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Pseudostriatella oceanica gen et. sp. nov. is a marine benthic diatom that resembles Striatella unipunctata in gross
morphology, attachment to the substratum by a mucilaginous stalk and possession of septate girdle bands. In light
microscopy, P. oceanica can be distinguished from S. unipunctata by plastid shape, absence of truncation of the corners
of the frustule, indiscernible striation and absence of polar rimoportulae. With scanning electron microscopy, P.

oceanica can be distinguished by a prominent but unthickened longitudinal hyaline area, pegged areolae, multiple
marginal rimoportulae and perforated septum. The hyaline area differs from the sterna of most pennate diatoms in
being porous toward its expanded ends; in this respect, it resembles the elongate annuli of some centric diatoms, such as
Attheya and Odontella. 18S rDNA phylogeny places P. oceanica among the pennate diatoms and supports a close
relationship between P. oceanica and S. unipunctata, but the genetic distance between them, coupled with the
morphological differences, justifies separation at genus level. However, the affinity of the P. oceanica – S. unipunctata

clade remains unresolved both in molecular and in morphological study. Both genera are only distantly related to
Hyalosira and Grammatophora, despite similarities in frustule structure and growth habit, arguing against their inclusion
in the same family. The auxospore is covered with series of transverse and longitudinal bands, but the structure and
arrangement of these bands appear to be more similar to the properizonia of some centric diatoms than to the classic
type of perizonium seen in other pennate diatoms; a few scales are also present. The differences between properizonia
and perizonia are discussed.

KEY WORDS: 18S rDNA, Araphid diatom, Auxospore, Evolution, Fine structure, Morphology, Perizonium, Phylogeny,
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INTRODUCTION

Benthic diatoms are ubiquitous in shallow coastal environ-

ments and are one of the most taxonomically diverse

groups of organisms in estuarine ecosystems (Sullivan &

Currin 2000). Because of their high primary production

rates, benthic diatoms play an important role in the

functioning of benthic trophic webs in intertidal mudflats

and shallow-water ecosystems of temperate to tropical

regions (Cahoon 1999; Underwood & Kromkamp 1999).

Araphid pennate diatoms (diatoms with a sternum but

lacking a raphe system; see Terminology) are important

components of these coastal assemblages, particularly

among communities attached to macrophytes and macro-

algae, animals, rocks and sand grains (Round et al. 1990).

Taxonomically, araphid diatoms have long been neglected,

perhaps because of their morphological simplicity; accord-

ing to Round et al. (1990), ‘in many ways the classification

of the araphid group is the most difficult because unlike the

centric series their valve structure is rather simple, and

unlike the raphid series, the plastids and their arrangements

have few distinguishing features’. Thus, in spite of their

high abundance, the defining features of the main groups of

araphid diatoms are not fully established.

To obtain a more complete picture of the natural history

of araphid diatoms, we have been collecting samples

worldwide from coastal regions. Recently we encountered

a new diatom that superficially resembled Striatella

unipunctata (Lyngbye) Agardh. Scanning electron micros-

copy (SEM) revealed, however, that this diatom differed

from S. unipunctata in several features that are generally

used as taxonomic characters among araphid diatoms,

including characteristics of the sternum, striae, areolae,

apical pore field, rimoportula and septum. Given these

observations, together with information on the plastids and

18S rDNA sequences, we conclude that the diatom should

be described as a new genus, Pseudostriatella.

We have also been able to make detailed observations on

the fine structure of auxospores produced spontaneously in

monoclonal cultures. With the advent of electron micros-

copy, particularly SEM, information about auxospore

structure has greatly increased (e.g. Crawford 1974; Mann

1982b; von Stosch 1982; Cohn et al. 1989; Kaczmarska et

al. 2000, 2001; Kobayashi et al. 2001; Schmid & Crawford

2001; Nagumo 2003; Sato et al. 2004, 2008a, b; Amato et al.

2005; Tiffany 2005; Toyoda et al. 2005, 2006; Trobajo et al.* Corresponding author (shinya.sato@awi.de).
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2006; Poulı́čková & Mann 2006; Poulı́čková et al. 2007).

However, although it has become clear that some aspects of

the fine structure of auxospores have phylogenetic signif-

icance (e.g. Medlin & Kazcmarska 2004), there is still

insufficient information to reveal how the structure and

development of auxospores have evolved in the major

diatom groups, especially among the lineages of araphid

pennate diatoms. Indeed, the only detailed information

available concerning araphid pennates is the account of

Rhabdonema Kützing by von Stosch (1962, 1982) and the

SEM studies of Gephyria media Arnott (Sato et al. 2004),

Grammatophora marina (Lyngbye) Kützing (Sato et al.

2008a) and Tabularia parva (Kützing) Williams & Round

(Sato et al. 2008b). In the present study, we compare the

auxospore fine structure in these diatoms with that of

Pseudostriatella oceanica and discuss the evolutionary

relationships of Pseudostriatella.

MATERIAL AND METHODS

Collections and cultures

Both natural specimens and clonal cultures were examined

in this study. Vegetative cells of the P. oceanica examined

here were collected by S. Matsumoto at Yumigahama

Beach, Minamiizu, Shizuoka Prefecture, Japan, on 20 May

2005, attached to Cladophora sp., and by B.K. Petkus at

Horseneck State Beach, Westport, Massachusetts, USA, on

August 2006, from bottom sand. For morphological

comparison, S. unipunctata, the generitype of the genus

Striatella, was collected by L.K. Medlin from Banyuls sur

Mer, France, on 13 February 2005. Single cells were

isolated from the American and French samples to obtain

clonal cultures. Cultures were maintained in IMR medium

(Eppley et al. 1967) at 15uC under cool-white fluorescent

light on a 14 : 10-h (L : D) photoperiod at a photon flux

density of 30–40 mmol photons m22 s21. A coverslip was

placed on the bottom of the culture vessel to be colonized

with cells producing auxospores. Both strains examined in

this study, P. oceanica s0384 and S. unipunctata s0208, are

currently available on request to the first author but may

not survive long-term in culture (cf. Chepurnov et al. 2004).

Microscopy

An Axioplan (Zeiss) light microscope (LM) with bright

field, differential interference contrast (DIC) or phase

contrast optics was used to observe living cells and cleaned

frustules. To photograph live specimens attached to the

bottom of the culture vessel, a Zeiss Axiovert 35 inverted

microscope was used, equipped with an AxioCam MRc

digital camera. To remove organic material from the

frustule, samples were treated as follows (modified from

Nagumo & Kobayashi 1990): (1) the sample was centrifuged

to make a pellet and the supernatant discarded; (2) the pellet

was resuspended in distilled water, and steps 1 and 2 were

then repeated several times to remove salts; (3) to remove

organic matter, the pellet was suspended (using a vortex

mixer) in an equal volume of Drano Power-Gel (Johnson

Wax), a strong domestic drain cleaner; (4) the suspension

was left at room temperature for c. 30 min; and (5) steps 1

and 2 were repeated several times to remove decomposition

products. Cleaned frustules were then mounted in Mount-

media (refractive index n20/D 5 1.50; Wako).

For SEM examination, cleaned material was air-dried

onto coverslips. To observe auxospores, coverslips to which

the auxospore mother cells had already become attached

were immersed in 10% glutaraldehyde for 1 h at room

temperature, then washed with distilled water, air-dried and

fixed to SEM stubs with carbon tape. For observations of

cells still attached to the substratum by mucilaginous stalks,

host plants were fixed with 10% glutaraldehyde for 2 h at

4uC, rinsed with distilled water several times to remove the

glutaraldehyde, dehydrated using increasing concentrations

of t-butyl alcohol and freeze-dried using a JFD-310

instrument (JEOL). Freeze-dried specimens were attached

to the stub directly with carbon tape. All SEM specimens

were coated with gold using an SC 500 sputter coater

(Emscope). A QUANTA 200F (FEI) was used for SEM

observation at an accelerating voltage of 3–10 kV and c.

10 mm working distance. All the images included in this

paper are from cultured strains, except for those from

freeze-dried material (Figs 9–13). Captured images were

adjusted with Adobe Photoshop.

DNA methods

Samples of c. 500 ml of culture were filtered through 3-mm-

pore-diameter membrane filters (Millipore). Filters were

immersed in 500 ml DNA extraction buffer containing 2%

(w/v) CTAB, 1.4 M NaCl, 20 mM EDTA, 100 mM Tris-

HCl, pH 8, 0.2% (w/v) PVP, 0.01% (w/v) SDS and 0.2% b-

mercaptoethanol. Immersed filters were incubated at 65uC
for 5 min, vortexed for a few seconds and then discarded.

Subsequently, the buffer was cooled briefly on ice. DNA

was extracted with an equal volume of chloroform–isoamyl

alcohol (24 : 1 [v/v]) and centrifuged in a tabletop

Eppendorf microfuge (Eppendorf) at maximum speed

(14,000 rpm) for 10 min. The aqueous phase was collected,

re-extracted with chloroform–isoamyl alcohol and centri-

fuged as described previously. Next, the aqueous phase was

mixed thoroughly with 0.8 volumes of ice-cold 100%

isopropanol, left on ice for 5 min and subsequently

centrifuged in a precooled Eppendorf microfuge at

maximum speed for 15 min. DNA pellets were washed in

500 ml 70% (v/v) ethanol, centrifuged for 6 min and then

allowed to air-dry after decanting off the ethanol. DNA

pellets were dissolved overnight in 100 ml water. The

quantity and quality of DNA were examined by agarose

gel electrophoresis against known standards.

