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Phytoplankton blooms, in their pivotal position in pelagic seasonal succession require precise classification
criteria in order to evaluate such parameters as bloom start, bloom timing, bloom maximum and growth
rates. Such bloom parameters are linked directly to species and bloom specific features. Currently the
phytoplankton bloom concept, though intuitively clear, lacks operational criteria allowing the precise
definition of bloom parameters. We present a semi-quantitative method of classification of marine
phytoplankton blooms based on an algorithmic estimation of several bloom descriptors computed from
densely recorded phytoplankton data, like the Helgoland Roads long-term time series. Combining these
descriptors we propose a novel classification scheme which may serve useful in the discussion of species
fitness, competition and succession of marine algae. Special emphasis is put on the detection of the bloom
start, because of its crucial importance for many current research topics, including trigger mechanisms and
climate-induced temporal shifts in the context of the match/mismatch hypothesis. Visual examination of
scatter plots of these parameters leads us to propose three types of blooming algae.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Phytoplankton are commonly distinguished by their morphology
to a species level or, with less specificity combined into taxonomic
groups (diatoms, dinoflagellates, cyanobacteria, flagellates etc.).
Commonly over a seasonal cycle algal species or groups develop
blooms, sometimes also called ‘phytoplankton events’ (Beliaeff et al.,
2001). Abundance and timing of these phytoplankton blooms are
pivotal to a proper functioning of the marine food web and climate
induced shifts are currently discussed in the context of the match/
mismatch hypothesis (Beaugrand et al., 2003; Cushing, 1990; Platt et
al., 2003; Wiltshire & Manly, 2004), i.e. the temporal and/or spatial
decoupling of hitherto synchronised processes.

When discussing phytoplankton blooms, scientists base their
assessments on classical batch culture studies whereby cell count
records/biomass concentrations are segmented into different phases.
Phytoplankton blooms, spring blooms as well as red tides, are
considered to have a lag phase with a few initial cells (Spencer,
1954), an exponential growth phase where cells produced also
produce more viable cells, a declining growth rate phase where
cessation of the exponential growth occurs, a stationary phase where
cell death and growth are balanced and, finally, a death phase where
the population declines (Fogg and Thake, 1987; Spencer, 1954) caused
by several factors e.g. sinking, grazing, nutrient depletion, viral
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infection etc.. Indeed, in situ algae can actually bloom in roughly
such a manner as has been shown in the works of Lund (1950) and
Platt and Subba Rao (1970). In the context of detecting parameters like
the bloom start, we see the development of a phytoplankton bloom as
a change in the dynamics of cell counts switching from slow growth
(lag phase) to pronounced exponential growth. As a major advantage,
the dynamical aspect of this approach is universal and totally different
from species specific threshold concepts.

Closer examination of oceanic and neritic algae shows, however,
that marine species do not always bloom in such a straightforward
manner and that even from year to year single species can show
different bloom patterns. Thus, from long term observations we know
that the blooms of phytoplankton species on a seasonal basis in
marine systems are difficult to describe even in general terms. Only a
few attempts of mathematically differentiating, for instance, start,
maximum and duration of blooms, have been reported for coastal
waters by e.g. Beliaeff et al. (2001) and Rolinski et al. (2007). A
description of blooms in marine systems, and especially in shelf seas,
is more difficult than in limnic systems since strong hydrodynamic
forcing results in a highly fluctuating environment (dynamical noise).
Sometimes these fluctuations hamper reproducible or well-controlled
measurements (observational noise) and, on top of that, cell counting
methods introduce statistical fluctuations (statistical noise). However,
describing bloom dynamics is not straightforward, especially in high
frequency (e.g. daily) data. Indeed, several different methods have
been described (see above), all of which have their merits depending
on the shape of the blooms and sampling frequency but inWiltshire et
al. (2008) we found that there is no easy way to describe a bloom data
set with highly resolved and variable data.
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The most effective way to rectify this situation is to evaluate data
sets on phytoplankton with a high taxonomic resolution and
differentiate the blooming characteristics of different microalgae
preferably over long periods of time. Luckily, high resolution long-
term data exist, for example the Helgoland Roads (HR) time series.
This is part of the Helgoland Roads monitoring programme of
biological, chemical and physical parameters (e.g. Wiltshire 2004).
In this paper we aim to use 16 key species of the HR data base to
calculate descriptors, characterising phytoplankton species and
blooms of the North Sea habitat at Helgoland. We choose these 16
species, because we have reliable unbiased and quality controlled data
from 1962 onwards as described in Wiltshire (2004). Secondly these
16 species are very important and representative food species for the
respective region. Throughout this paper we use the term “bloom” for
the largest count of cells for each species during each year in the data
set as an operational definition knowing that we neglect for
algorithmic simplicity the sometimes observable multiple blooms
for particular species. A special focus will be on the appropriate
extraction of the bloom start as this information is relevant for many
subsequent analyses, e.g. the method of bloom triggered averaging
(Freund et al., 2006a), and also important in the context of timing
shifts and the afore-mentioned match/mismatch hypothesis.

