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Kurzfassung

Im Hinblick auf mögliche zukünftigëAnderungen des Meeresspiegels sind Untersuchungen

der Oberflächenmassenbilanz der polaren Eisschilde zu einem zentralen Punkt glaziologischer

Forschung geworden. Dennoch ist die Massenbilanz des antarktischen Eisschildes nicht hin-

reichend genau bekannt, wodurch sich große Unsicherheitenin der Abschätzung des Meer-

esspiegelanstiegs im 21. Jahrhundert ergeben. Die vorliegende Arbeit leistet einen wichtigen

Beitrag durch die Analyse neuer Daten von Schneeakkumulation und stellt neue Erkenntnisse

über lokale Effekte vor, die die Akkumulationsverteilungbeeinflussen. Ziel der Arbeit ist es,

ein umfassendes Bild der räumlichen Verteilung der Akkumulation auf der Skala von einigen

zehn Kilometern zu erhalten, sowie von zeitlichen Variationen sowohl auf jährlicher als auch

auf dekadischer Skala. Zu diesem Zwecke wurde Profile mit einem hochfrequenten Boden-

radar gemessen und flache Firnkerne erbohrt. Das Untersuchungsgebiet konzentriert sich auf

die gegründeten Küstengebiete des Dronning Maud Landes in der Ostantarktis, die zugleich im

Mittelpunkt neuer Satellitenmissionen stehen. Gerade dieKüstengebiete reagieren empfindlich

auf globale Klimaveränderungen, jedoch ist ihre Akkumulationsrate auf lokaler und regionaler

Skala bislang nicht sehr gut durch globale Zirkulationsmodelle oder regionale Klimamodelle

repräsentiert. Daher sind Feldmessungen der Akkumulation von entscheidender Bedeutung.

Die Akkumulationsraten auf dem Potsdamgletscher im küstennahen Bereich des zentralen

Dronning Maud Landes weisen ein undulierendes Muster und eine hohe räumliche Variabilität

auf: Die einfache Standardabweichung beträgt nahezu 50 % des Mittelwertes von 140 kg m−2 a−1

für den Zeitraum von 1970–2004. Die zeitlichen Variationen auf der Zeitskala von Dekaden be-

tragen lediglich einige Prozent, abgeleitet aus den gebietsweiten Mittelwerten der Akkumu-

lationsraten. Jährliche Schwankungen der Akkumulationsrate fallen deutlich höher aus, da

die Firnkernanalysen Standardabweichungen von 30–40 % desMittelwertes der Akkumula-

tion für die jeweiligen Kerne aufweisen. Eine statistische Analyse der räumlichen Akkumula-

tionsverteilung macht die hohe Periodizität des Akkumulationsmusters mit Wellenlängen von

5 km und Amplituden von 10 m deutlich. Dies lässt den Schlusszu, daß die hier beobachtete

Akkumulationsverteilung derjenigen gleicht, wie sie von den Megadünen auf dem ostanta-

rktischen Plateau bekannt ist, auch wenn die Dünen auf dem Potsdamgletscher weder die

räumliche Ausdehnung noch die extreme Morphologie der Megadünen aufweisen. Analog zu
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den Megadünen lässt sich die Entstehung der auf dem Potsdamgletscher beobachteten Struk-

turen sehr wahrscheinlich durch ein spezielles Rückkopplungssystem zwischen Atmosphäre

und Kryosphäre erklären. Das Auftreten von dünenartigen Undulationen wie die in dieser Ar-

beit diskutierten ist von Bedeutung für Firnkernbohrungen in küstennahen Gebieten sowie für

die Fernerkundung von Eismassenänderungen.

Das zweite Untersuchungsgebiet im westlichen Dronning Maud Land, in der Nähe der Kot-

tasberge am Fusse des polaren Plateaus, weist eine geringere räumliche Variabilität der Akku-

mulationsrate auf. Hier beträgt die Standardabweichung lediglich 5–10 % des Mittelwertes

von 190 kg m−2 a−1 (1980–2005). Allerdings sind in diesem Gebiet die zeitlichen Variatio-

nen höher, sei zeigen Werte von 16 % auf dekadischer Skala, abgeleitet aus den Mittelwerten

der Akkumulation im Untersuchungsgebiet. Die jährlichenSchwankungen betragen wie auf

dem Potsdamgletscher ca. 30 %, wie sich aus der Firnkernanalyse ergibt. Der Vergleich von

räumlichen und zeitlichen Variationen entlang eines Radarprofils auf einer Gletscherfließlinie

macht eine schwache Korrelation deutlich, wie sie ebenfalls auf dem Potsdamgletscher zu

beobachten ist. Dieses Ergebnis deutet an, daß die zeitlichen Differenzen der Akkumulation-

srate auf der Skala von einigen zehn Jahren dort am grösstensind, wo auch die räumlichen

Differenzen auf der Skala von einigen 100 Metern bis zu wenigen Kilometern ein Maximum

aufweisen.

Die hier vorgestellten Ergebnisse sind wichtig für die Validierung von Eismassenänderungen,

die aus Satellitendaten abgeschätzt werden und die daher ¨uber mehrere 100 Kilometer gemittelt

sind und somit keine kleinräumlichen Einflüsse erfassen.Deutliche räumliche Variationen in

der Akkumulationsrate wie diejenigen auf dem Potsdamgletscher beeinflussen sehr wahrschein-

lich das Schweresignal z.B. der Satellitenmission GRACE. Dies zeigt die Notwendigkeit der

Validierung von Satellitendaten mit bodengestützten Messungen, wie sie in dieser Arbeit disku-

tiert werden.



Abstract

In light of possible future sea-level change, investigation of surface-mass balance of the po-

lar ice sheets has become a major concern of glaciological research. Yet Antarctica’s total

surface-mass balance is still not accurately determined, making up for the largest uncertainties

of predictions regarding sea-level rise in the 21st century. This study contributes new data sets of

recent snow-accumulation rates and provides insight in local features affecting the small-scale

distribution of accumulation. The aim of the work is to establish a detailed picture of spatial

accumulation variability on the scale of some tens of kilometers and of temporal behaviour

on interannual to decadal scales. To this end, high-frequency ground-penetrating radar profil-

ing and analyses of shallow firn cores have been utilized. Thearea of investigation focuses on

coastal regions of Dronning Maud Land, East Antarctica, which are likewise in the focus of new

satellite missions. The coastal regions are susceptible toglobal climate change but the local to

regional-scale variability of accumulation is not well addressed by general circulation models

or regional climate models, thus making it necessary to obtain and analyze field data.

The accumulation rates on Potsdam Glacier in the coastal part of central Dronning Maud

Land have been found to show an undulating pattern, exhibiting a one-fold standard deviation

of nearly 50 % around a mean value of some 140 kg m−2 a−1 for the time period 1970–2004.

Temporal variations on decadal scales obtained from the area-wide mean values are only a few

per cent, but inter-annual variations derived from dated firn cores are high, showing values

between 30–40 % of the core means. Statistical analysis of spatial accumulation series reveals a

high periodicity of these undulations with a wavelength of 5km and amplitudes of 10 m, leading

to the conclusion that the features are similar to the megadunes known from the polar plateau,

although they lack the spatial extent and the extreme snow morphology of the latter. Thus,

the features are likely explicable by a feedback system between atmosphere and cryosphere.

The presence of dune-like features as those revealed by thisstudy has implications for firn-core

drilling at these coastal sites and for remote sensing of ice-mass changes.

Another test site in western Dronning Maud Land, near Kottasberge at the foot of the polar

plateau, shows less spatial variability, only 5-10 % arounda mean value of 190 kg m−2 a−1 (1980–

2005), yet the temporal variations are higher with values of16 % on decadal scales and likewise

about 30 % on interannual scales obtained from firn cores. Comparing spatial and temporal vari-
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ations on an along-flow radar profile reveals a weak correlation, which is likewise found for the

corresponding radar profile on Potsdam Glacier. This observation indicates that the largest tem-

poral differences on decadal scales tend to occur where spatial variability on the scales of some

hundreds of meters to several kilometers is highest.

The results presented here are valuable for the validation of satellite-derived ice-mass changes,

which are usually averaged over several hundreds of kilometers and do not capture small-scale

variability. Spatial variations in accumulation rates as those reported from Potsdam Glacier are

likely sensed by gravity missions like GRACE, emphasizing the necessity of ground-truthing,

as provided by this study.



Chapter 1

Introduction

This chapter comprises a short general description of Antarctica, focusing on the continent’s

mass balance. Relevant terms are introduced and methods fortheir measurement are given,

followed by recent results and implications.

1.1 Antarctica and its mass balance

Albeit remote, Antarctica is capable to significantly influence the Earth’s climate and is itself

very sensitive to global-climate change. It is not only the coldest, but also the driest and the

highest continent, with precipitation of some 50 mm a−1 in the vast interior [Monaghan et al.,

2006a] and elevations up to 4000 m above sea level (a.s.l.). The thickness of the ice cover in

the interior is about 2500 m, reaching a maximum of 4800 m [Lythe et al., 2001]. Antarctica

is surrounded by the global oceans, influencing their salinity and circulation on global scales

[Goosse and Fichefet, 1999, and references therein].

The Antarctic ice sheet holds about 90 % of the Earth’s ice, equivalent to 70 % of the fresh

water reservoir. If completely melted, this would rise sea level by some 60 m [e.g.Alley et al.,

2005]. Due to the obvious environmental and societal impacts, monitoring of Antarctica’s ice

mass and its changes plays a crucial role in glaciological research [among othersWingham et al.,

1998;van der Veen, 2002;Thomas et al., 2004;Alley et al., 2005;Church and White, 2006].

Projected sea-level rise by the end of the 21st century is 0.5±0.4 m in response to additional

global warming [Alley et al., 2005, and references therein] with the largest errors arising from

the uncertain Antarctic contribution. Thus, a modest imbalance of the Antarctic ice sheet may

cause a major change in sea level and an acceleration of sea-level rise which currently amounts

to 1.5–2 mm a−1 [Bamber, 2004]. Moreover, it could also determine the sign of futuresea-level

change.

The last years have therefore seen increasing efforts to examine the possible contribution of

the Antarctic ice sheet to global sea-level change. Unfortunately, today neither the net Antarctic
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mass gain nor its loss can be determined accurately enough toderive clear predictions [Vaughan,

2005], although several regions have been reported to be significantly out of balance [van den

Broeke et al., 2006]. In light of these uncertainties and their impacts onglobal sea-level change,

knowledge of the variability of the Antarctic surface-massbalance on different spatial scales is

of major importance.

1.2 Mass balance and surface-mass balance

Mass balance(MB) refers to the net ice-mass gain or loss by biasing all input and output

contributors of snow or ice mass with a MB of zero referring toequilibrium conditions. Thus,

MB is generally calculated as difference between input and output mass fluxes [Rignot and

Thomas, 2002]. However, accurate determination of the mass fluxes is still largely difficult

[Zwally et al., 2005].

Mass is mainly gained by freezing water beneath the ice shelves and by precipitation, most of

which falls as solid snow. Only in small stripes along the coasts and on the Antarctic Peninsula

occasional rain fall occurs. In the Antarctic interior, clear-sky precipitation, or diamond dust,

the mechanism of which is not fully understood yet [van de Berg et al., 2006], may contribute

significantly to mass gain. The main contribution to mass removal stems from ice-flow across

the margins of Antarctica and subsequent basal melting underneath the ice shelves as well as

from iceberg calving at their ice fronts.

Surface-mass balance(SMB) can be written as [van de Berg et al., 2005;King, 1996]

SMB= Ps−SU−M−ERds−SUds (1.2.1)

wherePs denotes solid precipitation,SU sublimation from the surface (sometimes also referred

to as evaporation, since evaporation largely consists of surface sublimation in Antarctica [Déry

and Yau, 2002]),M melt (i.e., surface melt) and runoff,ERds erosion due to divergence in hor-

izontal snow transport, andSUds snowdrift sublimation. Note that onlyPs adds mass, whereas

the other terms remove mass and are therefore negative in Equation (1.2.1). All terms are usu-

ally given in mm w.e. (water equivalent) a−1, which is equivalent to the unit kg m−2 a−1. The

terms MB and SMB are not used concisely in literature. Here, SMB denotes the sum of all

surfaceprocesses, as given above. If not mentioned otherwise, it refers to the entire Antarctic

ice sheet. On the other hand, MB addresses the sum ofall ice-mass changes, including dynamic

effects from glacier flow and subsurface processes.

Snow accumulation, hereinafter referred to asaccumulation, denotes all processes adding

snow mass to the surface in a certain area, i.e., precipitation and redistribution of freshly fallen

snow by wind influence [Paterson, 1994]. Accumulation can be determined locally by in-situ

measurements - see chapter 3. Note that the term accumulation as used in the publications of
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this study (Paper I–III) and in several others refers to the in-situ determined accumulation rates,

meaningnetaccumulation averaged over a certain time period in the respective study area.

Ablation is defined as the sum of all processes removing mass from the surface, consisting

of the negative terms in Equation (1.2.1), as explained above. Sublimation is mainly controlled

by temperature, which depends strongly on elevation. Regionally, katabatic winds also influ-

ence sublimation. In Dronning Maud Land, sublimation reaches up to 200 kg m−2 a−1 [van de

Berg et al., 2005], thus significantly contributing to the SMB. Snowdrift sublimation has been

reported to remove about 10–20 % of the annual accumulation in coastal regions [Bintanja,

1998]. The Antarctic interior experiences much less snowdrift sublimation, due to lower tem-

peratures and less intense winds. Surface melt occurs only locally in Antarctica, mainly in

regions adjacent to the coast, on ice shelves, and on the Antarctic Peninsula [Torinesi et al.,

2003]. In Dronning Maud Land, surface melt plays generally aminor role and can thus be

neglected [Zwally and Fiegles, 1994]. Some authors even restrict surface melt and runoff to

the northernmost parts of the Antarctic Peninsula only [van den Broeke and van Lipzig, 2003].

Divergence from horizontal snow transport is difficult to quantify, but has been reported to con-

tribute locally to SMB, particularly in the coastal areas.Déry and Yau[2002] estimate that

surface sublimation and snowdrift together remove 17–20 % of the annual precipitation over

Antarctica.

1.2.1 Influences on surface-mass balance

SMB as well as accumulation rates have been shown to vary locally to regionally in Antarctica

[e.g.Richardson-N̈aslund, 2001;Spikes et al., 2004;Eisen et al., 2005;Frezzotti et al., 2005].

In general, accumulation decreases with distance from the coast and with decreasing temper-

ature [e.g.Giovinetto et al., 1990;Richardson-N̈aslund, 2001]. The interior parts of Antarc-

tica receive less moisture than the areas in the vicinity of the ocean. In the interior, katabatic

(i.e., gravity driven) winds dominate the wind regime, following the surface slopes [Parish and

Bromwich, 1991]. In coastal areas, katabatic winds also follow the steep slopes, but these re-

gions are characterized by the occasional presence of nunataks, that are capable to modify wind

flow locally [Jonsson, 1995]. Furthermore the coastal areas are influenced by synoptic weather

systems which do not penetrate far inland enough to reach thepolar plateau. In Dronning

Maud Land coastal areas are marged by mountain chains at the transition to the polar plateau.

Precipitation is higher at the foot of those mountains, therefore these parts experience more

accumulation, whereas the plateau region receives far lessprecipitation.

Yet accumulation is not only influenced by precipitation andthus by general weather systems

but also by the interaction between near-surface wind pattern and surface topography [King

et al., 2004]. Accumulation maxima tend to be located in local surface-elevation troughs and

on the windward sides of surface-elevation undulations [e.g. Black and Budd, 1964;Goodwin,
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1990;Frezzotti et al., 2005]. Local hills and their leeward sides experience far less accumu-

lation, sometimes even ablation. This pattern is attributed to wind influence from a prevailing

wind direction. Over large areas of the East Antarctic plateau a specific feedback system be-

tween atmosphere and cryosphere results in highly regular undulations of accumulation pattern,

leading to the formation of so-called megadunes [Frezzotti et al., 2002a]. These features are

characterized by wavelengths of a few kilometers and amplitudes of a few meters, covering

areas of roughly 500 000 km2 [Fahnestock et al., 2000], their subparallel crests extending over

hundreds of kilometers.

Thus, accumulation is a complex function of such parametersas continentality, moisture

source, precipitation regime, temperature, surface slopeand structure, surface elevation, and

glacier flow. As outlined above, climatic conditions at coastal sites tend to be more complicated

than on the rather smooth and homogeneous regions of the Antarctic plateau, leading to the

higher variability of accumulation features reported in several studies [e.g.Richardson-N̈aslund,

2001]. Since the coastal parts contribute significantly to the pattern and the total amount of

Antarctica’s SMB, they are in the focus of several new satellite missions and the respective

ground-truthing campaigns, involving this study.

In principle, bedrock topography is also capable to influence the accumulation pattern, since

large-scale surface-elevation features have been reported to mirror bedrock topography [e.g.

Welch and Jacobel, 2005]. However, in the investigation areas of this study ice thickness is

generally much larger than 1000 m and the bedrock topographyis generally rather smooth

[Lythe et al., 2001;Meyer et al., 2005], thus it can be assumed that bedrock influences do not

contribute significantly to the small-scale accumulation variability reported in this study.

1.2.2 Overview of measurement methods

Methods to determine SMB or MB can be divided in large-scale approaches comprising the

whole Antarctic continent or at least large drainage basins[e.g.Giovinetto and Bentley, 1985]

and in-situ measurements naturally providing local to regional-scale values.

The latter consist of point measurements such as firn cores, snow pits, or stake readings.

Additional ground-penetrating radar (GPR) profiling is often used to connect firn-core drilling

sites [among othersRichardson et al., 1997;Spikes et al., 2004;Eisen et al., 2005]. Such in-situ

measurements consisting of shallow firn cores and GPR profiling are performed in this study

and will be addressed in section 3 and in the accompanying papers (Paper I–III).

Large-scale estimates of SMB can be carried out by modeling,e.g., using general circula-

tion or regional atmospheric models [Genthon and Krinner, 2001;Genthon, 2004;van de Berg

et al., 2005]. Interpolation of widespread in-situ data has been used to derive maps of distribu-

tion of SMB over the entire ice sheet (see next section). Satellite-derived changes in ice-sheet

elevation allow determination of large-scale MB, when accompanied by gravity measurements.
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Atmospheric models and large-scale compilations from interpolation are introduced in section

1.3, followed by recent results, satellite-based approaches are discussed in section 1.4.

1.3 Large-scale estimates of (surface-)mass balance

Rignot and Thomas[2002] give three methods to determine Antarctica’s MB:

• The mass-budget method:

This method is valid for the grounded ice sheet and compares net input from snow accu-

mulation with melt and ice discharge. The difference between these contributors describes

the mass budget. Accumulation is usually inferred from ice-core analyses. Melt rates can

be estimated by positive degree-day models or from satellite-derived brightness temper-

atures [Torinesi et al., 2003]. Ice discharge across the grounding line is derived from

ice-flow velocities obtained by interferometric analysis of synthetic apertur radar (SAR)

data [Dietrich et al., 1999;Joughin and Tulaczyk, 2002] or by GPS measurements.

• Elevation change:

Detection of changes in ice-sheet elevation over time became possible by satellite altime-

try, like ERS-1/2, Geosat, and ICESat. Elevation changes can be translated into volume

changes, provided that the vertical motion of the underlying ground due to isostatic ad-

justment and postglacial rebound is known. More information about this method is given

in section 1.4. A detailed discussion of recent mass changesof Antarctica as well as

Greenland using ERS-1/2 data is given byZwally et al.[2005].

• Weighing of ice sheets:

This approach is carried out likewise by satellite-borne measurements. The GRACE mis-

sion, maintained by NASA and DLR (Deutsches Zentrum für Luft- und Raumfahrt), pro-

vides measurements of the time-variable gravity field. Combination with elevation data

yields estimates of the MB [Wahr et al., 2000]. This method will likewise be discussed

further in section 1.4.

The distribution of SMB over the entire ice sheet is generally estimated from large-scale ap-

proaches utilizing modeling and interpolation of field data. Modeling usually involves usage of

general circulation models (GCMs) [e.g.Genthon and Krinner, 2001] or regional atmospheric

climate models [e.g.van de Berg et al., 2005], both deriving SMB from the modelled distribu-

tion of precipitation and melt over Antarctica.
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1.3.1 Recent estimates of Antarctic surface-mass balance

Large-scale compilations of SMB have been given byVaughan et al.[1999] andGiovinetto

and Zwally[2000]. Prior to these more recent studies,Giovinetto and Bentley[1985] published

a map of SMB distribution, based on several in-situ studies and the delineation of major ice-

drainage basins. They obtain distribution of SMB by positioning isopleths of SMB considering

parameters like surface slope, surface elevation, and regional estimates of atmospheric variables

like condensation levels and directions of lower tropospheric flow. Thus they derive an aver-

age of 124 kg m−2 a−1 for the grounded ice sheet, 263 kg m−2 a−1 for the ice shelves, and

143 kg m−2 a−1 for the whole of Antarctica. Accuracy is reported to be± 10 %.Giovinetto and

Zwally [1995] derive accumulation distribution from passive microwave data, relating firn emis-

sivity and accumulation rates. Their results suggest that the former compilation ofGiovinetto

and Bentley[1985] underestimates SMB by 12 % for West Antarctica and by 39 % for East

Antarctica.