The targeted marker sequence comprised the 18S rDNA

within the nuclear rDNA cistron. The marker was PCR-

amplified in 25-ml volumes containing 10 ng DNA, 1 mM

dNTPs, 0.5 mM of forward primer, 0.5 mM of reverse

primer, 13 Roche diagnostics PCR reaction buffer (Roche

Diagnostics) and 1 unit Taq DNA polymerase (Roche). The

PCR cycling comprised an initial 4-min heating step at

94uC, followed by 35 cycles of 94uC for 2 min, 56uC for

4 min and 72uC for 2 min and a final extension at 72uC for

10 min. PCR products were generated using the forward

primer A and a reverse primer B (Medlin et al. 1988)
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without the polylinkers. The quantity and length of

products were examined by agarose gel electrophoresis

against known standards. Excess primers and dNTPs were

removed from PCR product using the QIAQuick purifica-

tion kit (QIAGEN), following the manufacturer’s instruc-

tions. The cleaned PCR products were then electrophoresed

on an ABI 3100 Avant sequencer (Applied Biosystems)

using Big Dye Terminator v. 3.1 sequencing chemistry

(Applied Biosystems) with the sequencing primers specified

by Elwood et al. (1985).

Data analyses

The obtained 18S rDNA sequences were aligned with

publicly available sequences retrieved from GenBank

(Table 1), first using ClustalX (Thompson et al. 1997)

and then refined by referring to the secondary structure

model of the 18S rRNA at the database of the structure of

rRNA (Van de Peer et al. 1998). There is extreme length

variation in some rRNAs (e.g. Gillespie et al. 2005), and

replication slippage often leads to convergence on similar

primary and secondary structures (Hancock & Vogler 2000;

Shull et al. 2001). Homology assessment in such regions was

difficult or impossible, so that the highly variable regions

(most peripheral regions of the 18S rRNA secondary

structure) were removed from the alignment using BioEdit

7.0.2 (Hall 1999) by referring to the variability map of

Saccharomyces cerevisiae (Van de Peer et al. 1993), resulting

in 1713 nucleotides in the data set.

The data set consisted of 181 OTUs including the closest

relatives of the diatoms Bolidomonas mediterranea Guillou

& Chrétiennot-Dinet and B. pacifica Guillou & Chrétien-

not-Dinet (Guillou et al. 1999) as outgroups. The alignment

examined in this study is available at TreeBASE (SN3793).

To determine which model of sequence evolution best fits

the data, hierarchical likelihood ratio tests and the Akaike

information criterion were performed using Modeltest 3.7

(Posada & Crandall 1998), and both tests selected the GTR

+ I + G model. This model had the following parameters:

base frequencies 5 A: 0.2685, C: 0.1643, G: 0.2539 and T:

0.3133; substitution rates were A–C 5 1.2232, A–G 5

3.1535, A–T 5 1.2675, C–G 5 1.4955, C–T 5 5.5072 and

G–T 5 1.0000; the proportion of invariant sites was 0.2825;

and among-site rate heterogeneity was described by a

gamma distribution with a shape parameter of 0.6058.

Phylogenies were reconstructed with PAUP v. 4.0b10

(Swofford 2002) using neighbour joining (NJ) of likewise-

constrained pairwise maximum likelihood (ML) distances.

Nodal support was estimated using NJ bootstrap analyses

using the same settings (1000 replicates).

Maximum parsimony (MP) tree searches were done with

the ‘new technology’ search algorithm implemented in the

Willi Hennig Society edition of TNT 1.1 (http://www.zmuc.

dk/public/phylogeny/TNT). One hundred random addition

sequence replicates were performed with default values.

Nonparametric bootstrap analyses were done 1000 times

with the ‘traditional’ search algorithm in TNT.

Maximum likeli hood analyses were performed by

RAxML-VI-HPC, v. 2.2.3 (Stamatakis et al. 2005) with

the GTRMIX model. The analyses were performed 100

times to find the best topology receiving the best likelihood

using different random starting MP trees (one round of

taxon addition) and the rapid hill-climbing algorithm (i.e.

option -f d in RAxML). Bootstrap values were obtained by

100 replications with the GTRCAT model.

The Message Passing Interface (MPI) version of

MrBayes 3.1.2 (Huelsenbeck & Ronquist 2001; Ronquist

& Huelsenbeck 2003; Altekar et al. 2004) was used for

Bayesian analyses with the GTR + I + G model to estimate

the posterior probability distribution using Metropolis-

Coupled Markov chain Monte Carlo (MCMCMC) (Ron-

quist & Huelsenbeck 2003). The MCMCMC from a

random starting tree was used in this analysis with two

independent runs and one cold and three heated chains.

The Bayesian analyses were run for 20 million generations

each with trees sampled every 100th generation. To increase

the probability of chain convergence, we sampled trees after

the standard deviation values of the two runs dipped below

0.01 to calculate the posterior probabilities (i.e. after

8,300,000 generations). The remaining phylogenies were

discarded as burn-in.

Terminology

Terminology follows Anonymous (1975) and (particular-

ly for auxospore structures) Round et al. (1990).

Molecular phylogenetic studies of diatoms have revealed

that historical diatom classifications do not reflect a

natural system and that araphid pennate diatoms are

paraphyletic in most gene phylogenies, for example, using

nuclear 18S ribosomal DNA (rDNA) and plastid 16S

rDNA (Medlin & Kaczmarska 2004). Nevertheless, we

use the terms araphid and centric here because they refer to

key morphological features or their absence. In this paper,

the term araphid pennate diatom follows the traditional

definition, that is, a diatom that has an elongate valve with a

central or slightly lateral sternum, apical pore fields and

often also apical rimoportulae but that lacks a raphe slit. We

do not imply that this corresponds to a mono- (holo-)

phyletic group or that it should be accorded any taxonomic

status.

RESULTS

Pseudostriatella S. Sato, Mann & Medlin gen. nov.

Figs 1–53

Cellulae rectangulares in aspectu cincturae angulis rotundatis,
angulo unico per stipitem muci ad substratum adhaerentes. Chlor-
oplasti c. 10 dispersi et cellulam complentes. Taeniae cincturae
numerosae apertae septo conspicuo poros aliquot praebenti. Valvae
lanceolatae, ocello ad utrumque polum, fronte in sectione transversali
arcuata, sine limbo distincto. Striae irregulares in LM non
manifestae. Sternum typicum nullum sed area hyalina secus axem
longam adest. Areolae per clavulas occlusae, igitur aperturis
dendriticis instructae. Rimoportulae multae dispersae, forma interna
variabili.

Cells attached to the substratum by a mucilage stalk at one
corner of the frustule, rectangular in girdle view, with rounded
corners. Plastids c. 10 per cell, scattered and filling the cell. Copulae
numerous open hoops, each with a conspicuous septum containing
several pores. Valve lanceolate, with an apical pore field (ocellus) at
each pole. Valve face arched, without a distinct mantle. Striae
irregular, unresolved with LM. Sternum apparently absent, but a

Sato et al.: Pseudostriatella oceanica gen. et sp. nov. 373



Table 1. List of taxon and GenBank accession numbers for 18S
rDNA sequences used in this study.

Taxon
Accession

no.

Aulacoseira ambigua (Grunow) Simonsen X85404
Aulacoseira baicalensis (Meyer) Simonsen AJ535185
Aulacoseira baicalensis (Meyer) Simonsen AJ535186
Aulacoseira baicalensis (Meyer) Simonsen AY121821
Aulacoseira distans (Ehrenberg) Simonsen X85403
Aulacoseira islandica (Müller) Simonsen AJ535183
Aulacoseira islandica (Müller) Simonsen AY121820
Aulacoseira nyassensis (Müller) Simonsen AJ535187
Aulacoseira nyassensis (Müller) Simonsen AY121819
Aulacoseira skvortzowii Edlund, Stoermer et Taylor AJ535184
Aulacoseira subarctica (Müller) Haworth AY121818
Actinocyclus curvatulus Janisch X85401
Actinoptychus seniarius (Ehrenberg) Héribaud AJ535182
Bellerochea malleus (Brightwell) van Heurck AF525671
Biddulphiopsis titiana (Grunow) von Stosch et