The paper is organised as follows: In Sect. 2 we elaborate on data
analysis methods which we developed in order to compute the
diverse bloom descriptors. In Sect. 3 we combine the computed
quantifiers to yield a classification of blooms and/or algal species
observed in the Helgoland pelagic environment. We end with a
discussion of our results and their ecological relevance and give an
outlook on potential applications and future research.

2. Methods

2.1. Data acquisition

Surface water samples were taken (usually before 9 am) on
working days at the “Kabel Tonne” site (54°11.3'N, 7°54.0'E) between
the two islands at Helgoland using a bucket. This sample was mixed
well and subsampled into a glass bottle for future analyses of nutrients
and phytoplankton. The phytoplankton samples taken from this were
preserved in a brown glass bottle using Lugol's solution. The preserved
sample was counted under an inverted microscope to species level
using the Utermöhl method (25-50 mls of volume counted). Based on
Poissonian statistics we require a minimum of 120 cells per litre for a
phytoplankton bloom. The probability of observing no cell at this
concentration amounts to less than 5% or 2,5% for sample volumes
25 ml or 50 ml, respectively.

The species lists used are described in Wiltshire and Dürselen
(2004). The data is archived in the PANGAEA databank (URL: http://
www.pangaea.de).

All of the microalgal data from the time series were quality
controlled for counting errors, identification misnomers and occur-
rence conformity (Wiltshire and Dürselen, 2004). We chose 16
representative algae from this data set. We also include Noctiluca
scintillans in our study, it being an important bloomer in the North Sea
although it is not an autotrophic microalga, but rather a heterotrophic
dinoflagellate. The range of species evaluated was chosen to represent
the diverse array of organisms. They include organisms typical for all
seasons, diatoms, dinoflagellates and heterotroph organisms, with
low and high cell counts etc.. The raw data are unevenly sampled
(work-daily) records. As can be seen from Fig. 1 cell counts were
heavily affected by fluctuations that probably result from the small-
scale patchy nature of the algal distribution in surface waters on a
daily basis due to changes of environmental conditions (e.g. wind
causing turbulence and hydrodynamic flow) or the patchy structure of
algal populations. Such fluctuations might be especially important at
the bloom start; as an illustration see the third panel of Fig. 1 which
exhibits the rising flank interspersed with dips down to zero counts.
Both, data gaps and fluctuations prevented a reliable determination of
bloom characteristics, hence, as a first step of data processing we had
to interpolate and smooth the raw data.

2.2. Pre-processing: application of smoothing splines

The choice of an appropriate data smoothing method is one of the
most decisive elementary steps for subsequent analyses.We chose the
method of smoothing splines as it represents the optimal compromise
between smoothing without deviating too much from the original
data (Reinsch, 1967).

It should be noted that smoothing splines accomplish both tasks,
smoothing and interpolation simultaneously. However, in contrast to
common interpolating splines, which pass through all the data points,
the method of smoothing splines accounts for measurement errors
and, consequently, allows deviations of the smoothed curve from data
points.