Vaughan et al.[1999] interpolate more than 1800 in-situ measurements from firn cores

and snow pits. They use passive microwave brightness temperature to control the interpola-

tion. A new elevation model derived from ERS-1 satellite altimetry is employed to delineate

the boundaries of the drainage basins more precisely than before. Thus, they report net sur-

face accumulation of 2288 Gt a−1 or 166 kg m−2 a−1 for the entire Antarctic ice sheet and

1811 Gt a−1 or 149 kg m−2 a−1 for the grounded ice sheet with an estimated accuracy of

± 5 %. Giovinetto and Zwally[2000] use practically the same data set asVaughan et al.[1999]

yet a different interpolation scheme by utilizing visual interpolation of isopleths. Compared to

the previous compilation ofGiovinetto and Bentley[1985] they also account for deflation and

ablation adjustment, i. e., mass loss due to wind influence and due to evaporation and runoff.

The implementation of these adjustments affects the coastal areas only, constrained to a zone

stretching about 50–100 km inland from the grounding line.Giovinetto and Zwally[2000] thus

derive 2020 Gt a−1 or 149 kg m−2 a−1 on average net accumulation for the entire ice sheet (or

159 kg m−2 a−1 without adjustment). The difference between this and the older compilation of

Giovinetto and Bentley[1985] in overall net accumulation amounts to 6 kg m−2 a−1, however,

some of the drainage basins exhibit much larger differences. Hence, although the derived over-

all SMB has not changed much due to more accurate compilations, results for individual areas

become significantly more precise the more in-situ data are available and included.

The difference between the calculations ofVaughan et al.[1999] andGiovinetto and Zwally

[2000] considering the entire ice sheet amounts to 268 Gt a−1, equivalent to about∼0.7 mm a−1

global sea-level change, demonstrating that the same data set may lead to different conclusions,

thus affecting predictions of possible future climate changes.

Arthern et al.[2006] utilize satellite observations of microwave emission and in-situ mea-

surements to obtain an map of Antarctic accumulation rates.Their general accumulation pattern
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agrees well with the results ofVaughan et al.[1999] andGiovinetto and Zwally[2000], yet re-

gionally differences exceed 100 kg m−2 a−1. Arthern et al.[2006] derive an average value of

143±4 kg m−2 a−1 over the grounded ice sheet with an accuracy of some 10 %.van de Berg

et al. [2005] use a regional atmospheric climate model (RACMO2/ANT), comprising the com-

ponents precipitation, sublimation/deposition, and melt. Mass loss by snowdrift or snowdrift

sublimation is not accounted for in their model. Integratedover the grounded ice sheet, their

derived average SMB results as 153 kg m−2 a−1, agreeing within 5 % with the measurement

compilations fromVaughan et al.[1999]. Moreover,van de Berg et al.[2006] calibrate the re-

sults ofvan de Berg et al.[2005] with the in-situ measurements used byVaughan et al.[1999],

thus obtaining a calibrated mean SMB of 171±3 kg m−2 a−1.

This overview shows that from the earlier compilation givenby Giovinetto and Bentley

[1985] estimates of mean SMB generally increased over the years as more in-situ data became

available. Although the accuracy of the estimates increased likewise, interpolations still suffer

from data sparsity. Therefore, continuing efforts in field work enlarge the available data base

and contribute to constraining future large-scale models.

1.3.2 Uncertainties and implications

Generally, the large-scale compilations neglect small-scale variability and present results av-

eraged horizontally over 50 to some 100 km. As explained before, accumulation is subject to

local and regional variations, especially in the coastal areas. Interpolation of point measure-

ments for large-scale maps therefore requires some knowledge of the spatial representativity

of the values, which is likely rather small [Richardson-N̈aslund, 2001]. Implementation of

measurements covering different time periods may obstructthe results of large-scale compi-

lations since long-term trends and short-term temporal variability are mixed. Recent studies

revealed that interannual variability of precipitation isconsiderable, with common fluctuations

of ±20 kg m−2 a−1 [Monaghan et al., 2006b]. Inclusion of accumulation records covering

very short time periods therefore might likely lead to biases in the derived compilation.

Moreover, the large-scale approaches have been shown to overestimate SMB in coastal areas

[van de Berg et al., 2006], where the GCMs likewise show biases [Genthon, 2004]. Yet these

regions are especially sensitive to global climate change [Genthon and Krinner, 2001], therefore

accurate knowledge of accumulation pattern in the coastal areas is relevant for climatological

research.

Large-scale compilations do not capture the variability oflocal climatic influences suffi-

ciently due to their grid-cell size. Satellite-based approaches (discussed in the next section)

likewise suffer from averaging over large areas. In light ofthe biases in GCMs and other large-

scale approaches in-situ measurements are required for validation.
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1.4 Satellite-based approaches

This section describes the satellite-based approaches to determine Antarctica’s MB, comprising

a short description of methods and recent results as well as uncertainties and implications.

Furthermore the VISA project, forming the framework of thisstudy, is introduced, followed by

the outline of the specific goals of this study.

1.4.1 Determination of ice-mass changes

Satellite-based approaches to derive changes in ice mass include altimetry and gravity missions.

ESA’s European Remote Sensing (ERS)-1/2 mission (ERS-1: 1991–2000, ERS-2: launched

1995), carries among other devices a synthetic aperture radar and a radar altimeter. ERS yields

information about the ice-sheet elevation and its changes [e.g.Wingham et al., 1998], however,

these satellites cover only areas up to latitudes of 80◦ S/N and do not give reliable results over

the steep slopes that widely dominate the grounded coastal areas. [Vaughan, 2005;Zwally et al.,

2005]. NASA’s ICESat (Ice, Cloud, and Land Elevation Satellite), launched in 2002, carries on

board the Geoscience Laser Altimeter System (GLAS), measuring the surface elevation by laser

altimetry. GLAS’s footprint is small, only 60 m on average, and spaced at 172 m along-track,

enabling an averaged accuracy of 15 cm [Zwally et al., 2002]. Thus, high-resolution mon-

itoring of surface-elevation changes is possible. Surface-elevation changes are equivalent to

ice-thickness changes minus the vertical motion of the underlying bedrock due to postglacial

rebound. Furthermore, short-term changes introduced by variations in near-surface firn com-

paction must be taken into account [Zwally and Li, 2002]. The ICESat mission is dedicated

to give a temporal and spatial coverage of ice-sheet surfaceelevation such that interannual and

long-term elevation changes can be obtained with an accuracy of < 1.5 cm a−1 for spatial av-

erages over areas of 100 km x 100 km. Vertical resolution resolves changes of about 10 % of

the accumulation rate [Zwally et al., 2002]. ICESat data provide coverage up to at least 86◦ S/N

of the polar regions but does not penetrate cloud covers, which are particularly present near the

coasts.

The upcoming CryoSat-2 mission, which is scheduled to be launched in 2009 after the fail-

ure of CryoSat-1 in 2005, will cover latitudes up to 88◦ S/N, monitoring precise changes in

thickness of polar glaciers and floating sea ice using a special radar altimeter. More information

about CryoSat and its deliverables can be found inWingham et al.[2006]. Together, ICESat

and CryoSat-2 will provide detailed data sets of ice-sheet elevation. Thus, data sets already

available from ERS-1/2 are expected to be extended by the ICESat and CryoSat-2 missions.

However, from satellite altimetry alone one cannot distinguish between changes in elevation or

in density of the firn column, as firn compaction influences thesignal sensed by the satellites.

Furthermore, postglacial rebound also affects the ice-elevation changes derived from satellite
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observations [Huybrechts and Le Meur, 1999]. Thus, additional information is mandatory.

Another approach to yield ice-mass changes involves gravity measurements, as gravity is

linked directly to mass. Time-variable gravity data are provided by the Gravity Recovery and

Climate Experiment (GRACE) mission [Tapley et al., 2004a], continuously mapping the grav-

ity field up to latitudes of 89◦S/N. Monthly solutions are provided by Geoforschungszentrum

(GFZ) Potsdam, Germany, and Center for Space Research (CSR)Texas, USA, consisting of

spherical harmonics, the Stokes coefficients. GRACE actually comprises two identical satel-

lites, separated from each other by∼220 km along-track and linked by a highly accurate in-

tersatellite microwave ranging system [Tapley et al., 2004b]. This concept is referred to as

satellite-to-satellite tracking at low-low mode [Bentley and Wahr, 1998]. A change in distance,

extracted from the phase measurement of the signal transmitted between the satellites, implic-

itly contains the influence of the globally integrated mass distribution and its movements within

the Earth [Tapley et al., 2004b]. GRACE delivers only data of resolution of some 400 km

[Tapley et al., 2004b], hence, the derived ice-mass changes are averaged over several hundred

kilometers [King et al., 2006].

Unfortunately, major ambiguities arise for the interpretation of gravity changes over the ice

sheets, comprising postglacial rebound as well as interannual variations in snow-accumulation

rates and in mean atmospheric pressure [Bentley and Wahr, 1998]. Concerning isostatic re-

bound, GRACE-derived parameters enable the improvement ofmodels regarding the viscosity

of the Earth’s mantle, yet a certain amount of GRACE solutions has to be available for this

method, as well as information about surface elevation fromaltimetry. Groundborne obser-

vations of elevation using GPS receivers also add valuable data for model constraints of iso-

static rebound effects. Moreover, interannual changes of snow accumulation can likewise be

addressed by GRACE [Bentley and Wahr, 1998], however, they are also averaged over several

hundreds of kilometers. Additional field measurements willthus be necessary. The contribution

from the atmosphere can be estimated from atmospheric data and models [Swenson and Wahr,

2002]. Increasing the number of automatic weather stationsemployed in Antarctica further

helps to diminish the errors caused by fluctuations of atmospheric pressure.

1.4.2 Results and uncertainties

Combination of the results from gravity and altimetry missions yields ice-mass changes. Re-

cent results from the gravity method are given byVelicogna and Wahr[2006]. They estimate

Antarctic mass loss to be about -152±80 km3 a−1, equivalent to 0.4±0.2 mm a−1 sea-level rise.

Separated for West and East Antarctica, they derive mass rates of -148±21 km3 a−1 for the

West Antarctic ice sheet (WAIS) and 0±56 km3 a−1 for the East Antarctic ice sheet (EAIS).

Uncertainties are introduced by postglacial rebound and the so-called leakage effect, i. e., the

fact that the gravity signal is affected also by mass outsideof the Antarctic ice sheet. The un-
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certainties from postglacial rebound dominate the error, showing an even larger magnitude than

the uncorrected trend from GRACE. Thus, independent modelshave to be employed in order to

decontaminate the GRACE signal from postglacial rebound and leakage effects. A significant

ice-mass trend does only appear after removal of postglacial rebound from the GRACE solu-

tions, implying that ice-mass variability and postglacialrebound are closely related, yet with

opposite signs [Velicogna and Wahr, 2006]. Long-term postglacial rebound rates will remain

constant over the mission duration (projected for five years, but expected to yield eight years),

hence, it should be possible to resolve long-term changes inthe rate of mass loss, as more

GRACE data become available.

Chen et al.[2006] likewise utilize GRACE data to determine regional ice-mass changes

of West and East Antarctica. They conclude that the WAIS is losing mass at a rate of -

77±14 km3 a−1 whereas EAIS shows mass gain of +80±16 km3 a−1. Other studies report

approximate ice-mass balance of East Antarctica [e.g.Rignot and Thomas, 2002]. Compari-

son of the results presented byChen et al.[2006] with those fromRignot and Thomas[2002]

indicate that either snow accumulation increased significantly after 2002 (i.e., the launch of

GRACE) in this region in comparison to earlier studies, or anunmodeled contribution of post-

glacial rebound obscures the results.Chen et al.[2006] argue that the latter is more probable,

demonstrating that models of postglacial rebound need to beimproved over Antarctica. Us-

ing yet another correction for postglacial rebound,Ramillien et al.[2006] derive an ice-mass

change of -107±23 km3 a−1 for WAIS and +67±28 km3 a−1 for EAIS. The entire Antarctic

ice sheet is in their study reported to contribute to sea-level rise by 0.11±0.09 mm a−1. This is

significantly less than the results presented byVelicogna and Wahr[2006], again demonstrating

the necessity for a reliable model of postglacial rebound aswell as detailed ground-truthing of

satellite-based approaches.

Horwath and Dietrich[2006] demonstrate that errors are likely even larger than given above.

They address errors in the GRACE solution itself (the Stokescoefficients), of which regional

mass variations arise as linear combinations using adaptedfilter techniques [Swenson and Wahr,

2002]. Thus, errors in the solution linearly propagate intothe derived mass variations. For this

reason current estimates of Antarctic ice-mass trends likethose published byVelicogna and

Wahr [2006] and other studies very likely underestimate errors and uncertainties.

Concludingly, although the aforementioned new satellite missions yield a better coverage of

Antarctica and more accurate estimates of MB and ice-mass changes, it still cannot be deter-

mined at present whether Antarctica as a whole is in or out of balance. It is currently agreed that

the WAIS is out of balance with a negative mass budget [e.g.Thomas et al., 2004], whereas the

EAIS is believed by some authors to be in balance [e.g.Rignot and Thomas, 2002;Velicogna

and Wahr, 2006]. Others report increase in elevation and snow accumulation on the EAIS

[Davis et al., 2005;Chen et al., 2006]. Yet as a result of data sparsity the mass balance of
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the EAIS is largely uncertain and subject to errors, especially due to the uncertain contribution

of postglacial rebound affecting the gravity signal.Chen et al.[2006] state that the uncertain-

ties arising from the postglacial-rebound model adopted may be on the order of 100 %. Thus,

ground-based studies of accumulation variability help to establish a more complete picture of

(East) Antarctic mass balance.

1.4.3 The VISA project and this study

This study is part of the so-called VISA project:Validation, densification, and interpretation of

satellite data in Antarctica using airborne and groundborne measurements for the determina-

tion of gravity field, magnetic field, ice-mass balance, and crustal structure. In Dronning Maud

Land, the Atlantic sector of Antarctica, information aboutthe gravity field, magnetic field, and

ice-sheet elevations derived from satellite missions likeGRACE, GOCE (Gravity Field and

steady-state Ocean Circulation Explorer, http://www.goce-projektbuero.de), and ICESat shall

be validated with the help of groundborne and airborne measurements. Variations of accumu-

lation and density on temporal and spatial scales influence the relation of elevation changes

and changes in gravity and mass.Velicogna and Wahr[2002] show from analysis of simu-

lated GLAS and GRACE data that the main error source in the combined signal arises from

the unknown time-variable accumulation and its effect on the density of the sensed firn or ice

column. Thus, the knowledge of spatial and temporal patterns of ice-mass changes provides key

information especially for the validation of the time-varying gravity field as sensed by GRACE

[Scheinert et al., 2005]. For this reason small-scale variations of the accumulation rate play a

significant role and need to be investigated closely by groundborne operations.

This study uses geophysical and glaciological methods to investigate the recent accumulation

rate and analyze its spatial and temporal distribution in selected grounded coastal areas of Dron-

ning Maud Land. It thus serves, together with results from adjacent study regions, as a base for

ground-truthing of satellite-based approaches. The accompanying papers discuss local-scale

accumulation features and yield new insight in small-scalevariability of accumulation rates,

providing important information for the detailed validation of ice-mass changes derived from

GRACE and ICESat.
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Chapter 2

Area of investigation

Dronning Maud Land (DML) makes up the Atlantic sector of Antarctica (Figure 2.1a), com-

prising the area between 20◦ W and 45◦ E, in some studies only up to 20◦ E. The Northern and

Southern boundaries are not clearly defined [Näslund, 1998], but mostly seen as the coast line

in the North.

Following the description ofRichardson-N̈aslund[2001], DML can be divided into three

main parts, consisting of ice shelfes, grounded coastal areas, and the inland-ice plateau. The

ice shelves (Riiser-Larsenisen, Ekströmisen, Fimbulisen, Nivlisen etc.) are afloat on the ocean,

at rather low elevations. They are separated by the grounding line from the grounded coastal

areas. The latter ascend from near sea level to elevations ofabout 1500–2000 m a.s.l., stretching

up to the coastal mountain ranges (Heimefrontfjella, Kirwanveggen, Mühlig-Hoffmanngebirge,

Wohlthat Massif, etc.), south of which the inland-ice plateau starts, consisting of the Amund-

senisen in the West and the Wegenerisen in the East. The plateau areas exhibit elevations of

2500–3000 m a.s.l. and a generally smooth surface with smallsastrugis, owed to the generally

less intense winds [Noone et al., 1999]. Accumulation on the plateau shows values on the order

of 45–90 kg m−2 a−1 [Karlöf et al., 2005, and references therein], with some 64 kg m−2 a−1 at

the German Kohnen station (75◦00’ S, 00◦04’ E, 2892 m a.s.l.) [Oerter et al., 1999], whereas on

the ice shelves and the grounded coastal parts values up to nearly 800 kg m−2 a−1 are reported

[Melvold et al., 1998].

Ice thickness varies between about 1000 to 2000 m in the grounded coastal parts, with the

exception of some nunataks and the mountain chains protruding through the ice sheet. On

Amundsenisen and Wegenerisen plateau ice thickness reaches some 3000 m [Lythe et al., 2001;

Steinhage et al., 2001].

Expeditions started in the 1920s and in the early 1930s, leadby Norway, and followed

in 1938/39 by the German Schwabenland expedition under Ritscher. From 1949–1952 the

Norwegian-British-Swedish expedition undertook detailed airborne photographic mapping of

the area. Most of the geographical names stem from these latter two expeditions [Näslund,
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1998, and references therein]. The American South Pole Queen Maud Land Traverse (SPQMLT)

was conducted 1964–1968, drilling firn cores in the southernpart of DML [Piciotto et al., 1971].

The last decades have seen increasing efforts of field work inDML, especially in the western

part and on the plateau region. Apart from seismic investigations, studies consisted mainly of

firn-core drilling of shallow (some 10–30 m) to medium-depthcores (up to about 150 m deep),

carried out among others by expeditions from Germany [Schlosser et al., 1999;Oerter et al.,

1999, 2000], Sweden [Isaksson and Karlen, 1994;Isaksson et al., 1999], and Norway [Melvold

et al., 1998;Karlöf et al., 2005]. Additional GPR profiles from the coast to the plateauregions

[Richardson-N̈aslund, 2004] and near the German Kohnen station [Rotschky et al., 2004;Eisen

et al., 2005] complemented the activities. The European Project for Ice Coring in Antarctica

(EPICA) is dedicated to retrieve a deep ice core at the Kohnenstation in DML and another one at

Dome C (75◦06’S, 123◦21’E, 3233 m a.s.l.), both serving as a valuable climate archive [EPICA

community members, 2004]. The DML core is furthermore supposed to give useful insights in

climatic effects related to the Northern hemisphere and theGreenland ice cores, e.g. NorthGRIP

[Dahl-Jensen et al., 2002]. Prior to the drilling activities at Kohnen station,which started in the

season 2001/2002 and ended in 2005/2006, intensive pre-site surveys have been carried out on

Amundsenisen [among othersSteinhage et al., 1999;Oerter et al., 1999, 2000;Rotschky et al.,

2004;Hofstede et al., 2004;Eisen et al., 2005;Karlöf et al., 2005].

Despite all these research activities there are still largeareas of DML uncovered, mainly in

the central and eastern parts. Rotschky et al. (submitted),present an accumulation map from

all available firn-core and snow-sample data, uncovering regions suffering from data sparsity,

including particularly large areas in eastern DML as well asthe coastal parts of central DML.

The coastal areas are less well captured by large-scale compilations or resolved by atmospheric

models, as outlined before. Their generally higher accumulation, the influence of synoptic

weather systems, and the fact that glaciers drain through the coastal areas into ice shelves and

oceans, makes the coastal parts sensitive to global climatechange. Therefore close coverage of

these areas by in-situ measurements is of vital importance.

