000

10000

Al Nd Ce La Li Ca K Sr Mg Na Se

EF
ss

(N
a)

0.1

1.0

10

100

1000

10000

100000

Sr Na Mg Ca Li K Al La Ce Se Nd

(b)

winter

summer



Figure 2: Atmospheric Na, Li, and Sr concentrations measured at Neumayer 
Station at weekly time resolution. The grey bars mark the method detection limits.
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Figure 3: Same as Figure 2 but for Al, La, Ce, and Nd.
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Aerosol composition summer
(November-March)

mineral
dust 5.0%

sea salt
50.3%

nss-SO4
2-

27.6%

NO3
-
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+
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Aerosol composition winter
(April-October)
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MS 0.8%
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Figure 4: Pie diagram of the aerosol composition (weight percent referring to 
the sum of the measured species) at Neumayer during winter and summer, 
respectively.



Figure 5: Mean annual cycle of major mass fractions in Neumayer aerosol
samples: Sea salt (circles), biogenic sulfur (i.e. the sum of MS and nss-SO4

2-, 
drawn line), and mineral dust (diamonds) portion.
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Figure 6: Seasonality of monthly concentration means of sea salt (Na) 
and mineral dust (La) reference elements. Values correspond to 5 years of 
observation (i.e. about 20 samples per month). Error bars indicate the
respective standard deviation.



Figure 7: Time series of wind velocity at Neumayer during the sampling
period displayed in the same temporal resolution as filter sampling (seven days, 
thin line), and 6 points moving average (bold grey line).
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Figure 8: Notched box plots for enrichment factors respecting standard mean 
ocean water composition for the sea salt portion of Li, K, Mg, Ca, and Sr. 
Lines in the middle of the boxes represent sample medians (values are given 
aside), lower and upper lines of the boxes are the 25th and 75th percentiles, 
whiskers show the range of the sample values while outliers are marked by “+”
signs. The widths of the notches indicate the confidence interval of the median.
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Figure 9: Double-logarithmic plot of ssLi, ssMg, and ssSr vs. ssNa. 
Bold grey lines represent the relation for standard mean ocean water.
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Figure 10: Time series of Se and MS (shifted y-axis) concentrations measured 
at Neumayer. The grey bar marks the MDL for Se. 
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