To be specific, let us denote the measurement points by pairs (xi,
yi) and the smoothed curve by pairs (xi, f (xi)) both for i=1,...,N . The
smoothing spline algorithm is based on a standard method of
variational calculus by minimising the functional

S̃ðf ;λÞ = ∫
xN

x1

½f 00ðxÞ�2dx + λ ∑
N

i=1
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The first term integrates the square of local curvature; the
smoother the curve f (x) the smaller its contribution to the functional.
The second term sums the residuals normalised to the local variance
σ2

i . Given an appropriate choice of σi one would expect this sum to
equal N. Deviations from this prescribed value N are multiplied by the
Lagrange parameter λ (penalty parameter) and this product consti-
tutes the second contribution to the functional. The minimisation
procedure yields conditions for f(x), in particular the form of
piecewise cubic polynomials (Reinsch, 1967), that can be cast into
the form of matrix equations which can be solved by an algebraic
computer program. The values of λ=5·106 and σ=1·104 were
adapted to the HR data (Mieruch and Freund, 2005).

An example of this treatment is given in Fig. 1 where we depict the
measured counts of the species Guinardia delicatula (blue line and
diamonds) together with the smoothing spline (red curve) and a
smoothed (green) curve that was obtained by applying a moving
average with a sliding rectangular window of width five days to
linearly interpolated data. Both smoothing procedures result in similar
traces although the spline is visibly smoother. A key issue with regard
to algal bloom description is the correct extraction of the bloom start
from measured data. When devising an algorithm for this seemingly
simple task, one is confronted with several problems: As can be seen
from Fig. 1, a determination of the bloom start by visual inspection
heavily depends on whether one plots cell counts on a linear or
logarithmic scale. To account for the detection limit we replaced zero
counts by the detection limit of 20 cells per litre, which results from
the fact, that the counting volume was 50 ml (cf. Sect. 2.1), thus
finding one cell per 50 ml corresponds to 20 cells per litre. From now
on zero counts should be understood as concentrations below the
detection limit.

Selecting the bloom start as the first day of zero counts preceding
the maximum from raw data is also problematic (as seen in the
bottom panel of Fig. 1). Approaching the annual peak from left to right
and to select the terminal day of leading zeroes might be suitable here.
However, in other cases we observed unrealistic bloom durations
larger than two hundred days. Hence, belowwe describe an algorithm
that searches for the bloom start by moving in the left direction away
from the annual maximum. For the example depicted in the second
and third panel of Fig. 1 this algorithm, when applied to raw data,
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Fig. 1. An example of the Helgoland Roads data: raw data (blue) together with two smoothed curves (red: smoothing spline, green: moving five-day average). A representation of the
same data on a linear (second panel) or a logarithmic scale (third panel) illustrates that a visual determination of the bloom start might result in drastic discrepancies. Notice the
detection limit of 20 cells per litre in the logarithmic representation. Noise in the raw data causes difficulties in the algorithmic determination of the bloom start: Applying our
algorithm (see text and cf. Fig. 2) to raw datawould select an obviously erroneous start (blue). Depending on the smoothingmethod our algorithmic criterion selects either one (red)
or the other (green) bloom start. From biological considerations the red starting point corresponding to the smoothing spline should be preferred. The last panel demonstrates the
smoothness of the red spline in a blow-up.
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would be trapped in a fluctuation (08 May 1990). To prevent this and
since the common sense notion of an algal bloom implies continuous
data we used smoothed curves.

2.3. Extraction of bloom descriptors from pre-processed data

Following the pre-processing described above we computed
several bloom descriptors:

• Annual maximum counts (cells/litre)
• Bloom start (ordinal dates)
• Start counts (cells/litre)
• Bloom specific growth rate at bloom start (1/day)
• Start-to-peak distance (days)

In the following we detail these descriptors:

2.4. Annual maximum counts

Though precisely defined, the idea of the maximum annual peak is
sometimes challenged by additional peaks or even plateaus of smaller
but comparable height. Due to the high variability of values across
years and species we preferred to use decadal logarithms of maximum
values in graphical representations. By default, with the term “annual”
we mean the 365 day-period starting from the first of January,
although in our algorithm (Mieruch and Freund, 2005) this date can
be shifted as desired, e.g. for cold water bloomers.
2.5. Bloom start