Within this work two selected areas have been investigated (Figure 2.1b): the Potsdam

Glacier in central DML and the region around Kottas Camp, located about 10 km north of

Kottasberge/Heimefrontfjella in western DML, hereinafter referred to as Kottasberge. Potsdam

Glacier is a comparatively small outlet glacier (when compared to e.g. Jutulstraumen) com-

ing down from Wegenerisen and meandering through the mountains of Wohlthat Massif before

finally feeding Nivlisen, north of the Russian station Novolazarevskaya. The area of investiga-

tion comprises the region between 11–12◦ E and 71–71.3◦ S. Although the accumulation data

presented in this study cover only a small region, they are the first detailed groundborne ac-

cumulation values from Potsdam Glacier.Korth and Dietrich[1996] report accumulation data

from stake readings, however, they do not provide density measurements but rely on general
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empirical field data for conversion of snow height to accumulation. Since this region is char-

acterized by a complicated orography and undulations of surface elevation, the accumulation

pattern exhibits large variability over small distances which is not captured sufficiently byKorth

and Dietrich[1996].

Additional data from the second study area, Kottasberge, complement the accumulation val-

ues discussed in this study. The latter area is more inland than Potsdam Glacier, on Ritscherflya

at the foot of Amundsenisen plateau. Apart from an older GPR profile [Richardson-N̈aslund,

2004] there are only sparse point measurements published from this region so far. Thus, this

study closes some data gaps and may be used together with other results of adjacent regions

for the enhancement of regional accumulation maps of DML in future work. Detailed maps of

accumulation distribution are valuable for validation of satellite-derived ice-mass changes.
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Figure 2.1: a) Above: Antarctica with Dronning Maud Land. (b) below: Dronning Maud

Land: the part marked in (a) is depicted. Blue circles: stations relevant to this study; yel-

low areas: areas of investigation in this study; light yellow lines: elevation contour lines at

100 m spacing. Map source: Antarctic Digital Database 4.0. Satellite image: RAMP (pro-

vided by National Snow and Ice Data Center, Boulder, USA, http://nsidc.org/data/ramp).

Figure courtesy of C. Wesche, 2006.



Chapter 3

Methods

This section briefly introduces ground-penetrating radar as a geophysical device used in glaciol-

ogy and describes the most important theoretical background. A short overview of glaciological

applications of Global Positioning System (GPS) is given likewise. Aquistion and processing of

GPR and GPS data are explained as well as the analyses of firn cores and the determination of

accumulation rates from GPR and firn-core data. The chronological order of this chapter follows

the procedure of data aquisition in the field, starting with GPR and GPS and their deliverables,

followed by firn-core studies and the combination of these data sets, yielding accumulation rates

on spatial and temporal scales.

3.1 GPR and GPS

Ground-penetrating radar (GPR) has been widely applied in geophysical investigations. It is

based on propagation of electromagnetic (EM) waves in the radio frequency range through

the subsurface. A GPR device typically consists of a controlunit and a transmitter (TX) and

receiver (RX) antenna, transmitting EM waves and recordingthe EM response of the subsurface.

A GPR antenna is called monostatic if one antenna is used to transmit and record the response,

and bistatic if two separate antennae are used as transmitter and receiver. Typical antenna

frequencies for GPR applications are in the range of 10 MHz–1GHz.

GPR can be used in several modes of data aquisition. For profiling usually the method of

common offset (CO) is used, meaning that receiver and transmitter are kept at constant distance

(or offset) and towed along the GPR profile. The recorded radargram typically shows distance

along the profile or trace number versus two-way travel time (TWT) and provides information

about subsurface structures. The common-midpoint (CMP) technique is utilized to determine a

velocity profile of the EM waves in the subsurface, similar toseismic techniques. In this case,

the offset between the antennae is increased symmetricallyto the central point. In this study the

CO method was used throughout.
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3.1.1 Application of GPR in glaciology

The theory of EM wave propagation is given in literature, seee.g.Jackson[1996]; Ulaby et al.

[1982]. Here, only a brief outline of the most important parameters and equations for appli-

cation in glaciology will be given. GPR is sensitive to changes in the dielectric parameters of

the subsurface. EM waves are reflected from layer boundariesexhibiting different dielectric

properties. In soils, propagation speed of EM waves is mainly ruled by the content of liquid wa-

ter and by conductivity, provided that only non-magnetic material is present. Both parameters

decrease the velocity and the penetration depth significantly with increasing water content and

conductivity, respectively.

The material electric properties of ice (and other media) are described by the complex relative

dielectric permittivityε which is given by:

ε = ε′− iε′′ = ε′− i
σ

ωε0
(3.1.1)

whereσ is electrical conductivity,ω the angular frequency, andε0 = 8.85·10−12 F m−1 the

dielectric constant. Generallyε depends on the frequency of the EM wave, however, in ice the

real partε′ is nearly frequency-independent in the frequency range of GPR applications [Fujita

et al., 2000]. Since ice absorbs EM energy, Equation (3.1.1) can also be written as:

ε = ε′(1− i tan δ) (3.1.2)

tanδ =
ε′′

ε′
(3.1.3)

The loss tangenttan δ << 1 for glacial ice [Bogorodsky et al., 1985]. Thus, the wave speed in

low-loss media as ice is given by

v =
c0

√

|ε|
≈ c0√

ε′
(3.1.4)

with c0 = 2.998·108 m s−1 the speed of EM waves in vacuum. Magnetic permittivityµ = 1,

since ice is a non-magnetic material.

For a plane reflecting interface the reflection coefficient, ruling the power of the reflected

signal, can be determined by the dielectric permittivitiesε1 andε2 of layer no. 1 and no. 2:

R=

√
ε2−

√
ε1√

ε2+
√

ε1
(3.1.5)

In the case of one narrow layerε2 embedded in a material withε1, Equation (3.1.5) must be

written as:

R=

√
ε2−

√
ε1√

ε2+
√

ε1
2 sin

2πl
λm

(3.1.6)

[Kanagaratnam et al., 2001], wherel is the thickness of the embedded layer andλm the wave-

length in it. Note that this applies to monochromatic waves only. Thus, the magnitude of the



3.1. GPR AND GPS 19

reflection coefficient increases with increasing dielectric contrast, yet it is modulated by a si-

nusoidal term related to layer thickness and wavelength. Considering glaciological conditions,

Equation (3.1.6) applies to narrow ice lenses, arising e.g.from melt events, and to volcanic ash

layers embedded in firn or ice.

In glaciological research, GPR has been used to map bedrock topography as well as internal

layering of the ice sheet. For mapping the bedrock and for inferring layering of the deeper

parts of the ice sheet, low frequencies of typically 5–200 MHz have to be utilized, yielding

a larger penetration depth at the expense of vertical resolution. Contrarily, for investigation

of internal layering in the upper 10–100 m higher frequencies are used, usually between 400–

1000 MHz, resulting in a higher resolution of closely spacedlayers. In firn and ice these interal

layers arise from changes in density or in conductivity. Thelatter affect the imaginary partε′′

of the dielectric permittivity, occurring mainly in deeperparts of the ice sheet, whereas density

changes affect the real partε′ [e.g. Kovacs et al., 1995] and tend to dominate in the upper

hundreds of meters [Fujita et al., 1999]. As a third mechanism changes in crystal-orientation

fabrics have been discussed, which mainly affect the deeperparts of the ice sheet [Matsuoka

et al., 2003].

Horizons with different densities are due to depositional stratigraphy, e.g., separating winter-

and summer-layers. Single high-density layers occur aftersurface melt or intense winds, result-

ing in a glazed surface with higher density than the underlying snow or firn. When fresh snow

falls onto this glazed surface, the layer is preserved in thesubsurface, exhibiting a higher density

which is seen as a reflection horizon in the radargram. In the dry-snow zone density changes are

due to firn compaction from the pressure of the overlying snowcolumn and due to depositional

stratigraphy. Layers with different conductivities arisefrom acidic impurities mainly after ma-

jor volcanic eruptions [Hammer, 1980]. The origin of radar layers in this study will be disussed

in section 3.3.2.

The processes forming the observed layers in GPR records take place at the surface at ap-

proximately the same time, where the submergence rate of theisochronal surface is determined

by interaction of the flow field and the surface accumulation rate [Gudmandsen, 1975]. Thus,

these layers can be regarded as isochrones [among othersEisen et al., 2004;Vaughan et al.,

2004].

3.1.2 GPR: Data aquisition and processing

In this study a commercial RAMAC (Malå Geoscience, Sweden)radar unit transmitting a

monopulse was used. The parameters used for recording are listed in Table 3.1. The bistatic,

shielded antenna with a center frequency of 500 MHz, housed in a plastic box, was mounted to a

Nansen sledge pulled by a snow vehicle at an average speed of 5km h−1. Traces were recorded

every 0.5 m triggered by an odometer, and the antenna was connected to the central unit via
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fibre-optic cables. GPR data were stored on a Husky Px5 personal computer and after the sur-

vey saved on CD-ROM, together with GPS data. The aquisition allows for a theoretical vertical

resolution in firn of∼0.1 m (i.e.,λ4 with λ the wavelength in firn, assumingvf irn = 2·108 m s−1).

Actual accuracy can decrease to±0.2 m (± λ
2) due to noise present in the radargrams [Eisen

et al., 2004]. Simultaneously with the GPR data differential GPS data were collected at a sam-

pling interval of one second. The roving station was mountedto the snow vehicle and the

reference station was located at the respective field camp during the expeditions.

Table 3.1: Acquisition parameters of GPR surveys in this study

Parameter Value

Center frequency 500 MHz

Time window 400 ns

Samples per trace 2048

Sample frequency 5120 MHz

Stacks 8

Trace increment 0.5 m

Offset TX–RX 0.18 m

GPR data were processed using Paradigm Geophysical Software FOCUS, applying the fol-

lowing steps:

• Time offset:

Data were corrected for the arrival of the direct wave (i.e.,the wave travelling through the

air from the transmitter to the receiver). The time offset was calculated by dividing the

offset between TX–RX by the wave speed in air. Thus, the arrival time of the direct wave

was taken as zero reference for the subsequent reflections.

• Stacking:

In order to increase signal-to-noise ratio, 10-fold horizontal stacking was applied, thus

averaging out noise and enhancing the signal.

• Automatic gain control:

Automatic gain control (AGC) was applied to account for energy loss due to spherical

divergence in the deeper parts of the radargram. This technique norms the energy of each

trace according to the mean energy of the time window in whichAGC is applied. Here,

time windows between 20–30 ns were chosen.

• Filtering:

Filtering made use of a bandpass butterworth filter of sixth order. The lower cut-off
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frequency was set to 350 MHz and the higher cut-off frequencyto 850 MHz. These values

have been obtained after testing several combinations of filters and cut-off frequencies.

Figure 3.1 exemplarily depicts a processed radargram together with the corresponding surface-

elevation plot of the data obtained in the Antarctic summer season 2003/2004 on Potsdam

Glacier. From the processed GPR data internal reflection horizons (IRHs) were tracked through-

out the profiles where possible, using Landmark Open-Works release 2003 software and RE-

FLEXW (Sandmeier Scientific Software, Karlsruhe, Germany). Tracking was done semi-

automatically by exploiting the coherency of the signal (minimum, maximum, or zero am-

plitude), with manual correction in the parts of low signal-to-noise ratio. Despite the use of the

automatic tracking algorithm, not all IRHs could be traced throughout the GPR profiles but are

lost within the time window of the direct wave or where layersare spaced too closely to resolve

them individually. In order to convert the tracked IRHs fromTWT to depth, information about

the velocity in the subsurface is needed. Due to the lack of CMP data in this study, firn-core

parameters have been used to establish a model yielding TWT versus depth. More information

will be given in section 3.3.1, after the introduction of firn-core studies required to obtain a

velocity-depth distribution for the radar waves.

3.1.3 GPS

Here, kinematic GPS (Global Positioning System) measurements have been carried out simul-

taneously with GPR profiling. GPS was also used for accurate determination of the positions of

firn-core drill sites. In principle, GPS utilizes a receiversensing the signals of at least four GPS

satellites and measuring the travel time from the respective satellite to the receiver. Thus, the po-

sition of the receiver in space and time is obtained. Detailsare given in literature, e.g.Hofmann-

Wellenhof et al.[2001]. In glaciology, GPS has been applied to study the motion and velocity

of ice streams, postglacial rebound, dynamics of ice shelves, and surface-elevation of ice sheets

as well as thickness changes [among othersTregoning et al., 1999;Capra et al., 2000;Hamil-

ton et al., 1998]. Linking GPR and GPS provides accurate information of the position of GPR

tracks and along-track surface elevation [Urbini et al., 2001].

GPS data were processed at the Institut für Planetare Geod¨asie, Technische Universität Dres-

den, using GPSurvey software with default parameters. The movement of the respective ref-

erence stations employed on a flowing glacier was taken into account. Processing yields GPS

time, longitude, latitude, and elevation along the radar profiles where elevation data are given in

heights of World Geodetic System 1984 ellipsoid (WGS84). Accuracy is within some millime-

ters to centimeters for longitude and latitude and within some centimeters for the elevation.
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Figure 3.1: (a) Elevation (WGS84) along profile AWI–041204 (unpublished data from

Potsdam Glacier, 2004). (b) Processed radargram of profile AWI–041204. Grey scale

refers to amplitude of the signal. The total record length of400 ns is shown.

3.1.4 Combining GPR and GPS data

GPR and GPS data have to be combined such that each radar traceis assigned values of longi-

tude, latitude, and elevation. The start and end points of the radar surveys coincide with GPS

signals the positions of which were exactly determined fromGPS measurements. Furthermore

the start and stop time of GPR data aquisiton was noted in the field protocol for each GPR

profile. In order to exactly determine the time interval during which radar-data aquisition took

place, several files were extracted from the processed GPS data, including time–longitude–

latitude, time–elevation, time–velocity (i.e., speed of the snow vehicle), distance–elevation,

and distance–velocity. By comparing time–velocity and distance–velocity, intervals of radar-

data aquisition could easily be recognized, assuming a speed of the snow vehicle between
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2–8 km h−1 (∼ 0.6–2.2 m s−1). Thus, the respective time periods were extracted from the

processed GPS data files, together with the corresponding values of latitude, longitude, eleva-

tion, and distance along-profile, using adapted scripts established at the Institut für Planetare

Geodäsie, TU Dresden (S. Roemer, personal communication,2005). The start and stop posi-

tions of these files were checked by comparison with the positions of the GPS signals. From

the total distance along-profile obtained from the GPS data,a corrected trace interval∆x′ was

calculated for the radar data, assuming equidistant traces:

∆x′ =
xGPS

nt
(3.1.7)

wherexGPS is the total distance from GPS data andnt the number of traces of the GPR profile.

The equidistant spacing may not be true throughout all profiles, however, this introduces only

minor errors that can be neglected when compared to other error sources (discussed in Paper

II and briefly summarized in section 3.3.3). Using Equation (3.1.7), each trace was assigned

a modified position, fitting the profile length to the GPS distance. Generally, the values of∆x′

agreed within 0.01–0.03 m with the original trace interval∆x = 0.5 m with the largest deviation

found to be 0.05 m. Such deviations most likely result from sliding of the odometer on the

surface, thus leading to erroneous length intervals along-profile when calculated from∆x.

After correction using Equation (3.1.7), the GPR horizons as well as the GPS data were

resampled at 5 m spacing of subsequent traces and waypoints,respectively. This value was

chosen in order to account for the 10-fold stacking of the GPRdata during processing, originally

spaced by∼0.5 m. Moreover, deviations from non-equidistant spacing of individual traces are

assumed to be averaged out by this technique. Furthermore GPS positions are not available for

each (unstacked) trace, as can be concluded from the sampling interval of GPS tracking and the

speed of the snow vehicle. Hence, for each profile a GPR file wasobtained, giving values of

distance and TWT, and a corresponding GPS file, giving likewise distance (equal to the values

of the GPR file), longitude, latitude, and elevation. For thecombination of these files the offset

of 5 m between GPS and GPR antenna was taken into account. Finally, each radar trace at 5 m

spacing was assigned longitude, latitude, and elevation from the corresponding GPS record.

3.2 Firn cores and snow pits

To facilitate the interpretation of the radar data and to date the tracked internal layers, shallow

firn cores were drilled along the radar profiles, their depth varying between 12–13 m. At several

drilling sites furthermore snow pits were dug, being 2 m deepand probed with 40 samples per

pit.

The firn cores and snow samples were transported in frozen condition to AWI Bremerhaven

and analyzed in the cold laboratory. Analysis of the snow samples consisted of determination
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of the electrolytic conductivity of the melted samples. Prior to this method, measurement of the

stable oxygen isotope18O was carried out by mass spectrometry, yieldingδ18O profiles for the

snow pits, whereδ18O denotes content of18O relative to16O of standard mean ocean water. The

density of the snow samples was determined in situ by weighing the samples and calculating

ρsamplefrom the known volume of the probing cylinders. Snow-sampledata were used to link

firn-core data to the surface due to minor core quality in the upper 1–2 m of drilling.

Analyses of firn cores covered determination of dielectric parameters by dielectric profiling

(DEP) and measurement of density using gamma-attenuation profiling (GAP).

The DEP technique is applied by moving two curved electrodesalong the firn core, mea-

suring the real dielectric permittivityε′ and the electrical conductivityσ. The curved-electrode

setup follows the design of a parallel-plated capacitor, but is more complicated to treat. Details

and discussion are given byWilhelms[1996]; Wilhelms et al.[1998]. The frequency used to

measure the dielectric parameters is 250 kHz, thus being representative for radar frequencies up

to the GHz range [Wilhelms, 1996].

GAP is performed using a gamma densimeter [Wilhelms, 1996]. A radioactive source (e.g.
137Cs) emits monochromatic gamma radiation, which is collimated to a beam of 2 mm and

radiated through the firn or ice core, along its diameter. Thebeam is collimated again after

passing through the ice, and its intensity is measured usinga scintillation detector. The electrons

in the ice volumn scatter the photons of the radiation beam, thus weakening it according to

Beer’s Law:

Id = I0 e−α d ρ (3.2.1)

with α the mass absorption coefficient of the material (firn/ice),d the diameter of the core,ρ the

density,Id the measured intensity after the beam passed the ice core, and I0 the intensity of the

emitted beam. Simultaneously the core’s diameter is measured with a laser beam. Diameters

have been controlled manually every 100 mm using a sliding caliper. Thus, from Equation

(3.2.1)ρ can be calculated. Along the firn cores DEP was performed every 5 mm and GAP every

2 mm, yielding high-resolution profiles of dielectric parameters and density. Errors for these

methods are given byWilhelms[1996] and are briefly summarized in Paper II. Furthermoreδ18O

was determined at samples of 30 mm size, similar to the snow-sample analysis. An example of

firn-core parameters is depicted in Figure 3.2, the firn core was drilled in the Antarctic season

2003/2004 in the accumulation zone on Potsdam Glacier at an elevation of 1008 m.

Theδ18O-profiles of the firn cores were used to establish depth–age scales by counting the

peaks which indicate summers [e.g.McMorrow et al., 2004]. Not all firn cores exhibited a

δ18O-profile with pronounced maxima and minima, these were neglected due to the ambigu-

ities introduced by their dating. From the depth–age scalesand the density profiles annual

accumulation rates were determined for all dated firn cores.
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Figure 3.2: Measured parameters of FB0404: (a) Real part of dielectric permittivity,

(b) electrical conductivity, (c) density (GAP), (d)δ18O. Unpublished data from Potsdam

Glacier.

3.3 Combination of GPR and firn-core data

The combination of GPR data and firn-core data provides valuable information about several

aspects of glaciological research. Using appropriate models derived from dielectric parameters

and the density distribution, the tracked IRHs can be converted from two-way travel time to

depth and from depth to cumulative snow mass. Moreover, the combined analysis of GPR hori-

zons and firn-core parameters allows to highlight the originand nature of specific IRHs in the

radargrams at drilling locations. A variety of modeling studies has been carried out by several

authors in order to study the origin of reflections seen in theradargrams, based on synthetic

radargrams derived from firn-core properties [among othersEisen et al., 2004, 2006;Miners

et al., 2002]. As this work focuses on the application of GPR for thepurpose of accumulation

studies, the most important result of the combination of GPRand firn cores yields the determi-

nation of accumulation rates from IHRs that are dated by reference firn cores. An outline of

these procedures is given below.

3.3.1 Conversion of radar layers to depth and cumulative mass

The tracked IRHs are available in the time-domain, i.e., giving information about the two-way

travel time of the signal to the IRH along the profiles. In order to derive their distribution

with depth, information about the propagation velocity of the radar waves in the subsurface

is mandatory, as already explained in section 3.1.2. Equation (3.1.4) shows that the velocity

can be calculated from the DEP-derived values of dielectricpermittivity ε′. As ε′ is given in

steps of 5 mm, the interval velocity for each depth-intervalmeasured along the firn cores can be

calculated from Equation (3.1.4). Integration of the obtained velocity-depth distribution yields a



26 CHAPTER 3. METHODS

model for TWT–depth, following the procedures ofEisen et al.[2002]. By applying this model

to the tracked IHRs they can be converted from TWT to depth.

For the determination of accumulation rates the cumulativemass of the firn column up to the

depth of the IRH at each point along-profile needs to be known.To this end, the firn-core derived

profiles of density are integrated over depth, establishinga model for cumulative mass–depth.

