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Abstract In this study, the baseline period (1960–1990)
precipitation simulation of regional climate model PRECIS
is evaluated and downscaled on a monthly basis for
northwestern Himalayan mountains and upper Indus plains
of Pakistan. Different interpolation models in GIS environ-
ment are used to generate fine scale (250×250 m2)
precipitation surfaces from PRECIS precipitation data.
Results show that the multivariate extension model of

ordinary kriging that uses elevation as secondary data is
the best model especially for monsoon months. Model
results are further compared with observations from 25
meteorological stations in the study area. Modeled data
show overall good correlation with observations confirm-
ing the ability of PRECIS to capture major precipitation
features in the region. Results for low and erratic
precipitation months, September and October, are however
showing poor correlation with observations. During
monsoon months (June, July, August) precipitation pattern
is different from the rest of the months. It increases from
south to north, but during monsoon maximum precipita-
tion is in the southern regions of the Himalayas, and
extreme northern areas receive very less precipitation.
Modeled precipitation toward the end of the twenty-first
century under A2 and B2 scenarios show overall decrease
during winter and increase in spring and monsoon in the
study area. Spatially, both scenarios show similar pattern
but with varying magnitude. In monsoon, the Himalayan
southern regions will have more precipitation, whereas
northern areas and southern plains will face decrease in
precipitation. Western and south western areas will suffer
from less precipitation throughout the year except peak
monsoon months. T test results also show that changes in
monthly precipitation over the study area are significant
except for July, August, and December. Result of this study
provide reliable basis for further climate change impact
studies on various resources.

1 Introduction

The impact of climate change due to changes in the
atmospheric greenhouse gas concentrations has serious
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implications for the management of resources and the
sustainable development of the societies concerned.
Though General Circulation Models (GCMs) provide good
overview of the current climate and predict future climate
changes at global level, their suitability for climate change
impact assessment on various natural and managed systems
at regional or local scale is questioned due to their course
resolution (Grotch and MacCracken 1991; von Storch et al.
1993; Ciret and Sellers 1998; Hellström and Chen 2003;
Gaffin et al. 2004; Linderson et al. 2004). Some crucial
parameters like altitude that significantly contribute in
determining climate are not fully captured in coarse
resolution GCMs, as these can vary across very short
distances. Downscaling of GCM outputs is therefore
needed to get situation-specific information about climate
and to further investigate the impacts in climate change
situations (Li and Sailor 2000; van Vuuren et al. 2007).
Downscaling, a technique to bridge the gap of GCM
prediction skill over different scales is carried out by two
distinct methods: (1) dynamical downscaling—by nesting
high-resolution Regional Climate Models (RCM) with
GCM (Giorgi 1990; Giorgi and Mearns 1991); and (2)
statistical downscaling—by finding the relationship be-
tween observed large-scale and regional climate, and
applying that to the GCM output (Karl et al. 1990). Details
about theory and applications of these methods are well
described in the literature (Murphy 1999; von Storch 1999;
Xu 1999; Zorita and von Storch 1999; Yarnal et al. 2001;
Linderson et al. 2004).

Among various climatic variables, precipitation is the
one that is essentially required for a number of applications
like natural resource management, agriculture management,
irrigation scheduling, ecosystem modeling, and hydrologi-
cal modeling. Understanding of its temporal and spatial
distribution is also important for undertaking climate
change impact studies on various systems (Busuioc et al.
2001). However, high degree of inherent variability due to
regional and local atmospheric processes that is not fully
captured by the GCM make it difficult to directly use the
GCM output for further reliable application (Karl et al.
1990). Both downscaling methods (dynamical and statisti-
cal) have therefore been applied independently or in a
hybrid (Charles et al. 1999; Fuentes and Heimann 2000;
Hellström and Chen 2003) to improve the GCM output
with a varying degree of results. Compared to statistical
downscaling, nesting of the RCM within the GCM is
supported due to the assumption that the large-scale climate
is well simulated by the GCM, and further, finer resolution
of RCM will better represent the near-surface small-scale
variability (Hellström and Chen 2003). However, due to
some uncertainty in the modeling, it is still necessary to
assess RCM output with the present-day observed precip-
itation before further application. The method described for