A naive approach would determine the bloom start as the instant
when cell counts cross a species-specific threshold from below.
However, even within single species a large variance of annual
maximum counts makes such a simplistic threshold mechanism
unlikely. We chose the following method to extract the bloom start
from pre-processed data:

• First the algorithm defines an interval within which the bloom start
will be searched. To this end, the algorithm starts at the bloom peak
and moves to the left collecting all days with decreasing cell
numbers. A stagnation point or a local minimumwill be accepted as
the search interval start if and only if related cell counts are below 1%
of the annual peak (see also Greve et al., 2004). If cell counts exceed
the 1% threshold the algorithm continues moving to the left until it
hits another stagnation point or local minimum. Continuing as
before, the onset of the search interval will eventually be found.

• Once the search interval has been determined the algorithm
computes instantaneous growth rates (local slopes of three-day
linear regressions of logarithmic cell counts).

• From the list of instantaneous growth rates we computed their
increments. We define the bloom start as the point of maximum
increment, i.e. of maximum acceleration of phytoplankton growth,
given that both rates are non-negative.

Figure 2 illustrates the detection of the bloom start using the
algorithm described above. There we have explicitly indicated the lag



Fig. 2. Our algorithm to determine the bloom start is applied to pre-processed data (via
a smoothing spline) shown in the upper panel. From the total range of times (upper
panel) a search interval (indicated by the vertical lines) is segmented automatically.
Alternating grey and black line segments in the lower panel (search interval) represent
instantaneous growth rates (fits over three days). The dashed line indicates the bloom
start which separates the lag phase from the exponential growth phase.
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phase, the exponential growth phase and the declining growth phase
as obtained from the smoothed data.

2.6. Start counts

The start counts are the cell numbers at the bloom start. This is
neither a constant value nor a year-specific threshold.

2.7. Growth rate at bloom start

Instantaneous growth rates were already defined and used in
Sect. 2. It should be noted that this value does not necessarily coincide
with the maximal growth rate, which is experienced at an inflexion
point, which needs additionally the second and third derivatives
Fig. 3. Scatter plot of annual maximum counts vs. growth rate at bloom start with colours co
means 101, twomeans 102 etc.. This plot clearly shows the event-based classification of Zero S
the statistical fluctuations from blooms.
(fVN0, f VV=0 and f VVVb0) of the concentration profile (f (t)). The units
of the growth rates at bloom start are given in 1/day.

2.8. Start-to-peak distance

This is the temporal distance (in days) between the bloom start (as
defined in Sect. 2.3.2) and the day of annual maximum counts.

For the interested user we refer to a website (Mieruch and Freund,
2005) where own data can be analysed. This page offers a suite of our
Matlab scripts which can be readily applied to existing data series of
algal cell counts and which will compute the bloom descriptors.

3. Results

Following the computation of bloom descriptors we now proceed
to the second stage of our semi-quantitative classification. We
combine the above calculated bloom descriptors in a series of scatter
plots and classify observed structures in two different ways: species-
based and event-based.

3.1. Annual maximum counts vs. growth rate at bloom start

First of all we investigated the relationship between the initial
growth rate at bloom start and the maximum density reached by the
selected 16 key species (Fig. 3). One could reason that this relationship
is a trivial one, as it could be expected that algae which start growing
at a higher speed should reach higher densities than thosewith slower
growth rates. However, this is not necessarily the case for three
reasons: Firstly, the bloom start can be temporally separated from the
time of maximum cell counts by as many as 30 days, time for random
fluctuations to erase the correlation between initial growth rate at
bloom start and maximum cell counts. Secondly, the time needed to
reach the maximal cell count in the different blooms is widely
variable, and could also influence the height of the maximum
densities. Indeed the correlation between annual maximum counts
vs. start-to-peak duration was very small (see below). Thirdly, the
maximum occurs, when growth and mortality are balanced, thus loss
terms are relevant before the maximum is reached, hence making the
correlation between initial growth rate and the maximum densities a
ding start counts. The values of the abscissa indicate the multiplication per day, i.e. one
tarters (black) and Supra Zero Starters (red, green, blue). The black dashed line separates