This model is likewise applied to the tracked IRHs, hence, from their depth values along-profile

the distribution of cumulative mass is derived. Figure 3.3 depicts the models used in this study

obtained from the respective firn cores in the two investigation areas.
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Figure 3.3: (a) Models for TWT–depth obtained from firn-core studies on Potsdam Glacier

(black) and near Kottasberge (blue); (b) Models for cumulative mass–depth from firn-core

studies on Potsdam Glacier (black) and Kottasberge (blue)

The model calculation is based on the mean profiles of densityand dielectric permittivity of

all firn cores of the respective area of investigation, sincethere is no further information about

lateral variation of these variables between the drilling sites. In Paper II the deviation of density

profiles from two firn cores (the one with the highest mean density and the one with the lowest

mean density) from the average profile ofρ is discussed, finding only small differences. Thus,

the errors introduced by actual differences from the mean values are negligible compared to

other error sources (discussed in the papers and briefly summarized below). In order to obtain

a TWT–depth and cumulative mass–depth distribution for those parts of the IRHs that exceed

the depth range of the firn cores, the models are extrapolated. Extrapolation was carried out

up to 25 m below the surface, thus covering the deepest tracable IRH that could be dated by

a reference firn core on Potsdam Glacier. More information about extrapolation is given in

Paper II. Figure 3.5b shows several tracked IRHs together with their cumulative mass and depth

distribution along the radargram of profile AWI-041204 depicted in Figure 3.1.
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3.3.2 Origin of reflecting layers in radargrams

Once the radar data are converted to depth, a comparison between the depth of prominent reflec-

tions in the radargrams and firn-core parameters becomes possible, yielding information about

the origin of layers seen by GPR. As explained before, the IRHs seen in GPR records are due to

reflections at interfaces in the firn or ice where contrasts ofdensity or conductivity occur. Fig-

ure 3.4 shows a comparison between the upper∼140 ns (13.5 m) of the processed radargram

AWI-041204 (see Figure 3.1) and the profiles of density and conductivity of the firn core drilled

at the start point of the GPR profile. From the depicted comparison it is obvious that some of

the IRHs coincide with peaks in the density and some with peaks in conductivity. Yet for most

of the IRHs density as well as conductivity show peaks, thus,it cannot be clearly stated whether

these IRHs are due to density or conductivity changes. However, for peaks spaced less than

∼0.2 m (i.e., the approximate vertical resolution of GPR profiling at 500 MHz) interferences

between closely spaced peaks, whether in conductivity or indensity or both, lead to the ob-

served reflection, as is the case for the first two marked peaksfrom above, resulting in the same

reflection band in the radargram.

Figure 3.4: Comparison between GPR profile and firn-core parameters of the adjacent firn

core (FB0402, data partly published in Paper II). (a) Conductivity, (b) density (from GAP),

(c) radargram AWI–041204, the upper 13.5 m (∼140 ns) of Figure 3.1 are shown here

(unpublished data from Potsdam Glacier, 2004). Density/conductivity peaks are marked

with a blue line and linked to prominent reflections in the radargram. Note that the horizon

at∼ 8.5 m is an artifact stemming from a software failure.

Ice lenses with a higher density are observed in several snowpits and firn cores of this study,

yet they are a very local phenomenon in the area of investigation. Thus, it can be concluded that

the observed IRHs do not arise from ice lenses but from density fluctuations between different
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depositional layers and from firn compaction. Apart from theeruptions of Pinatubo and Cerro

Hudson, which are not easily seen in Antarctic firn cores fromnear-coastal sites (U. Ruth, per-

sonal communication, 2005), there are no significant volcanic eruption reported within the time

period covered by the firn cores of this study. Thus, conductivity changes are possibly due to

other acidic impurities, most likely stemming from marine sources [Kaczmarska et al., 2004].

In total, both density and conductivity changes seem to be responsible for the observed layering

on Potsdam Glacier, at least in the upper 12 m. This observation is in accordance with previ-

ous studies focusing likewise on shallow investigation depths [e.g.Nishio and Ohmae, 1985].

Yet the exact determination of the contributions of densityand conductivity changes to the ob-

served reflections requires usage of a density-and-conductivity mixed permittivity (DECOMP)

[Wilhelms, 2005] obtained from DEP. The mathematical description thereof has to be inverted

for density and conductivity [Wilhelms, 2005]. This is beyond the scope of this study, but de-

tailed information can be found inWilhelms[2005];Eisen et al.[2006]. Generally, in the upper

hundreds of meters density changes are more prominent than conductivity changes, since the

transformation of snow to firn and to ice takes place within these depths. Therefore density is

believed to have a dominating influence on reflections in thisdepth interval, as discussed by

several studies [e.g.Fujita et al., 1999;Eisen et al., 2004]. Here, density peaks significantly

contribute to the origin of radar layers, although influenceof conductivity cannot be ruled out

completely: application of a 2 cm running mean on the conductivity profile as suggested by

Eisen et al.[2006] in order to reduce statistical noise removes only some of the conductivity

peaks in Figure 3.4a.

Yet for the determination of accumulation rates from internal layers it is most important that

the reflections have been shown to be of isochronal origin [Eisen et al., 2004;Vaughan et al.,

2004] and can usually be tracked over several tens to hundreds of kilometers across the ice sheet.

Thus, by assigning each IRH an age from a reference depth-agescale, area-wide accumulation

rates can be determined.

3.3.3 Accumulation rates along GPR profiles

From section 3.2 it follows that the dated firn cores can be used to derive annual accumulation

rates and interannual variability. Hence, at the drilling sites thetemporalvariability of accu-

mulation rates is available at high resolution. In order to obtain GPR-derived accumulation

rates and to address thespatialvariability, the depth–age scale of a reference firn core hasto be

transferred to the tracked and converted IRHs.

As demonstrated in Figure 3.5 this is achieved by comparing the depth values of the IRHs at

the drilling site to the depth-age scale of the adjacent firn core, assigning each IRH an age. This

age can be compared to the dating as derived from other dated firn cores along the GPR profile

where possible, following the test of isochronal accuracy given bySpikes et al.[2004]. From the
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Figure 3.5: (a) Left: Depth-age scale of FB0402. (b) Tracked IRHs along profile AWI-

041204 (see Figure 3.1). The distribution of cumulative mass and depth is shown. Compar-

ing the depth of the IRHs at x = 0 km with the depth-age scale depicted in (a) yields ages

of the IRHs.

ages and the distribution of cumulative mass of selected IRHs accumulation rates along-profile

can be determined by dividing the difference in cumulative mass by the age difference:

a12 =
∆m
∆t

=
m(IHR2)−m(IRH1)

t(IHR1)− t(IRH2)
(3.3.1)

where IRH2 is older (deeper) than IRH1, anda12 denotes the accumulation rate over the time

period∆t (t in years AD). The same procedure yields accumulation rates in relation to the age

of the surface at the time of data collection.

Hence, from dated IRHs aspatial distribution of accumulation between firn-core drilling

sites is obtained, giving information about the spatial variability along the GPR profile. Equa-

tion (3.3.1) implies that from dated IRHsmeanaccumulation rates for the respective time peri-

ods∆t between the IHRs are derived - in this study some ten years. Using statistical analysis,

the spatial representativity of firn-core derived accumulation rates for the area of investigation

can be assessed from the GPR data. Moreover, the calculationof correlation length of spa-

tial accumulation series yields valuable information concerning the validation of satellite-based

ice-mass changes which are averaged over several hundreds of kilometers. In summary, the

combination of firn-core studies and GPR profiles provides a useful method for the determina-

tion of temporalas well asspatialvariability of accumulation rates. The accumulation ratesin

the area of investigation of this study are analyzed and discussed in detail in the accompanying

papers.
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A general discussion of errors is given in Paper II and Paper III, comprising errors from

tracking the IRHs, from conversion of TWT to depth and cumulative mass, errors in DEP and

GAP measurements, and dating uncertainty. The latter makesup for the largest error source,

thus, the mean accuracy of the accumulation data discussed in this study results as 10–15 %.



Chapter 4

Scope of papers

Paper I: Anschütz, H., O. Eisen, W. Rack, and M. Scheinert, 2006. Periodic surface fea-

tures in coastal East Antarctica

Geophys. Res. Lett., 33, L22501, doi:10.1029/2006GL027871

This paper discusses the periodicity of the accumulation pattern on the main flow line of Pots-

dam Glacier, central DML, derived from GPR profiling and firn-core analysis. Surface ele-

vation and topography are obtained from GPS data. Undulations of surface slope and accu-

mulation pattern show a strong correlation which is furtheranalyzed by means of auto- and

cross-covariance functions. The statistical analysis emphasizes the highly periodic oscillations

of both slope and accumulation. The observed features are therefore interpreted similarly to

the megadunes known from the polar plateau, yet showing muchsmaller lateral extension and

generally higher accumulation than the megadunes. Thus it is suggested that the observed un-

dulations are likely caused by a special feedback system between atmosphere and cryosphere.

Paper II: Anschütz, H., O. Eisen, D. Steinhage, H. Oerter, and M. Scheinert,2006.

Investigating small-scale variations of the recent accumulation rate in coastal Dronning

Maud Land, East Antarctica, accepted toAnnals of Glaciology, 46

In this paper the spatial and temporal distribution of the recent accumulation rate on Potsdam

Glacier in central DML is presented. Spatial variability for the time periods 1970-1980, 1980-

2004, and 1970-2004 is very high, as expressed by one-fold standard deviations of nearly 50 %

of the respective mean values. Temporal variations obtained from the area-wide mean values

between 1970-1980 and 1980-2004 are much less than spatial variations. The high spatial vari-

ability is likely explicable by windborne redistribution of blowing snow, following the findings

given in Paper I. Accumulation rates are decreasing in the direction of glacier flow, in accor-

dance with former observations showing a large blue-ice area farther downstream. The vicinity

of the blue-ice area explains why the results presented hereare less than findings from large-



scale compilations. Interannual and decadal-scale variability of accumulation is furthermore

obtained from two dated firn cores. Implications of the results for interpretation of satellite data

are discussed.

Paper III: Ansch ütz, H., D. Steinhage, O. Eisen, H. Oerter, and L. Eberlein, 2006. Tem-

poral variation of accumulation patterns in western and central Dronning Maud Land,

Antarctica

submitted toJournal of Glaciology

The spatial and temporal variations of accumulation rates near Kottasberge in western DML

are presented and discussed. A comparison with previous studies in this region is given as well

as a comparison with the spatio-temporal behaviour of accumulation rates on Potsdam Glacier

which has been discussed in detail in Paper II. Accumulationrates are far smoother near Kot-

tasberge than on Potsdam Glacier. Yet interannual variability at Kottasberge obtained from

four dated firn cores is likewise very high. Pointwise analysis of temporal variations along the

GPR profiles reveals that the values are not constant, but vary according mainly to variations

in spatial variability and in surface slope. Therefore it isconcluded that temporal and spatial

variations are linked on small spatial scales of some ten kilometers, suggesting incfluences from

local-scale near-surface wind pattern and glacier flow.
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Anschütz, H., O. Eisen, W. Rack, and M. Scheinert, 2006. Periodic surface features in coastal

East Antarctica

Geophys. Res. Lett., 33, L22501, doi:10.1029/2006GL027871.
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[1] We found evidence for highly periodic dunes in a near-
coastal area of Dronning Maud Land, East Antarctica.
Analysis of accumulation patterns, derived from ground-
penetrating radar (GPR) internal layering, and GPS-based
characteristics of surface topography, by means of auto- and
cross-covariance, indicate quasi-harmonic oscillations of
surface undulations, surface slope, and accumulation. The
dunes occur at an elevation range of 1000–1350 m with the
dominant wavelength of 5 km and undulations of �10 m.
Accumulation and slope are anticorrelated at zero lag, with
a mean annual accumulation of some 140 kg m�2 yr�1 and
variations on the order of ±100 kg m�2 yr�1. Our findings
have implications for studies aiming at the mass balance of
coastal areas in Antarctica. Citation: Anschütz, H., O. Eisen,

W. Rack, and M. Scheinert (2006), Periodic surface features in

coastal East Antarctica, Geophys. Res. Lett., 33, L22501,

doi:10.1029/2006GL027871.

1. Introduction

[2] Undulating features of surface topography and snow
accumulation are a well-known phenomenon throughout
Antarctica. Covarying undulations in topography, surface
slope, and accumulation pattern have been reported since
the earlier days of Antarctic research. Black and Budd
[1964] report oscillations in the accumulation pattern de-
rived from stake readings in Wilkes Land. Their profiles
range from 180–380 km inland at an elevation range of
1000 to 3000 m. Surface slope along their stake line also
shows oscillations, related to those in accumulation. Pettré
et al. [1986] observed undulating patterns in accumulation
in Tèrre Adélie, with a wavelength of 40 km. In order to
explain those features they suggested a gravity-inertia wave
at the break of slope. However, their stakes are spaced at
intervals of 10 km so they are not able to derive any small-
scale variations on the order of only a few kilometers.
Goodwin [1990] discusses the influence of katabatic winds
and the dependence of accumulation rates on surface aspect.
He associates locally higher accumulation rates with the
occurrence of longitudinal dunes, with lateral dimensions of
10–100 m, at elevations between 1870–2230 m. Referring
to Black and Budd [1964], he furthermore explains that
circulations forced by meso-scale topography modify wind
flow induced by broad-scale orography, offsetting the
accumulation minima to the West with respect to the

elevation maxima. Although these earlier observations in-
dicate dune-like patterns in more coastal areas, one has to be
aware that they are based on stake readings with stake
spacing of some 100 m or even more, thus lacking small-
scale continuity as well as high-precision elevation data due
to the lack of GPS equipment. All these observations are
expressions of the generally accepted process that blowing
snow tends to accumulate in local depressions, whereas
local rises experience less accumulation or even ablation
(see King et al. [2004] for a recent summary). Surface slope
in the prevailing wind direction is a key parameter in the
description of this process [Frezzotti et al., 2002a].
[3] The probably most stunning phenomenon of interac-

tion between accumulation distribution and surface topog-
raphy are the megadune fields on the East Antarctic plateau,
covering areas of roughly 500 000 km2. Detailed descrip-
tions were derived from satellite imagery showing the
ripple-like patterns extending over hundreds of kilometers
[Fahnestock et al., 2000]. Megadunes are characterized as
gentle but highly regular undulations on the surface, whose
genesis is ruled by an unusual feedback mechanism between
cryosphere and atmosphere [Frezzotti et al., 2002a]. Wave-
lengths are on the order of a few kilometers and amplitudes
of a few meters, their subparallel crests extending over
several hundred kilometers. Increased accumulation occurs
on the windward side and less accumulation on the leeward
side, thus producing a dune-like nearly-periodic accumula-
tion pattern related to the surface topography [Frezzotti et
al., 2002a]. Windward slopes are often covered with severe
sastrugi, whereas on the leeward faces and in the interdune
troughs glazed surfaces dominate surface characteristics in
snow-megadune areas [Frezzotti et al., 2002b]. A recent
map of megadune distribution, based on ICESat’s GLAS
altimetry data, locates megadune fields only in the interior
of the East Antarctic ice sheet, several hundreds of kilo-
meters away from the coast [Shuman et al., 2006]. More-
over, Scambos and Bauer [2006] observed that megadunes
occur in areas of moderate regional slope and low accumu-
lation on the flanks of the ice sheet at an elevation range
between 2500–3800 m.
[4] Here, we provide evidence that highly periodic sur-

face undulations are also present near coastal sites. We
present ground-based data from Potsdam Glacier in Neu-
schwabenland, the coastal area of Dronning Maud Land,
East Antarctica. Ground-penetrating radar (GPR) data com-
plemented by firn-core studies indicate a strongly oscillating
accumulation distribution that varies with surface slope.
Statistical analysis by means of auto- and cross-covariance
functions of accumulation series as well as of surface slope
emphasizes the periodicity. In order to avoid confusion we
will address these features as periodic dunes, especially
since they lack the lateral extent and extreme morphology of
the megadunes. As explained above, the latter experience
extremely low accumulation on the leeward sides, where
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snow sampling reveals large grains and extensive depth
hoar [Albert et al., 2004; Frezzotti et al., 2002b]. Compa-
rable observations are not as pronounced or even missing in
our study area near the Antarctic coast.

2. Area of Investigation and Data Set

[5] The study area is situated on Potsdam Glacier south
of the Schirmacheroase and north of Wohlthat Massif
(Figure 1a), about 120 km away from the ice-shelf edge.
Wide areas of Potsdam Glacier are above 1000 m a.s.l. and
have a mean annual temperature below �20�C. Ice thick-
ness >1200 m in most parts of the glacier. Bedrock
topography is generally smooth with some subglacial peaks
[Damm and Eisenburger, 2005]. Generally the higher-
elevation parts experience accumulation with the exception
of small ablation areas around several nunataks. However,
in the northeastern part of this glacier, near and east of the
Schirmacheroase, a large ablation area is found [Bormann
and Fritzsche, 1995, and references therein] that reaches up
to the eastern Wohlthat Massif. Previous work in this area
[e.g., Korth and Dietrich, 1996] consisted of geodetic-
glaciological traverses to Humboldtfjella and Gruberfjella
(Figure 1a). From the InSAR analysis of ERS-1/2 satellite
data, Dietrich et al. [1999] established a horizontal velocity
vector field. In the area of investigation glacier flow is about
20–30 m yr�1 at higher elevations and up to 70–80 m yr�1

in the lower parts. Laterally convergent flow occurs at the
lower elevations, whereas at the higher parts lateral diver-
gence is observed [Bäßler et al., 2002; Bäßler et al., 2003].
[6] During the Antarctic summer season 2003/2004 radar

surveys at a frequency of 500 MHz were carried out along a
profile of 50 km length on the main glacier-flow line
(Figure 1). Traces were recorded every 0.5 m. Simulta-
neously, kinematic GPS data were collected at 1 s intervals,

with the GPS equipment mounted to a snow mobile. An
airborne radio-echo sounding survey near the main flow line
was carried out as well. Snow pits and firn cores (12 m
deep) complemented the field data, aiming for the determi-
nation of the recent accumulation rate. Along the firn cores
measurements of density and dielectric profiling (DEP
[Wilhelms, 2005]) were carried out in intervals of 5 mm
as well as determination of d18O in 3 cm intervals, which
was used for dating. (A detailed description of data acqui-
sition and processing is given by H. Anschütz et al.
(Investigating small-scale variations of the recent accumu-
lation rate in coastal Dronning Maud Land, East Antarctica,
submitted to Annals of Glaciology, 2006, hereinafter re-
ferred to as Anschütz et al., submitted manuscript, 2006).)
From the processed GPR data two internal reflection hori-
zons (IRHs) are tracked throughout the GPR profiles and
dated by the d18O profile of one reference firn core. The
respective dating uncertainty of each IRH amounts to ±2 a.
Combining the age and the respective cumulative mass of
the IRHs yields accumulation rates. Surface topography is
derived from the processed GPS data.

3. Accumulation Characteristics and Surface
Features

[7] The time-integrated effect of ice flow interacting with
a variable accumulation pattern is memorized in the inter-
nal-layer architecture [e.g., Arcone et al., 2005]. Our pro-
cessed radargrams clearly show undulations of several
meters over few kilometers of the internal layer depths,
larger than expected for this area (Figure 2). Firn-core data
(Anschütz et al., submitted manuscript, 2006) were input to
convert GPR data from two-way traveltime (TWT) to depth
[Eisen et al., 2002]. Linking two continuous layers to the
reference firn core provides estimates of along-profile

Figure 1. (a) Overview of the area of investigation. Dark line with dots: main glacier flow line; points marked Fxx: start/
end points of the radar profiles along the main flow line; light (red) lines: additional GPR profiles. Distances from F39 to
F33 and from F33 to F27 amount to 25 km each. Color scale indicates glacier-flow velocity [Bäßler et al., 2002]. Flow
direction is from F39 to F27. Light grey lines: elevation contour lines at 200 m spacing; dark grey line: 1000 m elevation
contour line. The white rectangle corresponds to the area depicted in (b). (b) Undulations of elevation; color scale refers to
differences between original and smoothed DEM. The DEM has been obtained from GPS (grey lines) and ICESat (white
lines) data. Black lines indicate elevation contour lines at 50 m spacing (obtained from the smoothed DEM).
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accumulation (Anschütz et al., submitted manuscript, 2006)
for the periods 1970–1980, 1970–2004, and 1980–2004,
with a mean accumulation error of 12% (Figure 3c). Errors
are mainly introduced by the dating uncertainty. However,
this spatially systematic uncertainty only affects the tempo-
ral variability and the absolute accumulation values but not
the spatial variability nor the undulations of the accumula-
tion pattern and conclusions drawn in this study.
[8] The surface elevation declines from almost 1350 m

a.s.l. in South-West to about 850 m a.s.l. in the North-East.
On this decreasing trend a regularly undulating pattern is
overlain, clearly visible in the linearly detrended surface
elevation (Figure 3a) and in surface slope (Figure 3b).
Topography undulations are around 10 m, and elevation
maxima occur almost equidistantly at a 5 km interval.
Beyond 7 km downstream of the central firn core (at F33,
see Figure 1), towards a known blue-ice area, the undula-
tions cease and surface slope is nearly constant.
[9] Undulations in GPR-layer depth coincide with the

undulations in surface topography, but their peaks are
displaced further downstream with increasing depth in
relation to the local maxima in surface elevation. The
accumulation pattern derived from the two dated IRHs
(Figure 3c) shows a high spatial variability overlain on a
generally decreasing trend in the direction of glacier flow
down to 7 km beyond the central firn-core location. Al-
though the accumulation oscillates less periodically than
slope or surface elevation, it still seems regular.