Simonsen AF525669
Chaetoceros curvisetus Cleve AY229895
Chaetoceros debilis Cleve AY229896
Chaetoceros didymus Ehrenberg X85392
Chaetoceros gracilis Schütt AY229897
Chaetoceros rostratus Lauder X85391
Chaetoceros sp. AF145226
Chaetoceros sp. AJ535167
Chaetoceros sp. X85390
Corethron criophilum Castracane X85400
Corethron inerme Karsten AJ535180
Corethron hystrix Hensen AJ535179
Coscinodiscus radiatus Ehrenberg X77705
Cyclotella meneghiniana Kützing AJ535172
Cyclotella meneghiniana Kützing AY496206
Cyclotella meneghiniana Kützing AY496207
Cyclotella meneghiniana Kützing AY496210
Cyclotella meneghiniana Kützing AY496212
Cyclotella cf. scaldensis AY496208
Cymatosira belgica Grunow X85387
Detonula confervacea (Cleve) Gran AF525672
Ditylum brightwellii (West) Grunow in Van Heurck AY188181
Ditylum brightwellii (West) Grunow in Van Heurck AY188182
Ditylum brightwellii (West) Grunow in Van Heurck X85386
Eucampia antarctica (Castracane) Mangin X85389
Guinardia delicatula (Cleve) Hasle AJ535192
Guinardia flaccida (Castracane) H. Peragallo AJ535191
Helicotheca tamesis (Schrubsole) Ricard X85385
Lampriscus kittonii Schmidt AF525667
Lauderia borealis Cleve X85399
Leptocylindrus danicus Cleve AJ535175
Leptocylindrus minimus Gran AJ535176
Lithodesmium undulatum Ehrenberg Y10569
Melosira varians Agardh AJ243065
Melosira varians Agardh X85402
Odontella sinensis (Greville) Grunow Y10570
Papiliocellulus elegans Hasle, von Stosch et Syvertsen X85388
Paralia sol (Ehrenberg) Crawford AJ535174
Planktoniella sol (Wallich) Schütt AJ535173
Pleurosira laevis (Ehrenberg) Comperé AF525670
Porosira pseudodenticulata (Hustedt) Jousé X85398
Proboscia alata (Brightwell) Sundström AJ535181
Rhizosolenia imbricate Brightwell AJ535178
Rhizosolenia similoides Cleve-Euler J535177
Rhizosolenia setigera Brightwell M87329
Skeletonema costatum (Greville) Cleve X52006
Skeletonema costatum (Greville) Cleve X85395
Skeletonema menzelii Guillard, Carpenter et Reimer AJ535168
Skeletonema menzelii Guillard, Carpenter et Reimer AJ536450
Skeletonema pseudocostatum Medlin AF462060
Skeletonema pseudocostatum Medlin X85393
Skeletonema subsalsum (Cleve-Euler) Bethge AJ535166
Skeletonema sp. AJ535165

Taxon
Accession

no.

Stephanopyxis cf. broschii M87330
Thalassiosira eccentrica (Ehrenberg) Cleve X85396
Thalassiosira guillardii Hasle AF374478
Thalassiosira oceanica Hasle AF374479
Thalassiosira pseudonana Hasle et Heimdal AJ535169
Thalassiosira pseudonana Hasle et Heimdal AF374481
Thalassiosira rotula Meunier AF374480
Thalassiosira rotula Meunier AF462058
Thalassiosira rotula Meunier AF462059
Thalassiosira rotula Meunier X85397
Thalassiosira weissflogii (Grunow) Fryxell et Hasle AF374477
Thalassiosira weissflogii (Grunow) Fryxell et Hasle AJ535170
Thalassiosira sp. AJ535171
Toxarium undulatum Bailey AF525668
Asterionella formosa Hassall AF525657
Asterionellopsis glacialis (Castracane) Round X77701
Asterionellopsis glacialis (Castracane) Round AY216904
Asteroplanus karianus1 (Grunow in Cleve et Grunow)

Gardner et Crawford Y10568
Cyclophora tenuis Castracane AJ535142
Diatoma hyemalis (Roth) Heiberg AB085829
Diatoma tenue Agardh AJ535143
Fragilaria crotonensis Kitton AF525662
Fragilariforma virescens (Ralfs) Williams et Round AJ535137
Grammatophora gibberula Kützing AF525656
Grammatophora oceanica Ehrenberg AF525655
Grammatophora marina (Lyngbye) Kützing AY216906
Grammonema striatula Agardh1 X77704
Grammonema cf. islandica1 AJ535190
Grammonema sp.1 AJ535141
Hyalosira delicatula Kützing AF525654
Licmophora juergensii Agardh AF525661
Nanofrustulum shiloi (Lee, Reimer et McEnery) Round,

Hallsteinsen et Paasche AF525658
Pseudostriatella oceanica S. Sato, Mann et Medlin AB379680
Rhabdonema arcuatum (Agardh) Kützing AF525660
Rhaphoneis cf. belgica (Grunow in van Heurck)

Grunow in van Heurck X77703
Staurosira construens Ehrenberg AF525659
Striatella unipunctata (Lyngbye) Agardh AF525666
Synedra sp.2 AJ535138
Tabularia tabulata (Agardh) Williams et Round AY216907
Talaroneis posidoniae Kooistra et De Stefano AY216905
Thalassionema nitzschioides (Grunow) Hustedt X77702
Thalassionema sp. AJ535140
Synedra ulna Nitzsch AJ535139
Achnanthes bongrainii (M. Peragallo) A. Mann AJ535150
Achnanthes sp. AJ535151
Amphora montana Krasske AJ243061
Amphora cf. capitellata AJ535158
Amphora cf. proteus AJ535147
Anomoeoneis sphaerophora (Ehrenberg) Pfitzer AJ535153
Bacillaria paxillifer (Müller) Hendey M87325
Campylodiscus ralfsii Gregory AJ535162
Cocconeis cf. molesta AJ535148
Cylindrotheca closterium (Ehrenberg) Reimann et

Lewin M87326
Cymbella cymbiformis Agardh AJ535156
Encyonema triangulatum Kützing AJ535157
Entomoneis cf. alata AJ535160
Eolimna minima (Grunow) Lange-Bertalot AJ243063
Eolimna subminuscula (Manguin) Moser, Lange-

Bertalot et Metzeltin AJ243064
Eunotia formica var. sumatrana Hustedt AB085830
Eunotia monodon var. asiatica Skvortzow AB085831
Eunotia pectinalis (Dillwyn) Rabenhorst AB085832
Eunotia cf. pectinalis f. minor AJ535146
Eunotia sp. AJ535145
Fragilariopsis sublineata Hasle AF525665

Table 1. Continued
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hyaline area is present along the long axis. Areolae occluded by
peg-like structures and therefore with dendritic apertures. Many
rimoportulae present, of variable form internally.

TYPE SPECIES: P. oceanica S. Sato, Mann & Medlin sp. nov.

Descriptio speciei eadem est ac descriptio generis; valvae 16.0–
47.8 mm longae, 4.4–5.3 mm latae.

HOLOTYPE: BRM Zu6/38.

ISOTYPE: TNS-AL-53995.

TYPE LOCALITY: Horseneck State Beach, Westport, MA,
USA.

DISTRIBUTION: Known only from the type locality and
Yumigahama Beach, Minamiizu, Shizuoka Prefecture, Japan.

Morphology of vegetative cells

In the culture vessel, cells of P. oceanica attached to the

bottom, usually by means of a mucilaginous stalk secreted

from one corner, which reached a maximum length of c.

20 mm (Fig. 1). Cells occasionally attached to each other to

make zigzag chains (not shown), but this was seen only in

culture, and chains of over five cells were never found.

About 10 lobed plastids were scattered through the cell

(Fig. 2). A prominent body, likely a pyrenoid, was often

visible at the centre of a plastid (Fig. 2, arrow). In girdle

view, when the focus was on the surface of the cell,

longitudinal rib-like thickenings were visible on some of the

girdle bands (Fig. 3). Spots could sometimes be seen on the

valve mantle (e.g. at arrow, Fig. 3), and tiny projections

were sometimes visible extending inwards from the valve

face (e.g. at the centre of the valve in Fig. 4); these features

probably represent rimoportulae (see below).

The valves were lanceolate with acute ends (Figs 5, 6).

No striae could be resolved in LM with bright field (Fig. 5),

DIC (Fig. 6) or phase contrast optics (not shown). The

valve length was 16.0–47.8 mm. Auxospore mother cells

measured 16.9 6 0.6 mm (mean 6 s, n 5 8), and initial cells

were 41.1 6 3.1 mm (n 5 12). The valve width was 4.4–

5.3 mm. Apical pore fields were recognisable in LM as

hyaline areas at both ends of a valve (Figs 5, 6).

The frustule had numerous girdle bands (c. 10 per theca:

Figs 8, 10), each being an incomplete hoop, open at one end

(Fig. 7). The closed end of each band bore a septum, which

extended inwards by one-sixth to one-eighth of the valve

length (Figs 4, 7). The alternation of the septa (Figs 8, 12,

32) gave a Striatella-like appearance to the cell in girdle

view (Fig. 3).

Observations of freeze-dried specimens from field mate-

rial revealed that the surface of the host plant was covered

with bacteria (Figs 9, 10, 13). The long mucilaginous stalk

(Fig. 9) was secreted from one of the apical pore fields

(Fig. 11), but no secretion occurred from other (Fig. 12).

The thickness of the stalk was c. 1 mm (Figs 9, 10, 13). The

surface of the mucilaginous stalk was not uniform but

comprised many fine strings and thus appeared fibrous

(Fig. 13).

The valve face was smoothly rounded (Fig. 14), lacking

an abrupt change between it and the mantle. The areolae

were irregularly scattered over some parts of the valve,

especially towards the poles, but formed parallel striae

towards the centre and radiating striae elsewhere (Fig. 14).

A clearly defined sternum was absent, but there was an

irregular hyaline area along the long axis of the valve

(Fig. 14). This hyaline area (1) did not occupy the whole

but at most only about one-half of the long axis of the valve

(Fig. 14), (2) was wider at both ends than in the centre

(Fig. 14), and (3) was perforated by small pores in the two

wide end sections (Fig. 15). Apical pore fields were present

Taxon
Accession

no.