Fig. 4. Two examples of Zero Starters (top row), and two examples of Supra Zero Starters (bottom row). According to our classification scheme the upper left panel shows a type A
bloomer (Ceratium lineatum), the lower left a type C bloomer (Phaeocystic spec.), and the two right panels relate to a type B bloomer (Skeletonema costatum). Cell concentrations are
plotted on a logarithmic axis (note that Zero Starters are counted with value 20 (detection limit)). Black dots indicate the bloom start as identified by our algorithm applied to pre-
processed data. Grey curves outline raw data, black curves represent the smoothing splines.
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non-trivial one. The event-based classification (Fig. 3) of phytoplank-
ton blooms results in finding two types of bloomers:

1. Zero Starters are marked as black dots (a highly significant
correlation coefficient (r=0.86,pb0.001) is observed between the
initial growth rate and the maximum counts), and these type of
bloomers start growing from very low initial densities (examples:
top panels of Fig. 4).
Fig. 5. Scatter plot of annual maximum counts vs. growth rate at bloom start with colours co
reflecting the statistical structure of this bloom ensemble are sketched in Fig. 6; further expla
2. Supra Zero Starters (red, green, blue dots) start with varying start
counts up to 100000 cells per litre and more (examples: bottom
panels of Fig. 4).

The species-based classification is adapted from Fig. 5 where
different species are indicated by different colours and symbols. Based
on this structure of scattered blooms, we introduced a grouping of
different types of bloomers indicated by ellipsoids shown schematically
ding key species; note the decadal logarithmic scale of the ordinate. The basic features
nations see text. The black dashed line separates the statistical fluctuations from blooms.



Fig. 6. The three bloom types A: Pure Zero Starters, B: Mixed Zero and Supra Zero
Starters and C: Constant Peak Bloomers, obtained by grouping the computed bloom
descriptors are plotted as black dots.

Table 1
Assignment of bloom types A, B and C to each of the 16 key species from Helgoland
Roads data.

Species Bloom types μcc±σcc μgr±σgr # blooms

Phaeocystis spec C 6.0±0.4 1.7±0.8 19
Guinardia delicatula C 5.1±0.4 1.2±0.6 38
Skeletonema costatum B 5.0±0.6 1.1±0.7 30
Eucampia zodiacus B 4.5±0.7 0.8±0.5 33
Thalassionema nitzschioides B 4.1±0.8 0.7±0.6 24
Scrippsiella trochoidea (C) 4.0±0.3 0.5±0.6 4
Ceratium fusus B 4.0±0.8 0.3±0.4 34
Ceratium furca B 3.9±0.8 0.5±0.4 34
Prorocentrum micans A 3.5±0.6 0.5±0.3 32
Odontella aurita A 3.2±0.7 0.4±0.3 28
Noctiluca scintillans A 2.8±0.3 0.3±0.2 34
Ceratium horridum A 2.9±0.5 0.3±0.2 26
Torodinium robustum (A) 2.6±0.2 0.4±0.1 5
Ceratium lineatum A 2.7±0.7 0.4±0.2 14
Ceratium tripos A 2.6±0.4 0.3±0.1 18
Odontella regia A 2.6±0.4 0.5±0.2 19

This assignment (cf. Fig. 5) is based on our semi-quantitative classification and
supported by the combination of standard deviations of logarithmic maximum cell
counts σcc and growth rate at start σgr. Related mean values are denoted μcc and μgr.
Bracketed bloom types indicate an assignment that we consider to be statistically non
significant as the number of observed blooms (last column) was too small (b10).
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in Fig. 6. So from two bloom types (Zero Starters, Supra Zero Starters),
ignoring the species we go to three:

• Pure Zero Starters: The faster they start the higher they get. Even
though the correlation between the maximum count and start-to-
peak duration was significant, the coefficient of determination
was not very strong and the slope of the relation not very steep.
Hence, it seems to be the case that the growth rate at the start of a
bloom is a good indication of the growth during the whole bloom
in these type blooms. For instance Odontella regia is a type A
bloomer.
• Mixed Zero and Supra Zero Starters: These are species that have a
mixed strategy: They can start growing with relatively small growth
rates at bloom start and reach a broad range of different maximum
densities. This dispersion is strongly correlated with substantially
varying start counts and not with variation in start-to-peak
durations. Furthermore type B can grow like type A. As an example
we mention the species Ceratium fusus in Fig. 5.