4. Highly Periodic Dunes

[10] Other studies already reported anticorrelation of
surface slope and accumulation [e.g., Black and Budd,
1964; Frezzotti et al., 2005]. In order to further examine

the periodicity described above, we calculated the auto-
covariance (ACV) functions of the accumulation and the
surface slope as well as the cross-covariance (CCV) be-
tween those variables (Figure 4). The pronounced regular
side maxima in the ACV functions emphasize the presence
of oscillations. The largest magnitude of the CCV function
of slope and accumulation occurs at zero lag with a value of
�0.62, emphasizing that slope and accumulation are anti-
correlated. Power spectral analyses of the accumulation and
slope series reveal the wavelength of the features. The
respective CCV function indicate a dominant wavelength
at around 5.05 km. In all three spectra (auxiliary material)
other wavelengths have much lower powers, and the re-
spective main peaks are significant at the 99.7%-confidence
level.1 We therefore conclude that the observed surface
undulations and accumulation variations are quasi harmonic
and strongly linked to each other. These characteristics,
being more detailed than reported in former analyses,
remind of megadunes [Frezzotti et al., 2002a], although
they lack the spatial extension of the megadune fields.
Moreover, observation of surface structure and its variabil-
ity is basically in accordance with the description of
Frezzotti et al. [2002a], who report large longitudinal
sastrugi on the uphill sides of the megadunes and glazed
surfaces on downhill sides. Generally, the mean accumula-
tion in this coastal area is higher than on the polar plateau
and the differences between the leeward and windward
surface features are not as pronounced as in the megadune
areas. We likewise observed large sastrugi fields, associated
with locally increasing surface elevation, whereas smoother
surfaces tended to be located in troughs.

Figure 2. Processed radargram of profile 041201, going from F39 to F33 along the main flow line (see Figure 1). Arrows
indicate the two tracked and dated IRHs. Note the vertically enlarged scale of the radar section in relation to the elevation
scale.

1Auxiliary materials are available in the HTML. doi:10.1029/
2006GL027871.
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[11] From the radargram along the uppermost 25 km of
the main flow line (Figure 2) it is obvious that relative
motion between the accumulation pattern and firn column
takes place, as observed on the polar plateau [Frezzotti et
al., 2002a]. Buried crests of former dunes are slightly
displaced to the crests of current surface dunes.
[12] By comparing the maxima in depth of the deepest

continuous IRH (1970 ± 2 years) with those from the
shallower continuous IRH (1980 ± 2 years) we can deter-
mine the relative migration velocities. From those phase
lags between maxima in layer depth only half the velocity is
derived due to interferences as demonstrated by Arcone et
al. [2005] using trigonometric argumentation. Taking this
into account, we calculated migration velocities which are
basically in the range of glacier-flow velocities. However,
uncertainties of this estimation, introduced by the horizontal
placement of the troughs in depth distribution and especially
by the dating uncertainty of the IRHs, prevent a clear
prediction about possible dune migration from groundborne
data. Analysis of SAR data from ERS-1/2 (April 1996)
allows us to derive detrended elevation values along the
main flow line which can be compared with the detrended
surface elevation from the GPS data recorded during the
expedition in January 2004 (Figure 3a). The detrended
surface-elevation curve from the GPS data is displaced
upstream in relation to the one derived from the SAR data
(auxiliary material). From the displacements (peak-to-peak
and trough-to-trough, respectively) we obtain mean migra-
tion velocities for the time period of 8 years (1996–2004).
The mean relative migration velocity of the surface undu-
lations results as 60 m yr�1 with a 1s standard deviation of
20% in opposite direction to the glacier flow. The uncer-
tainty of this estimation is about 8%. From Figure 1b it is
obvious that the dunes are oriented mainly in East-West
direction, thus introducing an angle of 25–45 degree
between their orientation and the direction of the GPR
profiles. Taking this into account, the obtained migration
velocities reduce to values ranging from about 35–58 m
yr�1 with an average velocity of 45 m yr�1 and a standard

deviation of 22%. However, the DEM indicating the orien-
tation of the dunes (discussed below) should be considered
with caution because of the sparse data base.

5. Dune Extension and Genesis

[13] Unlike the megadune fields, our dune-like patterns
are not clearly visible in satellite imagery, e.g. MODIS. This
can be explained by the generally higher accumulation,
about one order of magnitude higher compared to the polar
plateau, and the less pronounced differences in reflection
characteristics in our case. Analysis of ICESat altimetry data
(Release-12, -24, and -26, http://nsidc.org/data/icesat) com-
bined with groundborne GPS data allows us to derive a
preliminary digital elevation model (DEM) of the investi-
gation area. After smoothing this DEM using a median filter
and calculating the differences between the original and the
smoothed DEM we conclude that the periodic dune patterns
laterally extend several tens of kilometers parallel to the
mean surface slope (Figure 1b). Between about 11.2 E and
12.0 E they are almost parallel to the mountain range of the
Wohlthat Massif, but further west they bend towards
the North/North-East. Assuming katabatic winds from the
mountains of Wohlthat Massif, the dunes would be trans-
verse to the main wind direction. Beyond the western edge
of Wohlthat Massif the wind pattern follows the main
surface slope and changes direction, resulting in a bent
dune orientation. No meteorological data are available so far
to prove these assumptions. Up to now there are no AWS
installed nearby and model data from atmospheric models
are not able to resolve small-scale near-surface wind pat-
terns in this orographically complicated region (M. v. d.
Broeke, personal communication, 2006). The analysis of
wind pattern in this area in future field campaigns would be
helpful to further explain the existence of the dunes.
[14] In principle, bedrock topography could also cause an

undulating surface, which then changes the accumulation
pattern. Yet bedrock topography from a nearby airborne
radio-echo sounding does not indicate any regular features
that could be responsible for the observed small-scale surface
undulations [Damm and Eisenburger, 2005; D. Steinhage,
personal communication, 2006]. We thus suggest that the
periodic dunes are generated by a feedback system between

Figure 3. (a) Linearly detrended surface elevation, (b)
surface slope, and (c) GPR-based accumulation pattern on
the main flow line. The solid line in Figure 3c corresponds
to the time period 1980–2004, the dashed to 1970–2004,
and the dashed grey line to 1970–1980. Glacier flow is
from left to right. Note that only features within the first
7 km downstream of the central firn core are shown.

Figure 4. Auto-covariance functions (a) for surface slope
(dashed line) and accumulation (solid line) and cross-
covariance (b) between accumulation–slope (solid) and
accumulation–detrended surface elevation (dashed).
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atmosphere and cryosphere similar to the description by
Frezzotti et al. [2002a] and Pettré et al. [1986], and not
by dynamic influence of the bedrock topography on the
surface.
[15] In summary, we conclude that undulations of surface

slope interact with the wind pattern to generate highly
regular dunes in this near-coastal area. This finding has
implications for other coastal areas where similar periodic
dunes exist. The regional representativity of firn-core inter-
pretations in those areas is likely very limited, since orographic
variations on the order of a few meters per kilometers signif-
icantly influence snow accumulation. Moreover, change de-
tection for coastal areas is the focus of several remote sensing
missions, like ICESat, GRACE, or Cryosat-2, aiming at
Antarctica’s continental mass balance. Although coastal accu-
mulation patterns were expected to be complex due to wind
action, as evident from blue ice areas, the occurrence of highly
periodic dunes on small spatial scales further complicates the
picture. Future studies in coastal areas should keep an eye on
surface features and closely examine snow structure and
surface topography in order to assess the distribution and
magnitude of other dune patterns at coastal sites.
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funded under grants Di 473/17 and Jo 191/8. O.E. was supported by the
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Abstract. These pages comprise the auxiliary material to the publication Periodic

surface features in coastal East Antarctica. We include a comparison between linearly

detrended surface-elevation data obtained from GPS and from SAR, respectively.

Furthermore we provide spectra of accumulation series as well as of surface-slope series

and of the CCV function between those parameters.
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Figure Captions

Figure 1. Detrended surface elevation on the main flow line obtained from GPS data (solid,

2004) and from ERS-1/2-SAR data (dashed, 1996). Note that the respective peaks and troughs

of the GPS data are displaced upstream in relation to those ofthe SAR data. (Glacier flow is

from left to right.)

Figure 2. Spectra of surface slope (a), accumulation (b), and of the cross-covariance function

(c) between accumulation and slope. The solid lines denote the respective spectra, the dashed

lines show the 3-fold standard deviations.
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Figure 1. Detrended surface elevation on the main flow line obtained from GPS data (solid,

2004) and from ERS-1/2-SAR data (dashed, 1996). Note that the respective peaks and troughs
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ABSTRACT. The accumulation rate on Potsdam Glacier, East Antarctica, and its spatial and temporal
variations are examined using ground-penetrating radar, snow samples, and firn-core studies. Physical
properties in snow samples and along firn cores provide distributions of density with depth, showing only
small spatial variation. Counting of peaks in δ18O along the firn cores yields an age–depth distribution
that is transferred to the stratigraphy of isochronal internal layers observed with radar. From two radar
horizons we determine the spatial accumulation pattern, averaged over the time periods 1970–1980 and
1980–2004. The shape of internal layers indicates an ablation area at the eastern margin of the investiga-
tion area. Accumulation rates show a very high spatial variability with a mean value of 141 kg m−2 a−1 for
the time period 1970–2004 and a standard deviation of almost50%. Mean temporal variation of only a
few per cent throughout the investigated area for the observed time interval is much less than the spa-
tial variations. The mean accumulation values are somewhatless than values reported before from this
region. Accumulation pattern and surface topography are linked in a way indicating that windborne re-
distribution of snow significantly contributes to the observed spatial variations of accumulation rates. The
accumulation data and their variability complement and validate present and future satellite studies of
Antarctica’s mass balance.

INTRODUCTION
Surface mass-balance studies of the Antarctic ice sheet areof vi-
tal importance for an enhanced understanding of the Earth’scli-
mate and its changes (Rignot and Thomas, 2002; van der Veen,
2002) as the polar regions are able to contribute significantly
to global sea-level change (Wingham and others, 1998). It is
therefore crucial to determine the mass fluxes of the Antarctic
ice sheet, for example by using remote sensing techniques and
satellite-based methods. Variations of accumulation and density
on temporal and spatial scales also influence the relation between
elevation changes and changes in gravity and mass. The knowl-
edge of spatial and temporal patterns of ice-mass changes pro-
vides key information especially for the validation of the time-
varying gravity field as sensed by GRACE (Scheinert and others,
2005). (For a general overview of the GRACE mission see Tap-
ley and others (2004)). For this reason small-scale variations of
the accumulation rate play a significant role and need to be in-
vestigated closely by groundborne operations.

Usually accumulation data are derived from firn cores, snow
pits or stake readings (e.g.,Oerter and others, 2000; Kreutz and
others, 2000; Isaksson and Karlen, 1994; Melvold and others,
1998). But they yield only information about the local accumula-
tion rate at the probing location. In recent years, ground-penetrating
radar (GPR) measurements have proved a useful tool to map rel-
ative variations in surface-mass balance over larger areasand
connect snow pits and firn-core drilling sites (e.g.,Richardson
and others, 1997; Pinglot and others, 2001; Rotschky and others,
2004; Sinisalo and others, 2003; Spikes and others, 2004). Inter-
nal reflection horizons (IRHs) detected by GPR can be used to
match signals found in different firn cores along the GPR pro-
files and assist proper correlations between the firn cores. The

observed IRHs arise from contrasts of dielectric permittivity in
the subsurface. In the upper hundreds of meters density has the
most significant influence, affecting the real part of the dielectric
permittivity (Fujita and others, 1999). IRHs are shown to beof
isochronal origin (Eisen and others, 2004; Vaughan and others,
2004) and from their estimated age and a density-depth distri-
bution the mean accumulation rate for a certain period can be
calculated.

In this study, we present GPR and firn-core data from a rela-
tively small area in East Antarctica where no reliable accumula-
tion data of high resolution have been available so far. Highfre-
quency GPR measurements were carried out on Potsdam Glacier
in Neuschwabenland, the coastal part of Dronning Maud Land
(DML), during the Antarctic summer season 2003/2004. Shal-
low firn cores were drilled at selected locations along the radar
profiles. Two internal reflection horizons are traced throughout
several GPR profiles and dated by a reference firn core. The
firn-core analyses give relations between traveltime–depth and
density–depth that can be used to derive the regional accumula-
tion pattern from these tracked IRHs.

STUDY AREA
The study area is located south of the Schirmacheroase and north
of Wohlthat Massif (Figure 1a). Most parts of Potsdam Glacier
are above 1000 m a.s.l. and have a mean annual air tempera-
ture below -20◦C (Bormann and Fritzsche, 1995). The average
ice thickness is more than 1200 m and subglacial topography is
characterized by deep valleys with some subglacial highs (Damm
and Eisenburger, 2005; Meyer and others, 2005). The surfaceel-
evation declines from almost 1350 m a.s.l. in the southwestern
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Fig. 1.a) Overview of the area of investigation. Black line: main
flow line of Potsdam Glacier (Bäßler and others, 2002); black
squares: start/end points of GPR profiles along the flow line.
(Map source: Antarctic digital database 4.0.) Grey lines: contour
lines of elevation at 200 m intervals; thick grey line: 1000 mcon-
tour line; large grey rectangle: area depicted in b. b) Sketch of
GPR profiles (black lines) and firn-core locations (black squares)
with point names (Fxxx). Profiles 041201/041202 correspondto
the main flow line; glacier flow is from left to right. Distances
F39–F33 and F33–27 amount to 25 km each. Grey scale indi-
cates magnitude of glacier-flow velocity.

part of the area of investigation to about 850 m a.s.l. in the north-
eastern part. Accumulation dominates in this region with the ex-
ception of small ablation areas around several nunataks. Only in
the very northeastern part of this glacier, near and east of the
Schirmacheroase, a large ablation area is found that reaches up
to the eastern Wohlthat Massif (Bormann and Fritzsche, 1995).
Analysis of a firn core drilled at 70◦58’S, 11◦22’ E, some 15 km
away from our radar profiles, showed snow and firn with some
ice layers up to a depth of 27 m. From 27–51 m stratified ice

layers were found, and below 50 m unstratified ice with small
bubbles occured (Bormann and Fritzsche (1995) and references
therein).

Studies of ice flow in this region have been undertaken among
others by Korth and Dietrich (1996). They carried out differen-
tial GPS measurements and stake readings along the GPS signals
on traverse lines going from Novolazarevskaya station to Hum-
boldtfjella and Gruberfjella, respectively (Figure 1a). The flow
pattern of Potsdam Glacier has also been deduced by interfero-
metric SAR analysis (Dietrich and others, 1999), as well as the
line of highest flow velocity, hereinafter referred to as themain
flow line. The velocities in the direction of glacier flow in the
area of investigation are increasing from about 20–30 m a−1 in
the higher elevation parts to 70–80 m a−1 in the lower region.
Vertical velocity is unknown. Glacier flow is mainly divergent
in the higher elevation parts of the glacier whereas in the lower
elevation parts laterally convergent flow is observed (Bäßler and
others, 2002, 2003).

METHODS
GPR and GPS Data
During the expedition 2003/2004 a 50 km long radar survey line
was collected along the main flow line of Potsdam Glacier. Three
cross profiles were surveyed, each one being 8 km long (Fig-
ure 1b). We used a commercial RAMAC radar system (Malå
Geoscience, Sweden) with a bistatic shielded 500 MHz antenna
that was connected to the central unit via fibre optic cables.Data
were stored on a Husky Px5 computer. The GPR antenna was
mounted behind a Nansen sledge pulled by a snowmobile at an
average speed of∼5 km h−1. Traces were recorded every 0.5 m
triggered by a distance wheel. Each trace consisted of 2048 sam-
ples in a 400 ns time window, thus mapping the upper∼35–38 m
of the snowpack. Differential GPS data were collected simulta-
neously with GPR data. The roving station was mounted on the
snowmobile, and two reference stations were situated at thefield-
camp,i.e., about 1 km south of point F33 (see Figure 1), and at
the Schirmacheroase, respectively. The GPS data were collected
every second using a Trimble 4000SSi receiver and a choke-ring
antenna. Processing of GPS data yields positions for the GPR
profiles as well as surface elevation. The relative accuracybe-
tween the differential GPS points is generally in the range of
several millimeters to a few centimeters for longitude and lat-
itude and of some centimeters to about one decimeter for the
elevation. However, due to the movement of the roving station
over severe sastrugi fields, we assume that actual accuracy de-
clines to some centimeters for longitude and latitude and reaches
a few decimeters for the elevation. The radar data were processed
using Paradigm Geophysical FOCUS version 5.0 software by ap-
plying gain control, filtering using a Bandpass butterworthfilter
with cut-off frequencies of 350 MHz and 850 MHz, and correc-
tion for the first arrival of the direct wave. From the processed
radargrams IRHs were tracked semi-automatically using Land-
mark OpenWorks release 2003.0 software. Within the depth sec-
tion covered by the firn cores (given below) two internal horizons
could be tracked throughout more than one GPR profile.

Firn Cores and Snow Samples
At five locations (Figure 1b, Table 1) along the radar profiles
shallow firn cores were drilled, being between 12.5–13.5 m deep.
At the same sites 2 m deep snow pits were dug which were
probed in intervals of 5 cm, giving 40 samples per pit. The den-
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Fig. 2. a) Processed radargrams from profiles 041201 and 041202. Thewhite arrows mark the IRHs chosen for the determination
of the approximate beginning of the transition zone from accumulation to ablation. b) Depth distribution of tracked anddated IRHs.
Black solid line: IRH 1 (1980), black dashed line: IRH 2 (1970), grey dashed line: IRH Ia (1995), light grey line: IRH Ib (1992), dark
grey line: IRH Ic (1989).

sity of the snow samples was determined in situ from the weight
and the known volume of the probing cylinder.

The firn cores and snow samples were transported to Germany
and analyzed in the cold laboratory at AWI Bremerhaven for
physical and chemical properties. Snow-sample data were used
to link firn-core data to the surface due to poor core quality in the
upper 1–2 m of drilling. Theδ18O ratio was determined by mass
spectrometry for both the firn cores as well as the snow sam-
ples. Firn-core analysis covered measurements of density using
gamma-attenuation profiling as well as dielectric profiling(GAP
and DEP, respectively) that yield density, dielectric permittivity,
and electrical conductivity of the firn (Wilhelms, 1996, 2005).

Determination of Accumulation Rates
We derive distributions of electromagnetic wave speed and cu-
mulative mass with depth from the firn-core data. The mean val-
ues of density, dielectric permittivity, and conductivityof all five
firn cores are used, since no further information about the lateral
variations of those parameters between the firn-core drilling sites
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Table 1.Location of firn cores

Firn core Point name∗ Latitude Longitude Elevation (m)

FB0401 F33 71.110709 S 11.646268 E 1013
FB0402 F332 71.143130 S 11.693510 E 1076
FB0403 F39 71.253401 S 11.122667 E 1315
FB0404 F331 71.078270 S 11.599180 E 1008
FB0405 F27 71.044023 S 12.332327 E 848

∗point names as in Figure 1b

is available. Cumulative snow mass is obtained by integration of
the mean density profile derived from the GAP measurements.
Calculation of electromagnetic wave speed from DEP-derived
parameters follows the procedure described by Eisen and oth-
ers (2002). Error estimates are given below. Since the firn cores
reach only a depth of about 12 m below the surface, the data
of the TWT–depth and cumulative mass–depth models were ex-
trapolated up to a depth of 25 m. Extrapolation was done us-
ing Matlab’s polyfit routine by fitting a third order polynomial
(Richardson and others, 1997; Frezzotti and others, 2005),yield-
ing a correlation coefficient of R = 0.90. Age-depth profiles are
determined by counting theδ18O peaks which indicate summer
maxima (McMorrow and others, 2004, and references therein).