Gomphonema parvulum Kützing AJ243062
Gomphonema pseudoaugur Lange-Bertalot AB085833
Lyrella atlantica (Schmidt) D. G. Mann AJ544659
Navicula cryptocephala var. veneta (Kützing) Grunow AJ297724
Navicula diserta Hustedt AJ535159
Navicula pelliculosa (Brébisson ex Kützing) Hilse AJ544657
Nitzschia apiculata (Gregory) Grunow M87334
Nitzschia frustulum (Kützing) Grunow AJ535164
Pinnularia cf. interrupta AJ544658
Pinnularia sp. AJ535154
Phaeodactylum tricornutum Bohlin AJ269501
Planothidium lanceolatum (Brébisson ex Kützing)

Round et Bukhtiyarova AJ535189
Pleurosigma sp. AF525664
Pseudogomphonema sp. AF525663
Pseudogomphonema sp. AJ535152
Pseudo-nitzschia multiseries (Hasle) Hasle U18241
Pseudo-nitzschia pungens (Grunow ex Cleve) Hasle U18240
Rossia sp. AJ535144
Sellaphora capitata Mann et McDonald AJ535155
Sellaphora pupula (Kützing) Mereschkowsky AJ544645
Sellaphora pupula (Kützing) Mereschkowsky AJ544651
Sellaphora pupula (Kützing) Mereschkowsky AJ544647
Sellaphora pupula (Kützing) Mereschkowsky AJ544648
Sellaphora pupula (Kützing) Mereschkowsky AJ544649
Sellaphora pupula (Kützing) Mereschkowsky AJ544650
Sellaphora pupula (Kützing) Mereschkowsky AJ544652
Sellaphora pupula (Kützing) Mereschkowsky AJ544653
Sellaphora pupula (Kützing) Mereschkowsky AJ544654
Sellaphora laevissima (Kützing) D. G. Mann AJ544655
Sellaphora laevissima (Kützing) D. G. Mann AJ544656
Surirella fastuosa var. cuneata (Schmidt)

H. Peragallo et M. Peragallo AJ535161
Thalassiosira antarctica Comber AF374482
Undatella sp. AJ535163
Bolidomonas mediterranea Guillou et

Chretéinnot-Dinet AF123596
Bolidomonas pacifica Guillou et Chréteinnot-Dinet AF123595
Bolidomonas pacifica Guillou et Chréteinnot-Dinet AF167153
Bolidomonas pacifica Guillou et Chréteinnot-Dinet AF167154
Bolidomonas pacifica Guillou et Chréteinnot-Dinet AF167155
Bolidomonas pacifica Guillou et Chréteinnot-Dinet AF167156
Bolidomonas pacifica Guillou et Chréteinnot-Dinet AF167157
Convoluta convoluta diatom endosymbiont AY345013
Peridinium foliaceum endosymbiont Y10567
Peridinium balticum endosymbiont Y10566
Uncultured diatom AY180014
Uncultured diatom AY180015
Uncultured diatom AY180016
Uncultured diatom AY180020
Uncultured eukaryote AY082977
Uncultured eukaryote AY082992
Uncultured marine diatom AF290085

1 Name change since deposit.
2 Likely a new genus collected from a marine habitat (Medlin

et al. 2008a).

Table 1. Continued
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Figs 1–7. Pseudostriatella oceanica: living and cleaned cells (LM). Scale bars 5 100 mm (Fig. 1), 10 mm (Figs 2, 3) or 5 mm (Figs 5–7).
Fig. 1. Living cells growing in culture vessel.
Fig. 2. Living cell showing multiple plastids. Arrow indicates presumable pyrenoid.
Fig. 3. Cleaned frustule, focused on surface to show prominent ribs along the girdle bands, continuous with the septa. The arrow indicates
a white spot on the valve that is probably a rimoportula.
Fig. 4. Median focus of the frustule in Fig. 3, showing septate girdle bands; arrow indicates probable rimoportula.
Fig. 5. Cleaned valve (bright field).
Fig. 6. Cleaned valve (DIC).
Fig. 7. Single girdle band with septum at closed end.
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at both ends of the valve. They had slightly thickened rims

and contained small round pores in a strict hexagonal array

(Fig. 16). This structure conforms to the definition of an

ocellus (Ross et al. 1979). The areolae were more or less

isodiametric, and each was occluded by two to several pegs

leaving a dendritic aperture (Figs 17, 18).

On the inner surface of the valve, the hyaline area was

less obvious than on the exterior but still recognizable

(Fig. 19). The peg-like occlusions of the areolae were

slightly sunk below the surface internally (Fig. 22),

suggesting that these structures were external developments

(contrast Figs 17, 18). A few of the pores within the

widened ends of the hyaline area penetrated the valve

(Fig. 20). The ocelli were not rimmed internally (Fig. 21), in

contrast to the external appearance (Fig. 16). Approxi-

mately 15–30 rimoportulae were found scattered around

the edge of each valve (Figs 19, 23, 24), all of them having a

similar size but varying in shape (Figs 25–28). The most

common form was ‘C-shaped’, the lips of the process being

continuous on one side. This type of process could be either

circular (Fig. 25) or elliptical (Fig. 26). Processes with two

entire labiate slits (Fig. 27) were also commonly seen. This

bilabiate process is not the same as the bilabiate process in

the Lithodesmiales. Rarely, fused processes were observed

(Fig. 28). The basal part of each rimoportula always

overlapped part of an areola (Figs 25–28). Externally, the

openings of the rimoportulae were undetectable (Figs 14–

18).

The closed end of each girdle band bore a septum

(Fig. 29), which was irregularly perforated by many

scattered pores of variable size (Figs 29–31). The pars

exterior was perforated by simple slit-like areolae arranged

in short striae (Fig. 32); its margins were plain (Fig. 32,

arrow and arrowhead, respectively). The closed end of the

band was widened in the pervalvar direction to form a

ligula (pointing towards the valve) and a smaller antiligula

(pointing away from the valve), which were also perforated

(Fig. 33). Towards the open ends of the band, the septum

became shallower, finally becoming a simple interstria

(Fig. 33). The girdle band areolae were slightly sunken

internally (Figs 33, 34).

Auxospore structure

Auxosporulation occurred spontaneously in the clonal

culture. Nuclear behaviour was not observed in this study,

Figs 8–13. Pseudostriatella oceanica; intact cells, SEM. Scale bars 5 10 mm (Figs 8, 10), 100 mm (Fig. 9) or 2 mm (Figs 11–13).
Fig. 8. Frustule with mucilage stalk secreted at upper right corner.
Fig. 9. Colonies on Cladophora sp. Note the cells raised above bacterial community on algal surface by long mucilage stalks.
Fig. 10. Side view of frustules just after cell division.
Fig. 11. Mucilage stalk secreted from apical pore field.
Fig. 12. Free end of valve showing apical pore field secreting no mucilage.
Fig. 13. Mucilage stalk attachment to substratum. Note stalk is composed of fine mucilaginous strings.
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and the earliest stages directly observed were the dehiscence

of the auxospore mother cell, the liberation of the

protoplast from its frustule and its bodily movement to a

position beyond the open end of one vacated theca

(Figs 35–37). The auxospore maintained this position

subsequently (Figs 37, 38) and must have been physically

connected to the empty mother-cell wall, presumably by

mucilage, but the exact nature of the connection could not

be established. The young auxospore was more or less

spherical (Fig. 37). It then expanded at right angles to the

pervalvar axis of the gametangium and parallel to its

longitudinal axis (Fig. 38). No perizonial caps were

observed at any stage of auxosporulation. All mother cells

observed in this study were associated with only a single

auxospore (Figs 35–38).

In the earliest stage observed by SEM (Fig. 39), the

organic spherical auxospore did not seem to be covered with

a mucilage layer or with any siliceous structures. Slightly

expanded auxospores (Fig. 40), however, were bordered by

a plain fringe of material, which probably represented a

delicate mucilaginous envelope (Fig. 41). In auxospores that

had already expanded significantly (Figs 42, 43), a striated

siliceous structure (Fig. 43) could be seen within the

mucilaginous layer (Fig. 43), and this can probably be

Figs 14–18. Pseudostriatella oceanica valves: external views (SEM). Scale bars 5 5 mm (Fig. 14), 0.5 mm (Figs 15, 16, 18) or 0.2 mm
(Fig. 17).

Fig. 14. Whole showing central hyaline area (arrow) and irregular striation.
Fig. 15. Enlarged view of part marked by asterisk in Fig. 14 showing small simple pores within the end of the hyaline area.
Fig. 16. Detail of apical pore field surrounded by plain rim.
Fig. 17. Areolae occluded by pegs that vary in shape and number.
Fig. 18. Broken valve showing simple nonchambered valve structure.

378 Phycologia, Vol. 47 (4), 2008



Figs 19–28. Pseudostriatella oceanica valves: internal views (SEM). Scale bars 5 5 mm (Fig. 19), 0.5 mm (Figs 20, 21), 0.2 mm (Figs 22, 25–
28) or 0.3 mm (Figs 23, 24).

Fig. 19. Whole interior. The arrow indicates the hyaline area. Note the many irregularly scattered rimoportulae.
Fig. 20. Enlarged view of part marked by asterisk in Fig. 19 showing a few small, simple pores within the hyaline area.
Fig. 21. Detail of apical pore field.
Fig. 22. Areolae occluded by pegs, which are slightly recessed below the internal valve surface.
Figs 23, 24. Broken valve showing irregularly distributed rimoportulae around the valve margin.
Figs 25, 26. Circular and elliptical C-shaped rimoportulae.
Fig. 27. Normal ‘labiate’ rimoportula.
Fig. 28. Compound rimoportula.
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regarded as a longitudinal perizonial (LP) band (cf. Fig. 54).