• Constant Peak Bloomers: Irrespective of substantially varying
growth rates at bloom start they reach narrow-distributed (on a
logarithmic scale) bloom peak counts, a fact which is under-
standable when noting that both start counts and start-to-peak
duration can vary substantially. A typical representative is Guinardia
delicatula (blue squares in Fig. 5). The crucial difference between B
and C is the stable character of C mostly reaching constant
maximum densities.

3.2. Annual maximum counts vs. start-to-peak duration

When constructing scatter plots (not shown here), we only found a
weak correlation (r=0.10,p=0.035) between the start-to-peak
duration and the annual maximum cell counts, thus emphasising
the weak influence of the start-to-peak duration on maximum cell
count.

3.3. Start-to-peak duration vs. growth rate at bloom start

Plotting the start-to-peak duration vs. the growth rate at bloom
start (not shown here) reveals that there is only a weak but
statistically significant (pb0.001) anti-correlation (correlation coeffi-
cient r=–0.17) which reflects the fact that due to nutrient depletion
algal species cannot grow too long with a large growth rate. Similar
effects can be expected from temperature dependence of growth
rates.

3.4. Statistical support for our classification

Based on our classification above we assigned each of the 16
species to one of these types (Table 1). Additionally we calculated
species specific mean (μcc and μgr) and standard deviations (σcc and
σgr) of logarithmic maximum cell counts and growth rates, respec-
tively. We tested this classification, using all of the available
parameters described above in a discriminant analysis with the



Fig. 7. Our assignment of bloom types listed in Table 1 is reflected by clusters in the
plane spanned by standard deviations σgr and σcc of growth rates and logarithmic
maximum cell counts, respectively. Statistically non significant classifications of algae
are neglected (cf. Table 1). C. furca and C. fusus have identical σgr and σcc values and are
indicated by the open square overlayed on the filled square.

42 S. Mieruch et al. / Journal of Marine Systems 79 (2010) 36–43
three type bloomers (A, B, C) as the grouping variables, and the five
bloom descriptors as the measured variables. Based on this, we
observed a highly significant difference between groups (Wilks
Lambda=0.035; F8,872=78; pb0.001), with maximum cell counts,
initial growth rate and start date of the bloom as those variables that
significantly differentiate the groups, resulting in a correct classifica-
tion of the blooms in 73% of all cases (392). Most mistakes were made
between C and B, which seems understandable given the overlap as
shown in Fig. 6. Plotting the standard deviations of the logarithmic
maximum cell counts (σcc) and growth rates (σgr), yields the same
picture (Fig. 7). Bloom type A is typically connected with σgrb0.35,
while larger σgr comprise types B and C. The latter-mentioned types
can be separated by the threshold of σcc=0.45; while type C typically
falls below this value type B is found at larger values.

So, we have shown that it is possible to differentiate between
different bloomers based on the characteristics of the bloom, and we
can do so with about 73% accuracy.
4. Discussion

In this paper we applied a simple method to differentiate algal
growth types in blooming algal species. To date, such an examination
of algal growth is missing in the literature and most studies deal with
blooms in a fairly descriptive way. The only rate evaluations are based
on temperature, light and nutrient related differences (Keller, 1989;
Sommer, 1989; Wright, 1964). Particularly, precise and generally
accepted criteria defining algal blooms in situ are missing. This is due
to the fact that most of our current knowledge on microalgal growth
has been obtained from experiments under ideal conditions (Fogg and
Thake, 1987; Spencer, 1954). At the other end of the spectrum are
models describing unicellular growth (Albinet & Pelce, 1996;
Hentschel and Fine, 1994) and process-oriented models (Edwards
and Brindley, 1996; Huppert et al., 2002; Truscott and Brindley, 1994).
However, algal growth under natural conditions never occurs under
ideal conditions, because fluctuations e.g. in temperature, light,
nutritions etc. take effect.