Consistent dating of the different firn cores turned out to be
difficult due to local variations in theδ18O profiles which did
not allow clear identification of maxima and minima for every
firn core. However, firn core F39 shows aδ18O profile with pro-
nounced maxima and minima (Figure 3d) so it was used as a
reference core for the interpretation of the radar data. F332 could
likewise be dated sufficiently by itsδ18O profile. However, since
the tracked IRHs do not reach up to this core, F332 could not be
used for dating the GPR layers. The two tracked horizons (IRH
1 and IRH 2, see Figure 2b) are dated against F39 by comparing
the depth of the respective IRH at the coring location with the
depth–age scale of the firn core. The depth values for the IRHsat
the drilling location are 8.65 m (IHR 1) and 11.55 m (IRH 2), and
their estimated time of origin is 1970 and 1980, respectively, ±2
years for each dating. Three more IRHs (IRH Ia, Ib, and Ic, see
Figure 2b) that could only be tracked throughout the uppermost
∼20 km along the main flow line are dated by the depth-age scale
of F39 as well: their estimated times of origin are 1995, 1992, and
1989,±1 year for each dating.

The accumulation rate along the GPR profiles can be calcu-
lated by dividing the cumulative mass difference of two selected
IRHs by their respective age difference.

Estimation of Errors
Errors in our density-depth distribution are assumed to be up to
14 % at a depth of 12 m determined from the difference between
the mean values (i.e.,the model used) and F39 and F27, respec-
tively (Figure 4c). This includes errors from the density measure-
ments using GAP which are up to 10 kg m−3 (Wilhelms, 2005).
Accuracy of DEP derived parameters is within 1 % (Wilhelms,
1996). Errors in TWT–depth conversion using DEP data are up
to 1 % as shown by Eisen and others (2002). Errors in calcula-
tions of the cumulative mass from the density profiles are like-
wise up to 1 % due to error propagation. The dating uncertainty
of the two IHRs used for determination of area-wide accumula-
tion rates is±2 years. Errors in tracking of IHRs are up to±2 ns
which yields depth variations of up to±0.2 m. However, for the
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Fig. 4. a) Density distribution of all firn cores. Thick grey line:
F33, solid black line: F332, light grey line: F39, dark grey line:
F331, black dotted line: F27. Note that the density plots areoff-
set by intervals of 50 kg m−3 in order to distinguish the individ-
ual cores. b) Model for TWT–depth and c) model for cumulative
mass–depth. In either plot (b and c) the solid line corresponds to
the model derived from the mean values, the dashed line to the
one derived from firn core F39, and the dotted line to the one
from F27. d) Depth–age scale as derived from the dating of firn
core F39.

two dated IRHs (IRH 1 and 2) this latter uncertainty does not af-
fect the estimated age since 8.65 m±0.2 m and 11.55±0.2 m still
correspond to the years 1980 and 1970, respectively (Figure4d).
From analytic error propagation the overall root-mean square er-
ror in accumulation rates becomes 11.5 % for profile 041201.
The largest error was found to be 20 %. We therefore assume
that the accumulation values presented in this paper are accurate
within about 12 % on average. Errors from ray-path geometry
due to the separation of transmitting and receiving antennaare
neglected, since transmitter and receiver are separated byonly
0.18 m. For the same reason refraction within the snowpack can
be neglected (Sinisalo and others, 2003).

RESULTS
GPR Profiles
In the processed radargrams the undulations of internal layers
can clearly be seen (Figure 2a). Internal layers show large slopes
along the profile 041201. At some locations the vertical distance
between separate layers is very small (for example at –16 to
–17 km) whereas a few kilometers away the same layers are
spaced more widely (for example from about –10 to –15 km).
Comparable undulating patterns have been reported before in
DML, for example by Richardson-Näslund (2001). Closely spaced
layers indicate areas with less accumulation whereas more widely
spaced layers are associated with regions of higher accumula-
tion. Along profile 041202 (Figure 2a) layers are ascending in
the direction of glacier flow (with the exception of the localun-
dulations in the first 6–7 km). Such patterns are characteristic for
ablation areas and the transition from an accumulation areato an
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ablation area, where internal horizons come to the surface due
to surface erosion. However, it is not possible to resolve actual
ablation from very low accumulation by GPR internal layering.
A layer outcropping at the surface at a certain location along the
GPR profile would only yield zero values for accumulation or
ablation for this very point. Besides, the isochronal layers can-
not be traced up to the surface since they are lost within the time
window of the direct wave (here: the upper∼20 ns, equivalent
to ∼2 m, Figure 2a). Assuming zero advection, ascending layers
with angles<90◦ relative to the surface would still provide accu-
mulation, albeit low values (Figure 2a, near x=25 km). Without
advection, therefore only layers emerging perpendicularly at 90◦

indicate ablation. Yet in our case we can conclude from the as-
cending IRHs that the transition zone from accumulation to abla-
tion is present and visible in the radargram. Since we do havead-
vection effects here, we cannot clearly define the beginningof the
ablation area. Thus, we do not address the actual ablation area,
but rather the transition zone where very low accumulation and
also local ablation might occur. We define the beginning of this
zone by the point where the first IRH would reach the surface.
Using two different IRHs marked by the white arrows in Fig-
ure 2a and extrapolating from their respective slopes the points
where they would reach the surface results in x=21.35 km and
x=23.84 km, respectively. Since these IRHs could not be dated,
we are unable to apply a sufficient correction for glacier-flow ve-
locity. By choosing one very shallow and one rather deep IRH
we can at least conclude that the transition zone from very low
accumulation to ablation starts at this part of Potsdam Glacier
between about 21–24 km downstream of F33. Thus, the actual
ablation area is to be expected slightly farther downglacier which
is in accordance with the description of Bormann and Fritzsche
(1995) and Horwath and others (2006a).

Firn-Core Data and Density Distribution
The parameters derived from the firn-core analysis are depicted
in Figure 3 for firn core F39. Dielectric permittivity as wellas
density increase with depth (Figure 3a and c) but the parameters
do not reach values of solid ice (ρ = 917 kg m−3) within the
depth section covered by the firn cores. Some of the peaks of the
density coincide with observed ice lenses in the firn core.

Figure 4 shows the models for TWT–depth (b) and cumulative
mass–depth (c) as derived from the mean values and from the
”extreme” cores, i.e. the core with the lowest mean density (F39)
and the core with the highest mean density (F27). Down to a
depth of about 5–6 m the density values of the different firn cores
are very similar (Figure 4a). Below this depth they start to differ
slightly, up to∼100–150 kg m−3 at about 12 m depth. In the
upper 6–7 m density variations within one specific firn core are
usually larger than the variations between the different cores at
the same depth. Generally, F27 shows the largest density values.
This core was drilled on the lower elevation part of the glacier
where the radar data indicate an ablation area nearby. Farther east
a blue ice area is found (Bormann and Fritzsche, 1995; Korth and
Dietrich, 1996; Horwath and others, 2006a) where the surface
density should be higher than in the firn areas. Thus it can be
assumed that density in the area of investigation will increase
in the direction of glacier flow which is in accordance with our
findings. However, density values of F27 are still in the range of
firn density and do not reach the density of solid ice. Therefore
we conclude that this part of the glacier is dominated by firn at
least in the uppermost 12 m.

Table 2. Accumulation values in the area of investigation, given
in kg m−2 a−1. Note that the first three lines (GPR-based accu-
mulation rates) represent spatial means from the area of investi-
gation whereas the last two lines (firn-core derived accumulation
series) represent temporal accumulation means for the timepe-
riod covered by the firn cores at the respective coring locations.

Method Time period Mean acc. Std.∗ Min. Max.

GPR–IRHs 1970–1980 142 51 18 335
GPR–IRHs 1980–2004 140 48 27 318
GPR–IRHs 1970–2004 141 47 31 290

Firn core F332 1966–2003 161 39 60 327
Firn core F39 1968–2003 176 30 96 289

∗one-fold standard deviation in % of the mean

Accumulation Rates
The mean accumulation rate in the area of investigation is de-
rived for the time periods 1970–1980, 1970–2004, and 1980–
2004, with 2004 corresponding to the surface at the time of data
collection (Table 2). The depth distribution of the dated IRHs is
depicted in Figure 2b. Taking into account a mean glacier-flow
velocity of 45 m a−1 results in the accumulation distribution
along the main flow line (Figure 6c). Furthermore, annual accu-
mulation rates are obtained from the two dated firn cores (Ta-
ble 2, Figure 5a).

DISCUSSION OF ACCUMULATION FEATURES
Temporal Characteristics
Comparing the mean values of the GPR-derived accumulation
rates from Table 2 we conclude that the spatial variability ex-
ceeds the mean temporal variability for the time periods con-
sidered. This has been reported before at other places in East
Antarctica, for example by Frezzotti and others (2005). Thetem-
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poral variations in accumulation rates derived from GPR mea-
surements for the time periods 1970–1980 and 1980–2004 are
about 1.5 %, calculated from the mean values of the respective
time periods. However, interannual variability obtained from the
two dated firn cores (Figure 5a) is high, showing one-fold stan-
dard deviations of 30 and 39 %, respectively (Table 2). Differ-
ences in per cent of the firn-core mean values range from –63 %
to +103 % for F332 and from –46 % to +65 % for F39 (Fig-
ure 5c). A mean over 10 years of the accumulation series ob-
tained from the firn cores indicates a slight decrease at F332and
an even smaller increase at F39 for the time period 1984–1993
(Figure 5b). Although the time scales are rather short, thissug-
gests that the accumulation pattern comprising the last 30 years is
quite stable on decadal scales in relation to the annual variability.

Spatial Characteristics
Generally, our mean core-derived accumulation rates are about
12–23 % higher than the average GPR-based accumulation rates
in the investigation area. We therefore conclude that the spa-
tial representativity of the firn cores is limited as has beendis-
cussed before for West Antarctica (Spikes and others, 2004)and
the western part of DML (Richardson-Näslund, 2001). The spa-
tial variability of GPR-derived accumulation rates along the main
flow line is very high (Figure 6c). Differences in per cent of the
mean range from –81 % to +125 % for the time period 1980–
2004, showing an undulating pattern. Accumulation rates show
strong spatial gradients of up to 105 kg m−2 a−1 km−1 with
pronounced changes from increasing to decreasing accumulation
in the direction of glacier flow, sometimes even within less than
1 km. For example, going from near F33 1 km upstream yields a
10-fold increase in accumulation (from about 30 to 330 kg m−2 a−1)
for the time interval 1970–1980. Average accumulation gradi-
ents are on the order of 23 kg m−2 a−1 km−1. Generally, a de-
crease in accumulation in the direction of glacier flow is visible.

The linear trend along the profiles 041201/041202 amounts to–
4.9 kg m−2 a−1 km−1. This is in accordance with the observation
that IRHs tend to come to the surface at lower elevations on the
main flow line (Figure 2a).

Surface slope and slope of accumulation (Figure 6d) show
regular undulations similar to those in surface elevation (Fig-
ure 6a,b) and in accumulation (Figure 6c). Anschütz and others
(2006) show that these undulations are likely caused by a feed-
back system between atmosphere and cryosphere similar to the
features ruling the genesis of megadunes on the polar plateau
(Frezzotti and others, 2002). Comparable association between
surface slope and accumulation has been reported before in Antarc-
tica (among others Black and Budd, 1964; Pettré and others,
1986; Goodwin, 1990; Vaughan and others, 2004; Eisen and oth-
ers, 2005) and is attributed to wind influence (King and others,
2004) where accumulation maxima are located within surface-
elevation troughs and on the windward slopes. Local deviations
from this general pattern in our data are possibly due to different
local-scale near-surface winds. Another reason probably arises
from the correction for glacier flow where we used a measured
mean flow speed of 45 m a−1 to correct the GPR layer depths and
thus the accumulation pattern. Flow speed is not constant along
the main flow line but increases with decreasing elevation. Mea-
surements of spatial variations of ice flow are too inaccurate to
allow a more detailed correction of the isochronal layers. Thus,
accumulation maxima can be slightly misplaced due to locally
incorrect consideration of glacier-flow speed. However, the spa-
tial variability of the accumulation rate is not affected bythese
errors.

Comparison with Other Studies
Other groundborne data in this region are sparse, but there are
a few accumulation values available from pit studies and stake
readings.

Bormann and Fritzsche (1995) report a mean accumulation
value derived from pit studies in the vicinity of a drill holeat
70◦58’ S, 11◦22’ E, about 15 km north of our radar profiles
041201/041202, that is about 130 kg m−2 a−1 (1950–1984) which
is in accordance with our mean values.

The mean annual accumulation from the stake readings pre-
sented by Korth and Dietrich (1996) on Insel traverse route (go-
ing from Novolazarevskaya station to Humboldtfjella, see Fig-
ure 1a) is 131 kg m−2 a−1 with a standard deviation of 140 %
because some of the stakes are located in an ablation area. This
comparison should be viewed with caution, since the stake read-
ings cover the period 1988–1993 so the time interval of the differ-
ent accumulation values is not the same. Furthermore, Korthand
Dietrich (1996) do not state actual values for the densitiesused
to calculate the accumulation. However, their mean value isin
the range of our mean values, indicating that the overall distribu-
tion of accumulation is quite stable for the different time periods,
although there are obvious small-scale differences. Theirvalues
obtained at stakes in the vicinity of our profiles, about 1 km away
from the main flow line, are about 250 kg m−2 a−1 which is
much larger than our nearby values of some 50 kg m−2 a−1.
Yet accumulation rates for the time intervals 1980–1989, 1980–
1992, and 1980–1995 along profile 041201 (calculated from IRH
Ia, Ib, and Ic, see Figure 2b) are between 18% and 35% higher
than the other values in our study. Taking into account the report
from Korth and Dietrich (1996) this might indicate a higher ac-
cumulation at this part of the glacier during the 1980s and early
1990s of about 25 % compared with the previous period (1970–
1980). Due to the dating uncertainty of F39 caution has to be used
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with these findings. However, dating uncertainty does not affect
the accumulation pattern itself or the spatial variabilitywhich is
clearly demonstrated by our study.

The accumulation values in the area of investigation we pre-
sented here are less than those reported by Giovinetto and Zwally
(2000) who derive values of some 200-250 kg m−2 a−1 for
this region of Antarctica. Vaughan and others (1999) reportthe
same as Giovinetto and Zwally (2000). Both studies are con-
cerned with larger areas and neglect small-scale features.Our
mean value of 141 kg m−2 a−1 (1970–2004) is less than these
findings because an ablation area is in the vicinity of our study
area which influences our results. Van de Berg and others (2006)
derive specific surface mass balance (SSMB) from a regional at-
mospheric climate model, estimating precipitation, sublimation
and melt. Snowdrift processes are not considered. The horizon-
tal resolution is about 55 km. They derive values of some 200
kg m−2 a−1 for the vicinity of our study area which is likewise
larger than our mean accumulation values. Our study revealsa
significant influence of blowing snow on the accumulation val-
ues in the area of investigation. So neglecting this processlikely
results in an overestimated SSMB for this area as given by Vande
Berg and others (2006). Large-scale compilations like those cited
above are usually based on a limited number of scattered obser-
vations. They do not take into account the spatial representativity
of the respective point measurements which may be obscured by
local-scale variability. Our study demonstrates a very high spa-
tial variability in this area of coastal DML and indicates a limited
representativity of firn-core derived accumulation data which are
on average higher than the GPR-derived accumulation values.
This might explain the higher accumulation rates in large-scale
compilations of this area.

Implications for Satellite-Data Interpretation
Satellite observations of surface elevation, for instanceby ERS-
1/2 and ICESat, and gravity from the GRACE mission (Tap-
ley and others, 2004) can provide mass-distribution changes ac-
cording to the mission-specific spatial and temporal resolutions.
Combining GRACE data and altimetry data helps to discriminate
ice-mass changes (Zwally and others, 2005) from height changes
induced by glacial isostatic adjustment or by changes in snow
and firn density (Wahr and others, 2000). However, the effec-
tive spatial resolution of GRACE monthly solutions is only some
hundred kilometers. To account for the GRACE error behaviour
and to separate mass signals from different geographic origins
adapted filter techniques have to be utilized (Swenson and Wahr,
2002; Horwath and Dietrich, 2006b). Hence, GRACE provides
only integrated mass-balance estimates over large areas.

Trends in ice-mass changes over a few years derived from
satellite observations may be either due to interannual fluctu-
ations in net ice surface-mass balance or due to long-term ice
dynamics. In order to distinguish between the two effects, infor-
mation on the temporal and spatial covariance of the interannual
surface mass balance fluctuation is needed.

With regard to spatial covariance, Anschütz and others (2006)
report spatial autocorrelation lengths of only about 1 km for surface-
mass balance fluctuations. For values averaged over some hun-
dred kilometers the small-scale variations (deposition noise) are
averaged out, hence, the standard deviation of temporal fluctua-
tions will be smaller than the values of 30–39 % obtained from
the firn-core time series (Table 2). Therefore, such small-scale
fluctuations will not be resolved by GRACE. Concerning tem-
poral covariance, there is, again, a large portion of small-scale
deposition noise in the firn core data: the autocorrelation length

of the firn core time series is only 0.6 a (Figure 5a). However,
the accumulation pattern seems fairly stable on decadal scales
(Figure 5b).

The GRACE mission, launched in 2002, is planned to cover 8
years in total. Considering the discussion above, long-term sur-
face mass balance changes showing a considerably large spatial
pattern would be sensed by GRACE. Hence, regional studies of
mass fluctuations are very important to qualify the spatiotem-
poral behaviour of the ice surface mass balance in larger areas
and to discriminate surface mass balance fluctuations from long-
term ice dynamics. In this context, the results presented bythis
study combined with further estimates yielded by other authors
for adjacent regions (e.g. Richardson-Näslund, 2001; Rotschky
and others, 2004; Frezzotti and others, 2005) provide valuable
ground-based information to validate and interpret GRACE ob-
servations.

CONCLUSIONS
We have combined GPR data and firn-core data to investigate
the accumulation pattern on Potsdam Glacier in Neuschwaben-
land, East Antarctica. Accumulation rates show a very high spa-
tial variability in the area of investigation with a standard de-
viation of almost 50 %. The generally decreasing trend of ac-
cumulation in the direction of glacier flow is overlain by local
features. In accordance with other authors (Richardson-N¨aslund,
2001; Rotschky and others, 2004; Frezzotti and others, 2005; Ar-
cone and others, 2005; Spikes and others, 2004) we conclude that
it is important to take into account the spatial representativity of
point measurements such as firn cores, snow pits or stake read-
ings when examining accumulation rates.

Comparing the results from our study with previous work based
on stake readings nearby we found locally lower accumulation
values, however, the previous study comprises a shorter time pe-
riod. We found indications that during the late 1980s and early
1990s accumulation has been slightly higher (about 25 % com-
pared to the period 1970–1980). Large-scale studies on Antarctic
accumulation show values between 200–250 kg m−2 a−1 for our
investigation area. The lower values found in our study are pre-
sumably owed to an ablation area that influences our results and
has not been accounted for in the large-scale compilations,as
well as significant influence of blowing snow on the local accu-
lumation rates.

Our results provide useful insight in small-scale featuresaf-
fecting the accumulation in this area and can be helpful in further
studies, especially for validating satellite-based mass-balance es-
timates. Monitoring of local-scale accumulation changes in coastal
areas provides valuable information to increase our knowledge
about ice-mass fluxes from ice streams and outlet glaciers like
Potsdam Glacier (Hamilton and others, 2005).

This study also complements published data sets and enhances
the evaluation and interpretation of ice-mass changes in this area
of East Antarctica.
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Horwath, M., R. Dietrich, M. Bäßler, U. Nixdorf, D. Steinhage,
D. Fritzsche, V. Damm and D. Reitmayr, 2006a. Nivlisen,
an Antarctic Ice Shelf in Dronning Maud Land: Geodetic-
Glaciological Results from a Combined Analysis of Ice
Thickness, Ice Surface Height and Ice Flow Observations,J.
Glaciol., 52(176), 17–30 .

Horwath, M. and R. Dietrich, 2006b. Errors of regional mass
variations inferred from GRACE monthly solutions,Geophys.
Res. Lett., 33, L07502, doi:10.1029/2005GL025550.

Isaksson, E. and W. Karlen, 1994. Spatial and temporal patterns
in snow accumulation, western Dronning Maud Land, Antarc-
tica,J. Glaciol., 40(135), 399–409.

King, J., P. Anderson, D. Vaughan, G. Mann, S. Mobbs and
S. Vosper, 2004. Wind-borne redistribution of snow across
an Antarctic ice rise,J. Geophys. Res., 109(D11), D1104,
doi:10.1029/2000JD004361.

Korth, W. and R. Dietrich, 1996. Ergebnisse geodätischer Ar-
beiten im Gebiet der Schirmacheroase/Antarctica 1988-1993,
vol. 301 of Angewandte Geodäsie, Deutsche Geodätische
Kommission, Verlag der Bayerischen Akademie der Wis-
senschaften, München, Germany.