No transverse perizonial (TP) bands were seen in this stage.

The LP band comprised a longitudinal rib and a series of

closely spaced ribs extending out from it at right angles

(Fig. 43). At this stage, the body of cell appeared lumpy,

which may represent chloroplasts within the auxospore or a

partial covering of silica scales (see below).

When the expansion was complete, an initial valve was

produced within the auxospore (Fig. 44). By then, the

auxospore could be seen to possess not only longitudinal

but also transverse bands (Figs 45, 46). The TP bands were

very weakly silicified (Figs 45–47) but could be seen to be

finely and irregularly porous (Figs 46, 47, 49). Like the first

LP band seen earlier in expansion, the TP bands also often

consisted of a longitudinal rib bearing transverse ribs

(Fig. 47, arrow and arrowhead, respectively), though these

were very feebly developed. The ends of the transverse

elements of the TP bands sometimes bore a fringe (Fig. 47).

The series of TP bands and LP bands covered the

auxospore (Figs 48, 54). We will refer to the side closest to

the theca of the auxospore mother cell as ‘ventral’, and it

was on this side that the LP bands lay. There were several

Figs 29–34. Pseudostriatella oceanica girdle (SEM). Scale bars 5 5 mm (Fig. 29), 1 mm (Figs 30, 31) or 2 mm (Figs 32–34).
Fig. 29. Single band with a perforated septum.
Figs 30, 31. Variation of perforation pattern in septa.
Fig. 32. Complete girdle showing interlocking bands. Note the regular striation, except for a hyaline area along the long axis (arrow) and
advalvar edge (arrowhead).
Fig. 33. Disrupted cingulum showing the outside and inside of an open end. (right) and the outside of a closed end. The plain longitudinal
strip is thickened and rib-like. Note that the interstriae region are also rib-like.
Fig. 34. Broken copula showing the inside of a closed end. Note that the longitudinal rib becomes more prominent and widens into
the septum.
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Figs 35–38. Pseudostriatella oceanica: clonal auxosporulation (LM). Scale bars 5 10 mm.
Figs 35, 36. Young auxospores being liberated from their mother cells.
Fig. 37. Contracted 6 spherical auxospore.
Fig. 38. Mature auxospore containing initial cell, lying slightly oblique to the object plane.

Figs 39–43. Pseudostriatella oceanica: early stages of auxosporulation (SEM). Scale bars 5 10 mm (Figs 39, 40, 42) or 5 mm (Figs 41, 43).
Fig. 39. Spherical auxospore. No covering is visible.
Fig. 40. Slightly expanded auxospore.
Fig. 41. Enlarged view of auxospore of Fig. 40. Arrow indicates mucilaginous layer covering auxospore.
Fig. 42. Expanding auxospore.
Fig. 43. Enlarged view of auxospore of Fig. 42. Arrow indicates mucilaginous layer. Arrowhead and double arrowhead indicate
longitudinal and transverse ribs of a LP band, which has probably been bent during specimen preparation (cf. Fig. 54). Note that a
transverse perizonium is absent.
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TP bands (Fig. 49), all closed hoops except for the primary

band, which was a simple strap passing from one side of the

auxospore to the other (Fig. 54). The closed hoops, which

we will refer to as secondary bands, did not girdle the

auxospore fully. Instead, each was divided into two broader

segments on the dorsal side of the auxospore, connected by

a narrower strip along the ventral side (Figs 49, 54).

The primary band and the adjacent secondary TP band

(Fig. 49: ‘1st’ and ‘2nd’, respectively) were so delicate and

closely associated that the boundary between them was

indistinct, and they may even have been fused together. The

more distal TP bands (‘3rd’ and ‘4th’ in Figs 49, 54)

appeared to be slightly more robust than the first two bands

and bore distinct longitudinal ribs. The fringed margins of

the bands never interlocked with each other (except perhaps

between the primary band and its neighbour) but over-

lapped from the centre outwards, the presumably older

bands being external to the younger ones (Fig. 49).

Rimoportulae were detected on the initial epivalve

(Fig. 49). In fully expanded auxospores, scales were found

on the ventral side (Fig. 50). They were thin and delicate

and difficult to detect under SEM, unless a strongly

contrasted image was produced. They varied in shape, but

in the most frequent type there was a central pore field

ringed by a prominent annulus bearing a delicate fringe of

fine radiating fimbriae (Fig. 50, arrow). Much simpler

scales were also found (Fig. 50, arrowhead), lacking the

prominent annulus and fringe; they were sometimes fused

to each other.

When initial cell formation was complete, the series of TP

bands was released from the initial cell (Fig. 51, arrow).

There were at least three LP bands. The widest lay furthest

towards the ventral side (Fig. 52) and was always flanked in

our images by two narrower bands (Figs 52, 53; see also

Fig. 54). The transverse ribs of the LP bands were not

straight, plain straps but sinuous or branched or even fused

(Fig. 53).

Phylogeny

Highly variable regions were excluded from the 18S rDNA

alignment. The analysis used 1713 aligned positions, and

Figs 44–47. Pseudostriatella oceanica: fully expanded auxospore containing an immature initial epivalve (SEM). Scale bars 5 10 mm
(Fig. 44), 5 mm (Fig. 45) or 2 mm (Figs 46, 47).

Fig. 44. Whole auxospore still associated with auxospore mother cell.
Fig. 45. Enlarged view of auxospore: the initial valve is detectable via its larger, coarser areolae, visible along the midline of the collapsed
cell. The auxospore is covered by transverse perizonial bands (TP) dorsally and longitudinal perizonial bands (LP) ventrally.
Fig. 46. Enlargement (at black asterisk in Fig. 45), showing the structural differences between the transverse (TP) and longitudinal
perizonial bands (LP).
Fig. 47. Enlargement (at white asterisk in Fig. 45), showing the delicate TP bands. No regular striae exist. The arrowhead and double
arrowhead indicate the longitudinal and transverse ribs of a TP band, respectively; the arrow indicates a fringe.
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for this, P. oceanica differed from its closest relative, S.

unipunctata, in 104 substitutions and 28 indels.

A Bayesian tree inferred from 18S rDNA sequences of

174 diatoms and seven Bolidophyceae (Table 1) confirmed

paraphyly for the araphid diatoms within a robust clade of

pennate diatoms (Fig. 55). The same result was also

obtained with NJ, MP and ML analyses (topologies not

shown). Within the pennates, the Asterionellopsis Round–

Asteroplanus Gardner & Crawford–Talaroneis Kooistra &

De Stefano clade and Rhaphoneis cf. belgica emerged first,

and then a clade containing all other sequenced araphid

pennates and a clade of raphid diatoms diverged (Fig. 55;

the outgroup centric diatoms and bolidomonads have been

omitted for clarity). Pseudostriatella oceanica formed a

robust monophyly with S. unipunctata, this in turn

emerging from within raphid diatoms, being sister to the

genus Achnanthes Bory (MP) or Eunotia Ehrenberg (NJ,

ML and BI; only the Bayesian tree is shown in Fig. 55).

DISCUSSION

Taxonomic comment on the order Striatellales and the

family Striatellaceae

Round et al. (1990) proposed that the genus Striatella

Agardh should be regarded as a monospecific genus

because the other (rarely reported) species assigned to it

(Van Landingham 1978) differ from the type species S.

unipunctata. We have encountered and isolated only S.

unipunctata during this study, and the plastids and fine

structure of the other species are unknown. Two of the 12

species considered to be valid by Van Landingham (1978)

have been transferred to Hyalosira Kützing by Navarro &

Williams (1991). There are thus 10 species currently in the

genus Striatella.

Striatella is the nominate genus of the order Striatellales,

which was established by Round et al. (1990) and contains

the single family Striatellaceae (Kützing 1844). In turn,

Round considered the Striatellaceae as comprising three

marine benthic genera: Striatella, Hyalosira and Gramma-

tophora Ehrenberg. Judging by the description given by

Round et al. (1990, p. 655) for the Striatellales, these three

genera were linked because they have a narrow or indistinct

sternum, well-differentiated apical pore fields (in which the

pores are in a strict hexagonal array) and porous septate

girdle bands. They also have a rimoportula at each apex.

Molecular phylogenies show, however, that although

Hyalosira and Grammatophora form a clade, this does not

contain Striatella, nor is it a close relative of Striatella

(Fig. 55; see also Sims et al. 2006, fig. 2). These results

suggest that the family Striatellaceae and the order

Striatellales should contain only the nominate genus

Striatella and Pseudostriatella; the monophyly of this group

is strongly supported by 18S rDNA data, and a wider

taxonomic revision is currently in preparation using

multiple gene markers. With the benefit of hindsight, it is

noticeable that Striatella differs from Hyalosira and

Grammatophora in the arrangement of the sternum and

rimoportula. The rimoportula is adjacent or lateral to the

sternum in Hyalosira and Grammatophora (Round et al.

1990; our unpublished observations), but in Striatella they

are not associated with each other. Instead, the sternum

ends some distance short of the apical pore field, and the

rimoportula lies within a small area of apically orientated

striae. The rimoportulae lie within the striae in Pseudos-

triatella also but are not restricted to the cell apex.