Using our algorithmic methods we were successfully able to
extract the following descriptors in over 80% of the 392 major blooms
that occurred in the 16 key species in the period 1962-2002:
maximum abundance, bloom start, start abundance, growth rate at
start and start-to-peak duration. The algorithmic criterion presented
in this paper is motivated by experimental observations and defines
the bloom start as the point of maximal acceleration of cell
proliferation. To avoid being trapped in fluctuations it must be applied
to pre-processed data and we found that (adapted) smoothing splines
are appropriate to render the bloom start of realistic data in
agreement with biological expertise.

Using these descriptors we differentiated between different types
of blooms. Bloomers of the type C which reach a prototypical
abundance in each year seem to be less sensitive to changes in their
environment and to shifts of the bloom timing. Their peak abundance
is often close to the saturation limit (potential carrying capacity) and
not so much affected by competing species. In contrast, bloomers of
the types A or B can show a large variation in their peak abundance
that is either rooted in largely varying growth rates at the start (type
A) or in their abundance right at the start (type B). Both factors
indicate that they are much more susceptible to a changing
environment, competitors or zooplankton grazing pressure. The
distinction between Zero Starters and Supra Zero Starters (event-
based) links the single bloom to the history preceding the bloom (cf.
Fig. 4). Those species which are identified as type A always start from
scratch and reach a peak abundance determined by the growth rate at
the bloom start. This is remarkable when seen together with the fact
that the start-to-peak duration is weakly correlated with the
maximum cell counts. These empirical findings can be explained by
the observations of a tight coupling between growth rate and initial
nutrient concentration as reported by (Kudela and Dugdale, 2000).

The significance of this work is, of course, based upon the
ecological relevance of these observations. For example we can
evaluate two microalgae which overlap in their timing: Guinardia
delicatula and Odontella aurita. These are characterised as C and A type
bloomers respectively. From these descriptions (see also Table 1) one
would assume that Guinardia delicatula is the more robust species of
the two, not susceptible to negative changes in its environment. In our
evaluations of the co-occurrence of species it would seem that Gui-
nardia is becoming the more abundant algae, with its period of
occurrence becoming seasonally wider relative to the other algae
(Freund et al., 2006b). This could be due to its robustness as such and,
in addition, as Guinardia is a warm water loving species this is to its
advantage with regard to the evinced warming at Helgoland
(Wiltshire and Manly, 2004). When one examines algae of the same
genus e.g., Ceratium, it is clear that C. fusus and furca are similarly
classified, i.e., B types. This seems rather logical as they also often
overlap in their occurrence and even seem to alternate. C. lineatum, C.
horridum and tripos are classified as A bloomers, they occur earlier in
the year and also together. Odontella regia and Odontella aurita also
co-occur, they are both A types. If one classifies the μcc values and the
μgr as some sort of success index then the order is CNBNA. Using the
new criteria it should be checked whether the behaviour of the
investigated algae has changed over the years related to temperature
shifts and regime shifts of the North Sea. This would include timing of
the blooms, changes in succession and growth rates.

We propose that the above described results should be compared
with existing in situ data for isolated blooms of the same and other
oceanic algae as well as data from laboratory or mesocosm experi-
ments. Possible discrepancies should be investigated as they could be
attributed to the strongly fluctuating environment and the effects it
has on the competition and succession of species.

Our algorithms and analysis methods are implemented in Matlab
scripts that can be downloaded (Mieruch and Freund, 2005) and
readily applied to other (densely recorded) phytoplankton data or
short term data recorded in mesocosm experiments. In the case of less
dense sampled data the description of blooms using parametric
methods, as applied in Rolinski et al. (2007) could enable the transfer
of our classification scheme. We hope that our proposed algorithmic
determination of the bloom start and concurrent examples will open a
discussion among aquatic scientists about the most appropriate
definition of the bloom start and, in addition, stimulate further
research devoted to bloom trigger mechanisms.

The achieved classification may be characteristic for successional
blooms or a specific habitat. In order to investigate the latter point
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comparisons with other marine habitats are desirable. The developed
classification scheme may thus be suitable for a monitoring
programme in the context of climate-induced changes in a marine
ecosystem. In addition, it allows to consider the sensitivity of single
algal species to their natural environment or to the spectrum of their
competitors.
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