Kreutz, K., P. Mayewski, L. Meeker, M. Twickler and S. Whit-
low, 2000. The effect of spatial and temporal accumulation rate
variability in West Antarctica on soluble ion deposition,Geo-
phys. Res. Letters, 27(16), 2517–2520.

McMorrow, A., T. van Ommen, V. Morgan and M. Curran, 2004.
Ultra-high-resolution seasonality of trace-ion species and oxy-
gen isotope ratios in antarctic firn over four annual cycles,Ann.
Glaciol., 39, 34–40.

Melvold, K., J.O. Hagen, J.F. Pinglot and N. Gundestrup, 1998.
Large spatial variations in accumulation rate in Jutulstraumen
ice stream, Dronning Maud Land, Antarctica,Ann. Glaciol.,
27, 231–238.

Meyer, U., D. Steinhage, U. Nixdorf and H. Miller, 2005. Air-
borne Radio Echo Sounding in Central Dronning Maud Land,
Geol. Jb., B97, 129–140.

Oerter, H., F. Wilhelms, F. Jung-Rothenhäusler, F. Göktas,
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mulation in Terre Adélie, Antarctica: Effect of meteorological
parameters,J. Glaciol., 32(112), 486–500.

Pinglot, J.F., J.O. Hagen, K. Melvold, T. Eiken and C. Vincent,
2001. A mean net accumulation pattern derived from radioac-
tive layers and radar soundings on Austfonna, Nordaustlandet,
Svalbard,J. Glaciol., 47(159), 555–566.

Richardson, C., E. Aarholt, S. Hamran, P. Holmlund and
E. Isaksson, 1997. Spatial distribution of snow in western
Dronning Maud Land, East Antarctica, mapped by a ground-
based snow radar,J. Geophys. Res., 102(B9), 20343–20353.
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Temporal variation of accumulation patterns in western and
central Dronning Maud Land, Antarctica

Helgard Anschütz1, Daniel Steinhage1, Olaf Eisen1, Hans Oerter1, Lutz Eberlein2

Abstract. Spatial and temporal variations of the recent accumulationrate are
investigated utilizing ground-penetrating radar (GPR) measurements and firn-core
studies. The study area is located on Ritscherflya in westernDronning Maud
Land, Antarctica, at an elevation range between 1400–1560 ma.s.l. GPR-derived
layer depths show little undulation along a 22 km profile on anice-flow line.
Accumulation rates are derived from tracked internal reflection horizons (IRHs)
and the dating of a reference firn core. Average accumulationrates are about 190
kg m−2 a−1 (1980–2005) with a one-fold standard deviation of 5 % along the GPR
profile. The interannual variability obtained from four dated firn cores is one order
of magnitude higher, showing standard deviations around 30%. Mean temporal
variations of GPR-derived accumulation rates are of the same magnitude or even
higher than spatial variations. Temporal differences between 1980–1990 and
1990–2005 obtained from two dated IRHs are not constant along the GPR profile.
Comparison with similarly obtained accumulation data fromanother coastal area in
central Dronning Maud Land confirms this observation. The spatial and temporal
variations of the accumulation rate are useful for the validation of satellite data,
e.g. from the GRACE mission, in further studies.

Introduction

The last years have seen increasing efforts in analyzing
future sea-level change [e.g.Wingham et al., 1998;van der
Veen, 2002;Thomas et al., 2004;Alley et al., 2005;Church
and White, 2006;Monaghan et al., 2006]. However, un-
certainties are still high, the largest introduced by the un-
certain contribution of the Antarctic ice sheet [e.g.Davis
et al., 2005;Rignot and Thomas, 2002;Rignot et al., 2004;
Vaughan, 2005]. New satellite missions like GRACE [Ta-
pley et al., 2004], ICESat [Zwally et al., 2002], and the
upcoming CryoSat-2 are expected to give new insights in
Antarctica’s mass balance, especially in coastal and moun-
tainous areas, where the steep slopes prevented a suffi-
cient determination of surface-elevation changes from ERS
data [Vaughan, 2005]. Several recent studies report mass
rates for the West and East Antarctic ice shield (WAIS and
EAIS) from Grace, yielding different results:Velicogna and
Wahr [2006] derive values of –148±21 km3 a−1 (WAIS)
and 0±56 km3 a−1 (EAIS), Chen et al.[2006] report –
77±14 km3 a−1 for WAIS and +80±16 km3 a−1 for EAIS,
andRamillien et al.[2006] give values of –107±23 km3 a−1

for West Antarctica and +67±28 km3 a−1 for East Antarc-
tica. The uncertainties and the differences highlight the ne-
cessity of ground-truthing for the satellite-based estimates.

1Alfred-Wegener-Institut für Polar- und Meeresforschung
Bremerhaven, Germany

2Institut für Planetare Geodäsie, TU Dresden, Germany

Moreover, these ice-mass changes from GRACE are aver-
aged over several hundred kilometers, thus neglecting small-
scale effects. King et al. [2006] propose an optimal aver-
age radius for temporal GRACE solutions of∼500 km over
continental areas. Small-scale variations of parameters af-
fecting changes of the ice sheet are of major importance in
order to validate those satellite data. Spatial and temporal
variations of accumulation rates and density influence the
changes of ice-sheet elevation. It is therefore crucial to in-
vestigate these parameters and their spatio-temporal changes
on small scales by groundborne observations.

Often accumulation data have been derived from point
measurements such as firn cores, snow pits, or stake read-
ings [e.g.Oerter et al., 1999;Kreutz et al., 2000;Isaksson
and Karlen, 1994; Melvold et al., 1998]. However, they
yield only accumulation data at the probing location, leav-
ing open the question of spatial representativity, as discussed
by Richardson et al.[1997]. They recommend ground-
penetrating radar (GPR) studies in order to investigate the
spatial variability of accumulation rates around a drilling
site. GPR has widely been applied in recent years [e.g.
Richardson and Holmlund, 1999;Rotschky et al., 2004;Sin-
isalo et al., 2003;Spikes et al., 2004;Eisen et al., 2005].
Internal reflection horizons (IRHs) detected by GPR can be
used to match signals found in different firn cores along
the GPR profiles. The observed IRHs are due to contrasts
of dielectric permittivity in the subsurface where in the up-
per hundreds of meters density has the most significant in-

1
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fluence, affecting the real part of the dielectric permittivity
[e.g.Fujita et al., 1999]. IRHs are shown to be isochronous
[Eisen et al., 2004;Vaughan et al., 2004], thus from their
estimated age and a density-depth distribution the mean ac-
cumulation rate for a certain period can be calculated.

In this paper we present groundborne data comprising
GPR profiles and shallow firn cores on a small grid on
Ritscherflya in western Dronning Maud Land (DML), Antarc-
tica. Accumulation rates are obtained along selected tracked
IRHs which are dated by firn-core parameters. We discuss
the spatial variability of accumulation rates on the scale of a
few kilometers and the temporal variability on decadal scale.
Moreover, interannual variability of accumulation rates ob-
tained from dated firn cores is presented. We compare our
results with other nearby studies from western DML as well
as with similarly obtained data from a coastal site in central
DML.

Study Area

The area of investigation is located in the grounded coastal
part of DML, some 10 km north of Kottasberge, which are
part of the Heimefrontfjella mountain range (Figure 1). This
area is characterized by gentle surface undulations at ele-
vations between 1400 and 1560 m a.s.l. and a glacier-flow
velocity of some 50 m a−1. Distance to the Weddell Sea
coast is about 300 km. Ice thickness in the area of investi-
gation reaches some 2000 m with a rather smooth bedrock
topography [Steinhage et al., 2001].

The Heimefrontfjella mountain range marks the boundary
between the inland-ice plateau (Amundsenisen) and Ritscher-
flya with the mountains damming the ice flow coming down
from the plateau. The mountain chains are directed from
South-West to North-East. Altitudes range from> 2500 m
a.s.l. on Amundsenisen plateau to 1200–1500 m a.s.l. at the
foot of the mountains [van den Broeke and Bintanja, 1995].

Previous accumulation studies north of Kottasberge and
nearby have been carried out byOerter et al.[1999],Richardson-
Näslund[2004], andRotschky et al.[submitted to J. Glaciol.,
2006]. Näslund[1998] describes interactions of landscape,
ice sheet, and climate in this area of Dronning Maud Land.
Along the traverse route from Neumayer station on the Ek-
strömisen ice shelf to Kottasberge (Figure 1a) and further
on to the EPICA1 deep-drilling station Kohnen on Amund-
senisen plateau firn cores have been drilled and analyzed
[Oerter et al., 1999]. The accumulation along the traverse up
to Kottasberge is monitored by a stake line of 500 m spacing
between the individual stakes [Rotschky et al., 2006].

Methods

GPR and GPS

In the Antarctic summer season 2004/2005 GPR mea-
surements were carried out on an ice-flow line and on cross

1European Project for Ice Coring in Antarctica

Figure 1. a) Overview of the area of investigation. Thin
grey lines: elevation contour lines at 200 m spacing; thick
grey lines: 1000 m and 2000 m contour lines. The black
line indicates the traverse route from Neumayer station to
Kohnen station (not shown); the black filled circles are way-
points for navigation. The dark grey rectangle corresponds
to the area depicted in b. Map source: Antarctic digital data
base 4.0. b) Sketch of GPR profiles and firn-core locations
(black squares). Thick grey line: profile on the ice-flow line
(against the flow direction); thin grey line: stake line along
traverse Neumayer–Kottasberge. Arrows indicate direction
of GPR profiles. Glacier flow is from right to left. KC: Kot-
tas Camp.
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Figure 2. Depth distribution of the tracked IRHs of profile
051202. The solid horizons are used for calculation of the
accumulation rate.

profiles (Figure 1b) using a bistatic shielded 500 MHz an-
tenna (RAMAC, Malå Geoscience, Sweden) which was pulled
by a snow vehicle at an average speed of about 5 km h−1.
Traces were recorded every 0.5 m in a time window of
400 ns, triggered by an odometer. GPR data were later on
processed by applying gain control, filtering using a band-
pass Butterworth filter with cut-off frequencies of 350 and
850 MHz, and correction for the first arrival of the direct
wave. From the processed radar data IRHs were tracked
throughout the GPR profiles where possible. We restrict our-
selves here to the upper 12 m, i.e., the depth range covered by
the firn cores (see below) since only isochronous layers up
to this depth are datable against the firn cores. On the profile
051202, going against the flow direction on an ice-flow line
(Figure 1b), four IRHs are tracked within this depth range.
Their distribution of depth is rather smooth (Figure 2).

Simultaneously with GPR data acquisition kinematic GPS
data were collected at a sampling interval of one second, us-
ing a Trimble 4000SSi receiver and a choke-ring antenna.
The roving station was mounted on the snow vehicle, and
the reference station was located on Weigel Nunatak, 10 km
south of Kottas Camp (Figure 1). Processing of GPS data
yields information about the surface elevation along the GPR
profiles as well as GPR tracks.

Firn Cores

At four selected points (Figure 1b, Table 1) of the GPR
profiles shallow firn cores were drilled, between 12.0–12.7 m
deep. Firn-core analyses included density measurements
using γ-attenuation profiling (GAP) in intervals of 2 mm
and dielectric profiling (DEP) in 5 mm intervals [Wilhelms,
1996, 2005]. The latter yields information about the dielec-
tric permittivity and the electrical conductivity of the firn.
Moreover, mass spectrometry was used to derive aδ18O
profile for each core. Sample size was 25–30 mm for this

Table 1. Locations of firn cores

Firn core Longitude Latitude Elevationa

FB0501 -9.6786 -74.1438 1447 m
FB0502 -9.1556 -74.1885 1569 m
FB0503 -9.3977 -74.1555 1488 m
FB0504 -9.8585 -74.0541 1420 m

aWGS84
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Figure 3. Measured parameters for FB0501: a) dielec-
tric permittivity, b) electrical conductivity, c) density(from
GAP), d)δ18O profile.

method. Firn-core parameters are depicted exemplarily for
firn core FB0501 in Figure 3.

Cumulative snow mass was obtained by integrating den-
sity profiles from GAP. Radar wave speed was calculated
from the profiles of dielectric permittivity to convert two-
way travel time (TWT) of tracked horizons to depth and to
cumulative mass, respectively, followingEisen et al.[2002]
andAnscḧutz et al.[accepted to Ann. Glaciol., 2006]. For
establishing such models for TWT–depth and cumulative
mass–depth the mean profiles of density and dielectric per-
mittivity of all four firn cores were used, since there is no
further information about lateral variations of those variables
between the drilling sites. However, profiles of density and
dielectric permittivity of the four firn cores show only small
deviations, where fluctuations within one specific core are
mostly higher than differences between the firn cores at the
same depth (not shown).

Determination of Accumulation Rates

The δ18O profile of FB0501 (Figure 3d) has been used
to establish a depth-age scale as a dating reference for the
tracked IRHs on profile 051202 and on profile 051203 (cross
profile, see Figure 1b). Dating was done by annual layer
counting, where theδ18O peaks indicate summer maxima
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[e.g.McMorrow et al., 2004]. Using this scale, the respec-
tive IRHs were dated by comparing their depth values at the
coring location with the age given by the depth-age scale.
Accumulation rates along GPR profiles are calculated by di-
viding their cumulative mass difference by their age differ-
ence. Furthermore the density profiles of the firn cores were
used to calculate annual accumulation rates from the snow
mass of the yearly layers. Hence, annually resolved accu-
mulation rates were obtained from the depth-age scales of
the four dated firn cores.

In addition to the accumulation rates from the firn cores,
we focus in the following discussion on the accumulation
distribution obtained from two IRHs on profile 051202 (Fig-
ure 2, the solid lines); due to ambiguities in tracing the sev-
eral IRHs throughout the GPR profiles and dating uncertain-
ties other IRHs are left out. For comparison we also present
accumulation data from the cross profile 051203 (see Fig-
ure 1b). The two profiles intersect at the drilling location
of FB0501. The estimated time of origin of the two IRHs
represented by the solid lines in Figure 2 is 1980±1 year
and 1990±1 year, respectively. The isochronous property of
the IRHs on profile 051202 was tested by comparing the age
of the two IRHs at the positions of FB0501, FB0502, and
FB0503, giving differences of up to±1 year, which is in the
range of the dating uncertainties. We thus regard the IRHs
as isochrones.

Calculation of errors follows the discussion ofAnscḧutz
et al. [accepted to Ann. Glaciol., 2006]. Deviation of the
density profiles from the different firn cores are up to 7 %,
including measurement errors from GAP (up to 10 kg m−3

[Wilhelms, 2005]). This value represents the errors intro-
duced by local density fluctuations with respect to the mean
density profile used for the calculation of cumulative mass–
depth. Errors from DEP measurements are up to 1 % [Wil-
helms, 1996] and conversion from TWT to depth yields like-
wise errors of 1 % [Eisen et al., 2002]. Conversion of the
tracked IRHs to cumulative mass results in errors of∼1 %
[Anscḧutz et al., accepted to Ann. Glaciol., 2006]. The dat-
ing uncertainty for the IRHs used here is±1 year and the
uncertainty in tracking the IRHs is up to±2 ns, equivalent
to about±0.2 m depth uncertainty. The latter introduces an
additional uncertainty of another±1 year with respect to the
depth–age scale of FB0501. Using the values given above,
measurement and model errors result in a mean error of 10–
15 % for the accumulation data presented here, similar to
those reported byAnscḧutz et al.[accepted to Ann. Glaciol.,
2006] for a different area.

Results and Discussion

Accumulation Rates and Variability

GPR-based accumulation rates are given in Table 2 for the
profiles 051202 and 051203. A mean glacier-flow velocity
of 50 m a−1 was taken into account for the calculation of
the GPR-derived accumulation rates on the profile 051202.
The accumulation rates presented here are spatially averaged

Table 2. Accumulation values obtained from GPR

Profile Time period Mean acc.aStd.b Min.a Max.a

051202 1980–1990 209 7 171 226
051202 1990–2005 176 5 145 185
051202 1980–2005 191 5 159 199
051203 1980–1990 192 11 135 232
051203 1990–2005 170 12 139 234
051203 1980–2005 170 9 149 220

a in kg m−2 a−1

bone-fold standard deviation in % of the mean

over 5 m.

The accumulation pattern seems quite homogeneous in
this area as can be seen from Figure 4d. The spatial vari-
ability of the accumulation values can be expressed by the
one-fold standard deviation, which amounts to 5–7 % of the
respective mean value for profile 051202 (Table 2). Along
this profile spatial differences in per cent of the respective
mean value for the time periods 1980–1990 and 1990–2005
vary from -18 % to +8 % (Figure 4d). The cross profile
051203 reveals accumulation values that are of the same
range compared with those on profile 051202, but with a
slightly higher spatial variability, as expressed by a standard
deviation of some 10 % (Table 2). Here, the spatial differ-
ences for the time periods 1980–1990 and 1990–2005 show
values between -30 to +38 % of the respective mean (Fig-
ure 5d).

The accumulation pattern on the ice-flow line at Kottas-
berge is quite smooth (Figure 4b), except for the undulations
between about 17–22 km. These features can be explained
by the surface-elevation profile (Figure 4a) which shows a
steeper increase along this section of the profile. Since the
discussed IRHs are very shallow (Figure 2) in relation to the
ice thickness we propose that the undulations in accumula-
tion observed here arise mainly from the surface undulations
and the interaction of surface topography and wind influence
[King et al., 2004]. Moreover, the bedrock topography is too
smooth to generate the small-scale accumulation distribution
observed in this study [Steinhage et al., 2001].

Suggesting wind influence as the main reason for the ac-
cumulation pattern implies that accumulation maxima should
be located within local surface-elevation troughs and on the
windward sides of surface undulations, whereas accumula-
tion minima are to be expected on hills and on the leeward
sides [among othersBlack and Budd, 1964; Pettŕe et al.,
1986; Frezzotti et al., 2005; Vaughan et al., 2004; Eisen
et al., 2005]. Interestingly, accumulation pattern and sur-
face topography show more such coincidence for profile
051203, going from South to North (Figure 5), than for pro-
file 051202, going from West to East (Figure 4). Yet local-
scale wind field is unknown, and the nearby Kottasberge
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Figure 4. a) Surface elevation (WGS84) of profile 051202
at Kottasberge, going from West to East, b) accumula-
tion: 1980-1990 (dashed line), 1980–2005 (dotted line), and
1990–2005 (solid line), c) surface slope, d) spatial differ-
ences in per cent of the respective mean for the time peri-
ods 1990–2005 (solid line) and 1980–1990 (dashed line), e)
temporal differences between 1980–1990 and 1990–2005,
calculated from equation (1). The locations of firn cores
FB0501, FB0502, and FB0503 are given in a). FB0501
marks the intersection with profile 051203 (Figure 5).
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Figure 5. a) Surface elevation (WGS84) on profile 051203
at Kottasberge, going from South to North and crossing pro-
file 051202 perpendicularly, b) accumulation: 1980-1990
(dashed line), 1980-2005 (dotted line), and 1990-2005 (solid
line), c) surface slope, d) spatial differences in per cent of
the respective mean for the time periods 1990–2005 (solid
line) and 1980–1990 (dashed line), e) temporal differences
between 1980–1990 and 1990–2005, calculated from equa-
tion (1). The location of firn core FB0501 is given in a).
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Table 3. Accumulation values obtained from firn cores

Firn core Time period Mean acc.aStd.b Min.a Max.a

FB0501 1976–2003 221 28 108 328
FB0502 1970–1999 227 32 98 370
FB0503 1970–2002 199 28 96 359
FB0504 1984–1999 195 33 112 305

a in kg m−2 a−1

bone-fold standard deviation in % of the mean

are capable to modify the regional wind direction.Van den
Broeke and van Lipzig[2004] report predominantly easterly
winds in this area of Antarctica, but the horizontal resolu-
tion of their model is about 55 km, which does not cap-
ture small-scale effects. Dominance of easterly winds agrees
only partly with the distribution of accumulation and surface
features along profile 051202. Yet assuming katabatic wind
flow down from the nearby plateau region south of Kottas-
berge, the accumulation pattern of profile 051203 becomes
explicable by wind influence. Another reason for the de-
viation from the general pattern on profile 051202 proba-
bly arises from consideration of glacier-flow velocity: we
used a mean surface-flow speed of 50 m a−1 to correct our
GPR layer depths and derive accumulation rates on profile
051202. However, this value is only determined by GPS ob-
servations of one reference point on the ice-flow line during
the expedition and might vary locally. We therefore suppose
that interaction of local wind pattern, glacier flow, and sur-
face topography significantly influences the local-scale ac-
cumulation pattern.