Comparison of Pseudostriatella and Striatella

There are many morphological and ecological similarities

between P. oceanica and S. unipunctata, such as the

numerous copulae and their areolation and prominent

septa, the attachment of cells to substrata in the marine

littoral and sublittoral by a long mucilaginous stalk and the

production of this stalk via a rimmed apical pore field

(ocellus). Because of the morphological similarities of P.

oceanica and S. unipunctata, especially with LM, it is quite

possible that the species has been misidentified as S.

unipunctata in the past. On the other hand, there are also

many differences, which we regard as sufficient to

differentiate these taxa at the rank of genus. The most

striking features are the unusual striation, prominent

hyaline area, pegged areolae, multiple marginal rimoportu-

lae and perforated septum. Furthermore, if living specimens

are obtainable, it is easy to identify them because the

plastids of S. unipunctata are unmistakable because of their

rod shape and radial arrangement (Fig. 56). With care,

cleaned material of the genera can also be separated in LM.

Thus, in S. unipunctata, each corner of the frustule is sharply

truncated (Fig. 56) because of the sunken apical pore fields

(see Round et al. 1990, p. 432, figs d, e); whereas, rounded

corners occur in P. oceanica (Figs 2–4). Again, in valve

views of S. unipunctata, the sternum is prominent and runs

almost the whole length of the valve, the striae are regularly

arranged (with staggered areolae giving a pattern of

transversely orientated diamonds) and can be observed

(Fig. 57) and the apical rimoportulae are clearly visible;

none of these features exist in P. oceanica (Figs 5, 6).

Pseudostriatella oceanica is smaller than S. unipunctata.

The range observed for P. oceanica (16.0–47.8 mm) is

probably close to the maximum for the species because we

observed both auxospore mother cells and initial cells. It is

possible that smaller cells may be formed on occasion

because cells of other species sometimes continue to divide

after the minimum threshold for sexual reproduction has

been passed (Geitler 1932). Furthermore, the sizes of the

initial cells can sometimes depend on the sizes of the

gametangia or auxospore mother cells (Davidovich 2001),

and this seems to be true in S. unipunctata (Chepurnov in

Roshchin 1994, table 12). However, S. unipunctata can

attain lengths of more than double the maximum seen in P.

oceanica. Because S. unipunctata is widespread in tropical,

subtropical and temperate climate zones (Witkowski et al.

2000), there are many records and measurements of this

species (e.g. Van Landingham 1978). The widest range, 35–

125 mm, is given by Hustedt (1931). Chepurnov in Roshchin

(1994) observed sexual auxosporulation of S. unipunctata in

culture and found that gametangia of 32–42 mm gave rise to

initial cells of 107–126 mm; in his illustrations the largest

auxospore is 154 mm long (measured on his plate 29). In

monoclonal cultures (which cannot auxosporulate because
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S. unipunctata is dioecious), some cells continued to divide

until they were 22 mm long before dying. Overall, therefore,

although the size ranges of P. oceanica and S. unipunctata

do overlap, they differ enough that valve length can help to

distinguish the species in LM.

Rimoportula function

In araphid diatoms, there is some variation in the

distribution of the rimoportulae; although, they are most

often located along the long axis, mostly near one or both

ends of the sternum. Normally, too, each rimoportula has

its own special opening externally, which is separate and

different from the external openings of the areolae. The

consistency of these features suggests that they are

maintained by selection, but their significance is unknown

because the function of the rimoportula is unclear. In some

cases, it has been shown that diatoms secrete mucilage

through the rimoportula for movement, as in Actinocyclus

Ehrenberg (Medlin et al. 1986) and Odontella Agardh

(Pickett-Heaps et al. 1986), or adhesion, as in Melosira

Agardh (Crawford 1975) and Aulacodiscus Ehrenberg (Sims

& Holmes 1983, p. 270). Schmid (1994) has suggested that

the internal part of the rimoportula is used as a cytological

anchor for the nucleus during interphase and new valve

formation, and recently Kühn & Brownlee (2005) have

provided evidence that the rimoportula is a site for

endocytosis and therefore involved in membrane recycling.

It is quite possible that rimoportulae serve multiple roles in

diatoms (Medlin et al. 1986). In P. oceanica, the rimopor-

r

Figs 48–50. Pseudostriatella oceanica: final stage of auxosporulation (SEM). Scale bars 5 10 mm (Fig. 48) and 5 mm (Fig. 49) and 2 mm
(Fig. 50).

Fig. 48. Auxospore containing a mature initial epivalve.
Fig. 49. Enlarged view of middle of auxospore of Fig. 48, showing that the initial valve is covered by TP and LP (bottom right) bands. TP
bands are numbered from primary (1st) to fourth (4th). Note fuzzy border of 1st and 2nd bands. Bands 1 and 2 do not have rib
thickenings, whereas bands 3 and 4 bands do (arrow and double arrowhead, respectively). The edge of band 4 overlap onto band 5
(double arrowhead). Triple arrowheads indicate rimoportulae at internal initial valve.
Fig. 50. Enlargement of area marked by asterisk in Fig. 48, showing scales on the ventral side of the auxospore. Two types are present,
with (arrow) and without (arrowhead) an annulus.

Figs 51–53. Pseudostriatella oceanica: initial cell still within auxospore envelope (SEM). Scale bars 5 10 mm (Fig. 51), 5 mm (Fig. 52) or
3 mm (Fig. 53).

Fig. 51. Whole initial cell, with auxospore mother cell still attached. The series of TP bands (arrow) appears to be detaching from the
initial cell.
Fig. 52. Enlarged view of area marked by black asterisk in Fig. 51, showing the series of LP bands.
Fig. 53. Enlarged view of area marked by white asterisk in Fig. 52. The LP appears to consist of three bands – primary (arrow), secondary
(arrowhead) and tertiary (double arrowhead) – but collapse of the auxospore may have hidden two other bands (cf. Fig. 54).
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tulae have no external openings of their own and connect to

the outside instead through part of an areola (Figs 25–28).

This, together with their scattered distribution on the valve,

makes it unlikely that the rimoportulae function in

movement in P. oceanica or in the production of robust

structured mucilage for adhesion. Altogether, the charac-

teristics of the rimoportulae in P. oceanica suggest relaxed

functional constraints, relative to other araphid pennates.

On the other hand, the rimoportulae have not been lost

altogether in P. oceanica, in contrast to members of the

Plagiogrammaceae (including Talaroneis, Dimeregramma

Ralfs and Plagiogramma Paddock) and other genera, such

as Staurosira (Ehrenberg) Williams & Round, Nanofrustu-

lum Round, Hallsteinsen & Paasche, Opephora Petit,

Punctastriata Williams & Round, Staurosirella Meresch-

kowsky, Pseudostaurosiropsis Morales and Pseudostauro-

sira Williams & Round (Round et al. 1990, 1999; Morales

2001, 2005; Kooistra et al. 2004). Among these rimopor-

tula-lacking diatoms, few seem to be able to grow as

epiphytes – possibly only Talaroneis (Kooistra et al. 2004);

the rest grow attached to rocks or sand grains or live

planktonically. Possession of rimoportulae may therefore

be important in araphid pennates for attachment to plants.

Phylogeny

The 18S rDNA phylogeny gave strong support not only to

the monophyly of the P. oceanica–S. unipunctata clade

(Bootstrap supports in NJ and ML analyses 5 100;

Bayesian posterior probability 5 1.0) but also to the

establishment of a new genus for P. oceanica because of the

long branches connecting both species. The high divergence

between these taxa (104 substitutions and 28 indels)

contrasts, for example, with the shorter branch lengths

within Grammatophora Ehrenberg and Eunotia (see

Fig. 55). We accept, of course, that there is no absolute

standard for the amount of sequence difference that justifies

generic status. Although P. oceanica and S. unipunctata lie

at the ends of long branches, the possibility that the tree has

been distorted by long-branch artifacts can probably be

excluded because the two taxa also share a very long node

with high statistical support. Preliminary analyses using

several gene markers also show that monophyly of the clade

containing the two genera is robust (S. Sato, unpublished

observations).

Many phylogenetic studies of diatoms made using 18S

rDNA have revealed that the araphid pennate diatoms are

paraphyletic. They divide into two groups: (1) a relatively

small clade of marine diatoms containing the Rhaphonei-

daceae, Plagiogrammaceae, Asterionellopsis and Asteropla-

nus and (2) a larger, ‘core’ group (grade) containing the rest

of the araphid diatoms that is the sister group to the raphid

diatoms (e.g. Medlin & Kaczmarska 2004; Alverson et al.

2006; Sims et al. 2006). This relationship was recovered in

the present analysis. Some features of our tree, such as the

sister relationship between the P. oceanica–S. unipunctata

clade and the raphid genus Eunotia, have high support but

are frankly implausible because of morphological and

reproductive evidence. For example, the pattern of aux-

osporulation in Striatella (cis anisogamy coupled with

expansion of the auxospore at the mouth of the female

gametangium and at right angles to it: Chepurnov in

Roshchin 1994) is not shared by Eunotia (Mann et al. 2003)

or with any other raphid diatoms (Round et al. 1990) but

does agree well, though not perfectly, with auxosporulation

in Rhabdonema Kützing and Grammatophora (von Stosch

1962; Sato et al. 2008a). There are also no vestiges of a

raphe in Pseudostriatella (contrast Cocconeis Ehrenberg

‘pseudoraphe’ valves, Semiorbis R. Patrick and some

Asterionella-like diatoms; Mann 1982a; Round et al. 1990;

Kociolek & Rhode 1998). The poorly supported relation-

ship to the raphid diatoms probably results from well-

known analytical artifacts, such as taxon sampling or

substitution bias: the long branches seen in P. oceanica–S.

unipunctata clade suggest an accelerated rate of base

substitution, which may make it difficult to reconstruct

the phylogeny correctly.

Indeed, 18S rDNA analyses undertaken so far have

placed S. unipunctata in various phylogenetic positions.

Some put the genus at the root of the raphid diatoms

(Kooistra et al. 2003a, b, 2004). Given the hypothesis of

Hasle (1974) that the rimoportula might be the predecessor

of the raphe, Kooistra et al. (2003a) implied that the slightly

elongated external opening of the rimoportula in Striatella

illustrates how the raphe could have arisen, by elongation

towards the centre of the valve, creating two slits splitting

the sternum. By contrast, in Medlin & Kaczmarska’s (2004)

analyses, the sister to Striatella is Staurosira construens

Ehrenberg, which has no morphological features in

common with Striatella and Pseudostriatella beyond its

elongate shape (Round et al. 1990). In an 18S rDNA tree

using almost the same data set of Medlin & Kaczmarska

(2004) but constructed by direct optimization (DO), a

heuristic maximum parsimony algorithm, Striatella is sister

to the marine araphid genus Licmophora Agardh (Sorhan-

nus 2004). Finally, the genus has appeared within the

raphid diatoms, as sister to an Anomoeoneis Pfitzer–

Cymbella Agardh clade (Medlin et al. 2000). None of these

relationships are robust (i.e. they receive low bootstrap

support or Bayesian posterior probabilities; statistical

support data are not available in Sorhannus 2004).

Fig. 54. Pseudostriatella oceanica: plan diagram and section (right)
of ‘perizonium’ and initial cell.
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One recent result from a Bayesian 18S rDNA analysis,

using a doublet model that takes base substitutions in

rRNA secondary structure into account, constructed a

robust Striatella–Rhabdonema clade as one of a radiated

group of pennate diatoms (Alverson et al. 2006, fig. 5).

However, the consensus most parsimonious tree discon-

nected Striatella from Rhabdonema and put the taxa into

polytomy (Alverson et al. 2006, fig. 6). Sims et al. (2006)

used a huge data set that placed Striatella at the root of the

‘core’ araphid + raphid clade with high support. In the ML

tree presented by Sorhannus (2007), Striatella also diverges

at the root of the core araphid clade but with low bootstrap

support.

We conclude, therefore, that it is probably impossible at

this time to obtain a fully resolved phylogeny resolving the

correct phylogenetic placement of the P. oceanica–S.

unipunctata clade, and it may remain impossible when 18S

rDNA sequences are used in a single gene phylogeny. It is

particularly important to establish the position of the clade

because of the unusual structure of the auxospore (see

below) and pattern centre in P. oceanica. The pennate

diatoms are usually monophyletic in trees based on a

variety of genes (molecular studies of diatoms are listed by

Mann & Evans 2007), supporting the idea that the ‘pennate’

Bauplan is a synapomorphy, that is, the possession of a

single longitudinal rib-like element (sternum) at the centre

of the pattern and deposited first during valve formation,

which subtends sets of transverse ribs on either side (e.g.

Round et al. 1990, p. 31). Some diatoms previously

regarded as ‘pennates’, such as Toxarium, Ardissonea and

Climacosphenia, which have a different kind of pattern

centre (Mann 1984), have been shown to belong outside the

pennate clade (Kooistra et al. 2003b; Alverson et al. 2006;

Medlin et al. 2008b). However, the pattern centre in P.

oceanica is unlike anything found previously in pennate

diatoms partly because it is a wide unthickened hyaline area

but more importantly because its wider terminal sections

contain pores. In fact, the hyaline area resembles a highly

elongate annulus – a more extreme version of the elongate

annuli seen in some Odontella (e.g. Pickett-Heaps et al.

Fig. 55. Molecular phylogeny of araphid pennate diatoms inferred from 18S rDNA sequence using 1713 aligned positions. The tree shown
resulted from Bayesian inference using a GTR + I + G model. Outgroup bolidomonads and centric diatoms were excluded, and a clade
comprising raphid diatoms is collapsed into triangle for clarity. Nodal support values greater than 50 (NJ, MP and ML) and 0.50 (BI) are
shown. Nodes with strong supports (bootstrap support . 90 in NJ, MP and ML, and posterior probability . 0.95 in BI) are shown as thick
lines. 1Name change since deposit; 2likely a new genus collected from a marine habitat (Medlin et al. 2008a); 3annotated as Asterionellopsis
kariana in GenBank.
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1990, fig. 40e) and Attheya species (Crawford et al. 1994).

Until a robust phylogeny is available, it will be unclear

whether the resemblance between the Pseudostriatella

pattern centre and an annulus is a symplesiomorphy (i.e.

Pseudostriatella does not have and has never had a true

sternum) or the result of convergent evolution.

Auxosporulation and auxospore fine structure

We were not able to establish how the auxospores arise in

monoclonal cultures of P. oceanica because the earliest

stages were not seen. It is very unlikely that the auxospores

developed through allogamous sexual reproduction because

we are confident that we would have observed the empty

frustules of any ‘male’ cells close to the expanding

auxospores (Roshchin 1994; Chepurnov et al. 2004).

Therefore, we have referred to the auxosporulating cells

as ‘auxospore mother cells’ rather than as gametangia.

Further work is needed to determine whether auxosporula-

tion involves meiosis and automictic fusion or whether it is

apomictic. Nonallogamous formation of auxospores and

vegetative cell enlargement has been recorded in other

araphid pennates, including Grammatophora (Sato et al.

2008a) and Licmophora (Kumar 1978).

The structure of the auxospore in P. oceanica is unlike

anything described so far and prompts re-examination of

the nature of ‘perizonia’ and ‘properizonia’. In its overall

layout, the auxospore casing of P. oceanica resembles the

envelopes of Rhabdonema (von Stosch 1962, 1982),

Gephyria (Sato et al. 2004) and Grammatophora (Sato et

al. 2008a) in that it possesses small more or less isodiametric

or slightly elongate scales and also a separate series of

longitudinal and transverse bands. However, there are also

significant differences, notably in the structure of the

transverse bands and the spatiotemporal organization of

auxospore development.

There are very few scales in P. oceanica, compared to

other araphid diatoms (Sato et al. 2004, 2008a, b), and we

found them only on the mature auxospore (although we

cannot wholly exclude that they were present). As in other

diatoms (e.g. von Stosch 1962, 1982; Crawford 1974;

Kobayashi et al. 2001; Schmid & Crawford 2001), the

scales varied in shape within a single auxospore. Some

scales had an annulus and were morphologically similar to

those of centric diatoms (Round et al. 1990). In P. oceanica,

the auxospores never had a complete covering of scales. The

few scales present were restricted to the ventral side in

nearly mature or mature examples. A ventral distribution is

also present in fully developed auxospores of the medio-

phycean centric diatom Chaetoceros didymum Ehrenberg

(von Stosch 1982, fig. 2), although here the scales can also

be detected from the earliest stages (von Stosch et al. 1973;

von Stosch 1982).

Some details of perizonial structure were obscured by

collapse of the auxospore during air drying. However, the

widest LP band was always located at the most ventral end

(Fig. 52), and it was associated with two additional bands.

We therefore infer that the widest band is the primary band

and that the additional bands flanking it are a secondary

and a tertiary LP band (Fig. 54). We believe, however, that

some of the LP bands were hidden by folding of the

auxospore, which seems likely because all of the longitu-

dinal perizonia reported so far in pennate diatoms are

structurally symmetrical (e.g. von Stosch 1962, 1982; Mann

1982b; Toyoda et al. 2005), even in Amphora (Nagumo

2003). There would therefore be five longitudinal bands in

P. oceanica (Fig. 54), and a similar arrangement has been

found in Tabularia parva (Sato et al. 2008b). Interestingly,

even though the valves of P. oceanica have a poorly

expressed and irregular sternum–stria system, the LP bands

have strictly parallel patterning, resembling the striation of

normal araphid diatom valves.

The usual structure of the transverse perizonium in

pennate diatoms – both araphid and raphid – is that there is

a central primary band with a separate series of secondary

bands on each side (von Stosch 1982; Mann 1982b). The

primary band is either a short cylinder wholly encircling the

centre of the auxospore (i.e. it is ‘closed’: e.g. Poulı́čková &

Mann 2006), or it is a split ring (an ‘open’ band) with its

ends almost touching (e.g. Sato et al. 2004). The secondary

bands are usually open, again with their ends closely

associated. The TP bands combine to form a cigar-shaped

perizonium with a narrow ventral suture, beneath which

there is often a set of LP bands, again differentiated into a

central primary band and two short flanking series of

secondary bands (e.g. Mann 1982b; Mann & Stickle 1993;

Nagumo 2003; Sato et al. 2004; Toyoda et al. 2005). The

function of the perizonium appears to be to support and

constrain anisometric expansion of the auxospore (Mann

1994).