Mean accumulation values of the four firn cores as well as
minima and maxima are given in Table 3. Note that the firn
cores do not reach up to the year 2005 (the age of the surface
at the time of data collection) due to minor core quality in the
upper 1–2 m. Therefore a mean accumulation rate was used
to estimate the age of the first datable layer, obtained from
two nearby snow pits. The interannual variability derived
from the dated firn cores (Figure 6a,b) is one order of magni-
tude higher than the spatial variability along the connecting
GPR profile (Table 3), emphasizing that accumulation rates
exhibit large fluctuations on annual scales.

In order to derive information about temporal variability
on scales relevant to the duration of current satellite mis-
sions, we apply a 5-year mean and a 10-year mean on the
accumulation series obtained from the firn cores. Note that
the time scales are too short to sufficiently apply arunning
mean of 5 or 10 years to our firn-core derived accumulation
series. When considering 5-year or 10-year means (Figure
6d-f), a fairly stable accumulation pattern is revealed, except
for FB0503, which shows a slight decrease over the last two
decades.
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Figure 6. Year-to-year accumulation of the firn cores
from this study (a,b) and of FB9802 [Oerter et al., 1999].
a) Solid black curve/black triangles: FB0501, solid grey
curve/grey triangles: FB0502, solid black line: mean of
FB0501, dashed grey line: mean of FB0502 b) Solid black
curve/black triangles: FB0503, solid grey curve/grey trian-
gles: FB0504, solid black line: mean of FB0503, dashed
grey line: mean of FB0504. c) FB9802: annual accumula-
tion rates (dotted curve), 5-year running mean (dark grey),
25-year running mean (black). d)–f) 5-year (solid lines) and
10-year means (dashed lines) of d) FB0501, e) FB0502, f)
FB0503. Note that FB0504 has been left out of calculating
means over several years due to its short time scale in com-
parison to the three other cores.
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Comparison with Other Studies Nearby

Oerter et al.[1999] report accumulation values at Kottas
Camp of 129 kg m−2 a−1 with a one-fold standard devi-
ation of 29 % obtained from a firn core (FB9802) drilled
in December 1997, covering the time period 1881–1997.
We apply a 5-year running mean on the accumulation se-
ries of FB9802, in order to gather information about tem-
poral variations averaged over the projected mission dura-
tion of GRACE. Moreover, to account for the time scales
covered by our radar data, we also apply a 25-year running
mean to enable a better comparison of temporal variations
between radar and firn-core data. The 5-year running mean
and 25-year running mean of FB9802 show standard devia-
tions of 14 % and 6 % of the core mean, respectively. Hence,
firn core FB9802 reveals likewise a rather smooth accumu-
lation pattern on longer time scales and a high annual vari-
ability (Figure 6c). Together with our firn cores (discussed
above) this indicates that the temporal accumulation pattern
on scales of 5–25 years is fairly stable, most probably be-
cause post-deposition noise and interannual fluctuations are
averaged out. Moreover, we compare the standard devia-
tion for the 25-year running mean of FB9802 with the spatial
variability of our GPR derived accumulation rates, and find
that temporal variability on the scale of some decades and
spatial variability on the scale of some 20 km are very simi-
lar (6 % and 5 %, respectively). Contrarily, studies from the
polar plateau show that spatial variability on the kilometer-
scale is one order of magnitude higher than temporal vari-
ability on multidecadal scales there [Frezzotti et al., 2005].

Considering the area-wide mean values (Table 2), our
study reveals somewhat higher accumulation rates than those
reported byOerter et al.[1999]. The same holds for com-
parison of FB9802 with our firn-core data (Table 3). In or-
der to take into account the different time periods covered by
FB9802 and our firn cores, we calculate the mean accumu-
lation of FB9802 from 1970–1997, i.e., the time period that
overlaps with our firn cores, and derive 126 kg m−2 a−1.
Hence, the time periods covered do not seem to be respon-
sible for the different accumulation rates of FB9802 and our
study. Yet the spatial representativity of firn cores is gen-
erally rather small [e.g.Richardson-N̈aslund, 2004;Spikes
et al., 2004;Rotschky et al., 2004] and FB9802 is separated
by some 7–18 km from our respective firn-core locations and
by about 3 km from the start of profile 051203. When com-
paring only accumulation rates from our investigation area
that are in the immediate proximity of Kottas Camp, i.e., the
start of profile 051203 (Figure 1b), we derive accumulation
rates around 150 kg m−2 a−1 (Figure 5b), which are more in
accordance with the value of 129 kg m−2 a−1 reported by
Oerter et al.[1999].

Rotschky et al.[2006] present accumulation data obtained
from stake readings along the transect from Neumayer sta-
tion (70◦ 39’ S, 08◦ 15’ W) to Kottas Camp and farther on to
the mountain range of Kottasberge. Data obtained at stakes
within 20–30 km of our radar profiles range from 150–250
kg m−2 a−1 (Figure 7a), however, with a high spatial vari-
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Figure 7. a) Acculumation values from stake-line readings
in the vicinity of Kottas Camp: black solid line: 1998, black
dashed line: 1999, grey solid line: 2000, grey dashed line:
2001. b) Temporal differences calculated as in equation (1).
Black solid line: 1998–1999, grey solid line: 1999–2000,
black dashed line: 2000-2001. Negative values on the ab-
scissa correspond to stakes located north of Kottas Camp,
positive values are stakes to the south.

ability. The transect up to Kottas Camp and the spatial vari-
ability of the accumulation data, complemented by GPR pro-
filing, is further discussed byRichardson-N̈aslund [2004]
with similar results. The stake-line data confirm the observa-
tion that in the immediate vicinity of Kottas Camp accumula-
tion values are slightly lower which is in accordance with our
findings, as discussed above. Moreover,Rotschky et al.[sub-
mitted to J. Glaciol., 2006] obtain an accumulation map of
western DML by interpolation of all available firn-core data,
reporting values of about 180 kg m−2 a−1 for our investiga-
tion area. Hence, our study provides values in the range of
former observations, but contributes small-scale variability
of accumulation rates on spatial and temporal scales to the
data published so far.

Temporal Variation of Spatial Characteristics

Accumulation series from firn cores, as those discussed
above, yield only information about temporal behaviour at
the drilling location. Dated IRHs enable the determination
of temporal variation of spatial characteristics along GPR
profiles. Considering the temporal difference (td) of GPR-
based accumulation rates on profile 051202 between the time
intervals 1990–2005 and 1980–1990 results in a mean value
of -16 % as calculated from

td =
a(t1) − a(t2)

a(t2)
· 100% (1)

wherea denotes accumulation and theti the respective time
periods, in this caset1 = 1990–2005 andt2 = 1980–1990.
Yet, this value is not constant along the profile 051202. In
fact, consideringtd pointwise along 051202 reveals that
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temporal variations range from -1.3% up to -23% (Figure
4d). Comparing spatial and temporal differences along this
profile, the variations seem to be linked, i.e., the largest tem-
poral differences tend to occur at the places with largest rel-
ative spatial differences. Analysis oftd on the cross-flow
profile 051203 results in similar findings: the temporal dif-
ferences are likewise varying locally. Spatio-temporal char-
acteristics of the stake-line data within 20–30 km around
Kottas Camp (Figure 7) confirm this observation, as there
is, again, a quite similar behaviour of spatial and temporal
accumulation pattern visible, for instance between -15 and
-10 km and around 20 km. In total, it seems that the spatial
characteristics of accumulation are not constant in the con-
sidered region and time scales. This observation leads us to
the conclusion that it is important to consider the temporal
differences pointwise along profiles and not only from the
mean values. Small-scale features seem to affect the tempo-
ral pattern as well as the spatial distribution.

Accumulation rates have been obtained likewise by com-
bined analysis of GPR and firn-core studies on Potsdam
Glacier, a near-coastal site in central Dronning Maud Land
in 2003/2004. The spatial variability is discussed in detail
by Anscḧutz et al.[accepted to Ann. Glaciol., 2006], report-
ing standard deviations of some 50 % which is one order
of magnitude higher than the standard deviations along the
GPR profiles at Kottasberge. On Potsdam Glacier, spatial
differences from the respective mean value vary from -87
to +128 % for the time period 1970–1980 and from -79 to
+130 % for the time period 1980–2004 (Figure 8b). The
temporal variations of a few per cent as reported byAnscḧutz
et al. [accepted to Ann. Glaciol., 2006], are obtained from
the area-wide mean values of the time periods 1970–1980
and 1980–2004, yet analysis of temporal variations along the
profile on the main glacier-flow line yields a varying pattern
(Figure 8c) as at Kottasberge. The mean temporal difference
of accumulation rates on Potsdam Glacier for the observed
time periodst1 and t2 amounts to -3 % with values vary-
ing from -53 % up to as much as 145 %, as calculated from
Equation (1) witht1 = 1980–2004 andt2 = 1970–1980.
Again, the largest temporal variations occur near maxima of
spatial variability, indicating that temporal and spatialvaria-
tions are not independent on these scales.

Anscḧutz et al.[2006] discuss the influence of the sur-
face topography on the spatial accumulation pattern on Pots-
dam Glacier and find dune-like features of high periodicity,
comparable to the megadunes observed on the polar plateau
[Frezzotti et al., 2002]. Upstream migration of these dunes
at a rate of some 50 m a−1 [Anscḧutz et al., 2006] as well
as locally varying glacier-flow speed might also influence
the temporal accumulation variations observed on Potsdam
Glacier.

Comparing the spatial and the temporal variations on
Potsdam Glacier (Figure 8b,c) and at Kottasberge (Figures 4d,e
and 5d,e) with the respective surface slopes (Figures 8a, 4c, 5c),
we suggest that in areas of strong interaction between sur-
face elevation, slope, and accumulation, temporally varying
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Figure 8. a) Slope on the main glacier-flow line of Pots-
dam Glacier. b) Spatial variation of accumulation on Pots-
dam Glacier, expressed as differences to the respective mean
value, given in per cent of the mean: 1980-2004 (solid line)
and 1970-1980 (dashed line). c) Temporal variations be-
tween the time periods 1970-1980 and 1980-2004 as calcu-
lated from equation (1).

mean accumulation rates lead to changing spatial accumula-
tion patterns. The absolute value of the temporal differences
between the mean accumulation rates from 1980–1990 and
from 1990–2005 at Kottasberge is somewhat higher than on
Potsdam Glacier between 1970–1980 and 1980–2004 (16 %
compared to 3 %). However, as the two studies do not cover
exactly the same time period caution has to be used with this
comparison. The point-to-point variations of the temporal
accumulation pattern at Kottasberge (Figures 4e and 5e) ex-
hibit less pronounced differences compared to those on Pots-
dam Glacier (Figure 8c).

In order to analyze a possible correlation between spatial
and temporal variations, we calculate the correlation coeffi-
cients R for spatial differences in per cent of the respective
mean and temporal differencestd along the GPR profiles at
Kottasberge and on Potsdam Glacier. We obtain values of
0.24 (t1 = 1990–2005) and 0.69 (t2 = 1980–1990) for pro-
file 051202 and correlation coefficients of 0.66 (t1 = 1990–
2005) and 0.55 (t2 = 1980–1990) for profile 051203 at Kot-
tasberge. The profile on the glacier-flow line of Potsdam
Glacier reveals R = 0.48 fort1 = 1980–2004 and R = 0.28
for t2 = 1970–1980. This indicates that spatial and tempo-
ral variations are at least weakly correlated in our investi-
gation areas. However, inaccuracies of glacier-flow veloc-
ity as well as dating uncertainties prevent a more detailed
investigation. We thus suggest that influences of surface-
topography, wind field, and glacier flow are responsible for
the relation between spatial and temporal accumulation pat-
tern. Near-surface winds tend to be complicated in nunatak-
dominated areas [Jonsson, 1995] as would be seen on Pots-
dam Glacier. Since mostly rather the spatial variability isdis-
cussed when considering accumulation rates obtained from
GPR [e.g.Richardson-N̈aslund, 2004;Rotschky et al., 2004;
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Spikes et al., 2004] further research is necessary to reveal the
correlations between spatial and temporal variability.

Conclusions

Small-scale spatial variations of the recent accumulation
rate as well as decadal-scale and interannual temporal varia-
tions on Ritscherflya in western Dronning Maud Land have
been discussed, obtained from combined analysis of GPR
and firn-core data. Our radar data indicate that spatial vari-
ability in this investigation area is rather low compared with
other coastal sites, yet the year-to-year accumulation val-
ues obtained from firn cores reveal a large temporal vari-
ability on annual scales. Mean accumulation rates at Kot-
tasberge for the time period 1980–2005 amount to 170–
190 kg m−2 a−1 with standard deviations between 5–12 %.
We find that spatial and temporal variations are linked, in-
dicating that complex wind regimes, glacier flow, and sur-
face topography may be responsible for the discussed fea-
tures. However, further analysis using accurate knowledge
of glacier-flow velocity is necessary. In principle, the depth
distribution of GPR derived internal layers of isochronic ori-
gin allows to derive estimates of relative accumulation vari-
ations along the profiles, since closely spaced layers are as-
sociated with less accumulation in relation to more widely
spaced layers [Richardson et al., 1997;Anscḧutz et al., ac-
cepted to Ann. Glaciol., 2006]. Hence, linking temporal and
spatial variations implies that in future studies relativetem-
poral differences can likewise be estimated from spatial vari-
ability of the depth of isochronal layers, even if a depth-age
scale is not available.

Other studies report values between about 130–200
kg m−2 a−1 in the vicinity of our investigation area at Kot-
tasberge. Our results confirm the values from previous stud-
ies and provide additional detailed information about small-
scale spatial and temporal variability.

Temporal variations are important for validating satellite
data like the time-variable gravity obtained from the GRACE
mission. Ice-mass changes derived from satellite data as-
sume a temporally constant accumulation rate [Velicogna
and Wahr, 2002]. The decadal-scale accumulation vari-
ability obtained from four dated firn cores and one older
firn core [Oerter et al., 1999] indicates a fairly stable ac-
cumulation distribution which would justify the assumption
of a temporally constant accumulation rate. Yet our study
revealed temporal fluctuations of GPR-based accumulation
which coincide widely with spatial variations. Considering
only the mean accumulation values of the respective time
periods does not reveal the local temporal differences which
are especially pronounced on Potsdam Glacier. Since gravity
changes obtained from satellite missions are averaged over
large areas, temporal differences on spatial scales might lead
to biases in the derived ice-mass changes. As discussed by
Eisen et al.[2005], knowledge of the spatio-temporal be-
haviour of accumulation rates is also important for the cor-
rect interpretation of ice-core data, especially in areas with

significant flow speed, since ice cores drilled there contain
upstream effects. Thus, our study provides valuable insight
in local-scale characteristics of temporal and spatial accu-
mulation pattern, serving as ground-truthing for satellite data
and as a base for interpretation of ice-core records from this
and comparable areas.
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Chapter 8

Summary and outlook

GPR profiling and shallow firn cores have been utilized to determine the recent accumulation

rate in two investigation areas of Dronning Maud Land, East Antarctica. The method pro-

vides useful new insights in small-scale characteristics of accumulation features in the grounded

coastal parts of DML which contribute significantly to Antarctica’s mass balance but are not

well captured by models so far.

The first investigation area, Potsdam Glacier in central DML, is characterized by a very high

spatial variability of accumulation rates with a one-fold standard deviation of some 50 % around

mean values of 140 kg m−2 a−1. Distribution of accumulation maxima and minima on an along-

flow GPR profile likely results from windborne redistribution of blowing snow. Moreover,

accumulation shows regular undulations that are related tothose in surface slope. Analysis

of these features by means of auto- and cross-covariance functions reveals a high periodicity,

leading to the conclusion that the observed undulations aresimilar to the megadunes known

from the polar plateau [Frezzotti et al., 2002a], despite the lack of the lateral extent and the

extreme morphology of the latter [Frezzotti et al., 2002b] in this case. The presence of dunes at

this coastal site not only provides a likely explanation forthe undulations of the accumulation

pattern, but it also complicates the picture of accumulation features with respect to the validation

of satellite data. Spatial variations like those observed on Potsdam Glacier are likely sensed by

GRACE, thus influencing the satellite-derived estimate of ice-mass changes.

Mean accumulation values in this area are less than those derived from large-scale compi-

lations or regional atmospheric models, underlining the statement that those compilations tend

to overestimate surface-mass balance in coastal regions [van de Berg et al., 2006]. The pres-

ence of a blue-ice area nearby the study area influences the accumulation pattern. This blue-ice

area is not accounted for in the large-scale compilations [Vaughan et al., 1999;Giovinetto and

Zwally, 2000], emphasizing the impacts of this study for accurate knowledge of local and re-

gional accumulation pattern in this part of Antarctica. Temporal variations of accumulation

rates on Potsdam Glacier are only a few per cent on decadal scales, when derived from mean



accumulation values obtained from dated GPR horizons. Yet interannual variability is high, as

concluded from two dated firn cores.

The second study area, Kottasberge in western DML, exhibitsmuch less spatial variability

of accumulation rates with one-fold standard deviations of5–10 % and mean values of some

190 kg m−2 a−1. The accumulation pattern is likewise explicable by wind influence and surface

topography, although it implies a deviation from the prevalent wind direction for this area de-

rived from models [van den Broeke and van Lipzig, 2004]. Temporal variations obtained from

area-wide mean values are larger than on Potsdam Glacier. Pointwise determination of tempo-

ral differences on decadal scales along the GPR profiles reveals that temporal variations are not

constant but vary from point to point. The same holds for the pointwise temporal variations ob-

tained from GPR horizons on Potsdam Glacier. Comparison of temporal and spatial variations

in both study areas shows a weak correlation, indicating that temporal variability on decadal

scales and spatial variability on the scale of some hundredsof meters to tens of kilometers

might be linked. This is likely attributed to complex interactions between locally varying wind

pattern and precipitation regime with surface topography and glacier-flow. Yet wind pattern and

glacier-flow velocity are too poorly resolved to derive moreaccurate conclusions here, and the

dating uncertainty prevents a more detailed analysis, leaving the results presented in this study

as a base for future work. Nevertheless, the possibility of linked temporal and spatial variabil-

ity should be taken into account for the validation of satellite data. As discussed byVelicogna

and Wahr[2002] andWahr et al.[2000], for the determination of ice-mass changes from com-

bined GRACE and GLAS data a temporally constant accumulation rate is assumed. Therefore

considerable spatial variability of temporal differencesas revealed by this study might likely

lead to biases in the derived ice-mass changes. Thus, the results presented here serve as valu-

able ground-truthing for satellite-based approaches to determine Antarctica’s mass balance in

coastal areas.

Future work should aim to further increase the amount of ground-based accumulation data,

especially in regions adjacent to Potsdam Glacier, where only sparse data have been available

prior to this study. The presence of dune-like features on Potsdam Glacier should be analyzed

and evaluated in more detail, aiming for determination of their lateral extent and possible mi-

gration. Extending the along-flow GPR profiles farther downglacier would likewise be very

interesting, since the shape of the internal layers indicates a nearby ablation zone which was not

reached within the radar profiles of this study. The shape of layers in adjacent downglacier pro-

files will give further information about accumulation and ablation features and possibly also

insight in interaction between ice-advection and accumulation/ablation pattern. In this context,

glacier-flow velocity should be determined more accuratelyand taken into account for determi-

nation of pointwise temporal differences in accumulation rates. For the same reason the dating

uncertainty needs to be improved. A closely spaced grid of GPR profiles would be useful for



deriving a three dimensional distribution of IRHs and thus accumulation features. Together

with the airborne radio-echo sounding profile along the glacier-flow line (D. Steinhage, per-

sonal communication, 2005) such a data set would yield valuable information, including not

only accumulation distribution but also insight in ice advection.

In the investigation area of Kottasberge glacier-flow velocity should be determined from

satellite-based analyses like interferometric SAR technique, since the value used in this study

relies only on GPS measurements of longitude and latitude ofa reference point at the begin-

ning and the end of the expedition (see Paper III). Generally, the vertical resolution even of the

500 MHz antenna in noisy environment is too low to resolve enough IRHs within the depth sec-

tion covered by the firn cores, especially when depth and spacing of layers are strongly varying

as on Potsdam Glacier. Therefore, either an antenna with a higher center frequency should be

used (preferably 1 GHz) or deeper firn cores should be drilled, at least down to 30–40 m, but

preferably about 100 m. Since a higher antenna frequency results in a shallower penetration

depth and requires a smaller trace increment in order to obtain continuous reflections, the sec-

ond option, i.e., deeper firn cores, would be favorable. Thus, more IRHs can be tracked and

possibly dated, improving the analysis of spatial and temporal variability. In order to avoid

ambiguities, only IRHs that are spaced more than the wavelength of the radar signal in firn or

ice should be considered for accumulation calculations. For the validation of satellite data it is

important to cover large areas on the surface of the Antarctic ice-sheet.

In summary, this study contributes accumulation data of high resolution in orographically

complicated coastal regions of DML and provides valuable insight in the temporal and spatial

pattern of recent accumulation rates, serving as validation of ice-mass changes obtained from

satellite data.
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