Many centric diatoms also exhibit anisometric expan-

sion, and again this is apparently controlled through the

formation of band-shaped stiffening elements, which

together constitute a structure called the ‘properizonium’

(von Stosch 1982). The key difference between properizonia

and perizonia identified by von Stosch (von Stosch &

Kowallik 1969; von Stosch et al. 1973; von Stosch 1982) is

that perizonia are independent from the original zygote wall

both structurally and developmentally (the perizonium is

‘eine von der ursprünglichen Zygotenhülle unabhängige

Struktur’: von Stosch & Kowallik 1969, p. 469). In

Figs 56, 57. Striatella unipunctata (LM). Scale bars 5 10 mm.
Fig. 56. Living cell showing distinctive plastids. Arrowhead
indicates truncated corner of cell.
Fig. 57. Cleaned valve taken with phase contrast optics. Arrow
indicates rimoportula, arrowhead indicates sternum.
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contrast, properizonia are supposed to be structurally and

developmentally continuous with the scale-containing

layers that precede them (the otherwise helpful review by

Kaczmarska et al. 2001 may be misleading in this respect).

Thus, von Stosch (1982, p. 146) considered that, for the

evolutionary transition from properizonial casings to

perizonial diatoms like Rhabdonema, ‘the first item

necessary would be a developmental and spatial hiatus

between scale layers and properizonial band systems’. No

other features have been identified that are diagnostic for

the perizonium vs the properizonium, but it is generally

considered (von Stosch 1982; Round et al. 1990; Kacz-

marska et al. 2001; Medlin & Kaczmarska 2004) that

perizonia are characteristic of pennate diatoms; whereas,

properizonia are restricted to some lineages of multipolar

centric diatoms. Our observations of P. oceanica revealed

no clear developmental separation between a primary scale-

bearing wall and the ‘perizonium’. Scales were rare and

produced apparently only towards the end of auxospore

expansion, and it appears too that longitudinal perizonial

elements are produced before the transverse perizonium. In

retrospect, we believe that a similar continuity of develop-

ment may occur also in Gephyria, where we (Sato et al.

2004) detected scales on the inside of the primary TP band.

Another curious, ‘transitional’ feature of P. oceanica

auxospores concerns the nature of the secondary TP bands.

As noted above, the secondary bands on either side of the

primary TP band are separate entities in the perizonia of all

raphid and araphid pennates studied until now, as they are

also in a few properizonia (those of Odontella and

Biddulphia; von Stosch 1982). Pseudostriatella is quite

different because the secondary TP elements are continuous

from one end of the auxospore to the other around the

ventral side (Fig. 54). Each is therefore a complex hoop,

shaped like the margin of a saddle. Thus, although the

expansion of the auxospore is bipolar in P. oceanica, the

development of the TP itself is unipolar, beginning from the

strap-like primary band and extending out both laterally

(towards the poles) and ventrally. Exactly the same

unipolar pattern of development occurs in the properizonia

of Chaetoceros, Bacteriastrum, Attheya, Lithodesmium (here

the topology is more complex, because most auxospores are

triradiate) and Bellerochea (von Stosch 1982) and also in

Lampriscus (Idei & Nagumo 2002). Thus, it would be as

reasonable to regard the auxospore casing of P. oceanica as

a properizonium as it is to describe it as a true perizonium,

despite the fact that this species clearly belongs phyloge-

netically to the pennate lineage. The presence of longitu-

dinal elements in the Pseudostriatella casing is not

conclusive support for interpretation as a perizonium

because (1) longitudinal elements are present beneath the

‘transverse’ bands in the triradiate centric Lithodesmium

(von Stosch 1982; see also Round et al. 1990) and (2) the

longitudinal bands of P. oceanica seem to be formed before

the transverse bands, whereas during perizonium formation

in raphid diatoms the converse is true.

A simple conclusion can be drawn: there is simply too

little information from too few taxa to allow detailed

analysis of the evolution of auxospore structure, and the

distinction between properizonia and perizonia needs to be

re-evaluated. All that can be said at the moment is that

classification into scaly, properizonial and perizonial

auxospores (cf. the ‘isometric’, ‘anisometric’ and ‘bilateral’

auxospores of Kaczmarska et al. 2001) is perhaps too

simple but that the development of shape is generally

associated with stiffening of the auxospore wall during

expansion by silica bands and hoops.

ACKNOWLEDGEMENTS

The authors are grateful to Beth K. Petkus for collection of

living specimen and brought us it from the United States to

Germany with her, Richard M. Crawford for correction of

the manuscript and discussion, Stephan Frickenhaus for

establishing parallel processing for Bayesian analyses, Paul

A. Fryxell for helping to translate the Latin diagnosis,

Friedel Hinz for technical help for LM and SEM, and

Masahiko Idei for allowing us to access his poster for the

17th International Diatom Symposium. We also thank two

anonymous reviewers for their valuable comments and

suggestions. This study was supported by DAAD for

doctoral research fellowship to Shinya Sato.

REFERENCES

ALTEKAR G., DWARKADAS S., HUELSENBECK J.P. & RONQUIST F.
2004. Parallel Metropolis-coupled Markov chain Monte Carlo
for Bayesian phylogenetic inference. Bioinformatics 20: 407–415.

ALVERSON A.J., CANNONE J.J., GUTELL R.R. & THERIOT E.C.
2006. The evolution of elongate shape in diatoms. Journal of
Phycology 42: 655–668.

AMATO A., ORSINI L., D’ALELIO D. & MONTRESOR M. 2005. Life
cycle, size reduction patterns, and ultrastructure of the pennate
planktonic diatom Pseudo-nitzschia delicatissima (Bacillario-
phyta). Journal of Phycology 41: 542–556.

ANONYMOUS. 1975. Proposals for a standardization of diatom
terminology and diagnoses. Nova Hedwigia, Beiheft 53: 323–354.

CAHOON L.B. 1999. The role of benthic microalgae in neritic
ecosystems. Oceanography and Marine Biology. An Annual
Review 37: 47–86.

CHEPURNOV V.A., MANN D.G., SABBE K. & VYVERMAN W. 2004.
Experimental studies on sexual reproduction in diatoms.
International Review of Cytology 237: 91–154.

COHN S.A., SPURCK T.P., PICKETT-HEAPS J.D. & EDGAR L.A.
1989. Perizonium and initial valve formation in the diatom
Navicula cuspidata (Bacillariophyceae). Journal of Phycology 25:
15–26.

CRAWFORD R.M. 1974. The auxospore wall of the marine diatom
Melosira nummuloides (Dillw.) C. Ag. and related species. British
Phycological Journal 9: 9–20.

CRAWFORD R.M. 1975. The frustule of the initial cells of some
species of the diatom genus Melosira C. Agardh. Nova Hedwigia,
Beiheft 53: 37–50.

CRAWFORD R.M., GARDNER C. & MEDLIN L.K. 1994. The genus
Attheya. I. A description of four new taxa, and the transfer of
Gonioceros septentrionalis and G. armatus. Diatom Research 9:
27–51.

DAVIDOVICH N.A. 2001. Species-specific sizes and size range of
sexual reproduction in diatoms. In: Proceedings of the 16th
International Diatom Symposium (Ed. by A. Economou-Amilli),
University of Athens, Greece. pp. 191–196.

ELWOOD H.J., OLSEN G.J. & SOGIN M.L. 1985. The small subunit
ribosomal DNA gene sequences from the hypotrichous ciliates
Oxytricha nova and Stylonichia pustulata. Molecular Biology and
Evolution 2: 399–410.

Sato et al.: Pseudostriatella oceanica gen. et sp. nov. 389



EPPLEY R.W., HOLMES R.W. & STRICKLAND J.D.H. 1967. Sinking
rates of the marine phytoplankton measured with a fluoroch-
rometer. Journal of Experimental Marine Biology and Ecology 1:
191–208.

GEITLER L. 1932. Der Formwechsel der pennaten Diatomeen.
Archiv für Protistenkunde 78: 1–226.

GILLESPIE J.J., MCKENNA C.H., YODER M.J., GUTELL R.R.,
JOHNSTON J.S., KATHIRITHAMBY J. & COGNATO A.I. 2005.
Assessing the odd secondary structural properties of nuclear
small subunit ribosomal RNA sequences (SSU) of the twisted-
wing parasites (Insecta: Strepsiptera). Insect Molecular Biology
14: 625–643.
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H., LOISEAUX-DE GOËR S. & VAULOT D. 1999. Bolidomonas: a
new genus with two species belonging to a new algal class, the
Bolidophyceae class. nov. (Heterokonta). Journal of Phycology
35: 368–381.

HALL T.A. 1999. BioEdit: a user-friendly biological sequence
alignment editor and analysis program for Windows 95/98/NT.
Nucleic Acids Symposium Series 41: 95–98.

HANCOCK J.M. & VOGLER A.P. 2000. How slippage-derived
sequences are incorporated into rRNA variable-region secondary
structure: implications for phylogeny reconstruction. Molecular
Phylogenetics and Evolution 14: 366–374.

HASLE G.R. 1974. The ‘mucilage pore’ of pennate diatoms. Nova
Hedwigia, Beiheft 45: 167–194.

HUELSENBECK J.P. & RONQUIST F. 2001. MRBAYES: Bayesian
inference of phylogeny. Bioinformatics 17: 754–755.

HUSTEDT F. 1931. Die Kieselalgen Deutschlands, Österreichs und
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weite und Überlegungen zu seiner zellmechanischen Bedeutung.
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