GCM in Busuioc et al. (2001) can also be applied to RCM
output by comparing it with the long-term mean of
observed precipitation data over the study area. Again, the
application of RCM output is limited in certain cases
because of its resolution (∼0.5°×0.5°) that requires further
downscaling to a scale appropriate for a specific study. To
enhance the ability to quantify effects of climate (and
climate variability) and to forecast the possible impacts of
climate change, a variety of interpolation algorithms are
available (Price et al. 2000). The most common of these is
Thiessen Polygon (Thiessen 1911) which has been widely
applied to the interpolation of point measurements (Tabios
and Salas 1985; Dirks et al. 1998). Recently, GIS-based
interpolation techniques are also being widely used for the
interpolation of point climatic variable data (observed or
modeled). Agnew and Palutikof (2000) provide a good
overview of such studies in Europe and Mediterranean.
Lloyd (2005) compared the performance of five different
interpolation methods and concludes that methods includ-
ing elevation as secondary data perform better than others
because of the relationship between precipitation and
elevation. This relationship has already been reported by
Brunsdon et al. (2001) with regional variations.

As there is lack of literature and reliable precipitation
data for Pakistan to carry out landscape scale climate
change impact assessments, the present study is designed
with the objectives to: (1) validate the outputs of PRECIS
(Providing REgional Climate for Impact Studies) RCM
run for South Asia domain in terms of its ability to
reproduce the observed precipitation patterns in the study
area (2) compare various GIS-based interpolation techni-
ques for interpolation of PRECIS modeled precipitation;
and (3) generate fine-scale monthly precipitation data for
the baseline period as well as IPCC A2 and B2 future
scenarios for further use in climate change impact studies
on various sectors especially forestry, agriculture, and
hydrology.

2 Study area

Situated between 69°20′–75°28′ E and 27°52′–35°42′ N,
the landscape of the study area characterizes great diversity
from biodiversity-rich Himalayan mountains in the north to
flat agricultural plains of mighty Indus river system in the
south. Elevation ranges from 61 to 6,126 m above sea level.
In addition to hydrological functions and agricultural
production, the area also plays important roles of ecological,
social, and protective nature.

It is also one of the most populated areas in the region
and administratively consists of Punjab Province, part of
North Western Frontier Province (NWFP) and Azad Jammu
and Kashmir (AJK) valley in Pakistan (Fig. 1).
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3 Data and methods

Two sets of precipitation data (modeled and observational)
are used in this study. Modeled precipitation data for the
study area is obtained from a PRECIS run by Akhtar et al.
(2008). PRECIS is a high-resolution atmospheric and land
surface model that is forced at its lateral boundaries by the
simulations of high-resolution (150 km×150 km) atmo-
spheric component (HadAM3P atmosphere only GCM) of
the HadCM3 coupled GCM model. For the baseline period
(1961–1990), climate HadAM3P is driven with the ob-
served sea surface temperature, and for future scenarios
(2071–2100) sea surface temperature conditions are con-
structed by adding anomalies from a transient simulation of
HadCM3 to observations (Gordon et al. 2000; Jones et al.
2003; Wilson et al. 2005). The atmospheric dynamics
module of PRECIS is a hydrostatic version of the full
primitive equations and uses horizontal and vertical
coordinates. There are 19 vertical levels, the lowest at
825 hPa and the highest at 0.5 hPa. To control the
accumulation of noise and energy at the grid scale,
horizontal diffusion is also applied. The land surface

scheme employed in the PRECIS is Meteorological Office
Surface Exchange Scheme (MOSES) that has shown good
skill in land surface simulation (Bowling et al. 2003;
Nijssen et al. 2003). The reader is referred to Wilson et al.
(2005) for full details about PRECIS. The domain size of
PRECIS simulation by Akhtar et al. (2008) is bounded by
latitude 12°–41° N and longitude 55°–97° E (Fig. 2), and
the horizontal resolution is 0.44°×0.44° (∼50 Km) in
rotation coordinates. This domain size is assumed to be
large enough to include relevant regional forcing and to
allow full development of internal mesoscale circulation. It
covers most of South Asian region including Pakistan,
India, Afghanistan, and Tibetan Plateau. PRECIS simula-
tions data, for baseline period (1961–1990) and 2080s
(2071–2100) for two different IPCC regionally focused
development scenarios A2 (priority to economic issues) and
B2 (priority to environmental issues), is obtained in ASCII
format for this study. This data is averaged for every month
for further interpolation in GIS environment using ArcGIS
9.2 to generate monthly (averaged for 30 years) precipita-
tion surfaces. Summary statistics of baseline period data is
shown in Table 1.

Fig. 1 Location of study area
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Table 1 Summary Statistics of 30 years (1961–90) averaged PRECIS precipitation data in mm/month

Month Min Max Mean SD 1st Q Median 3rd Q Q3-Q1

Jan 0.5 207.0 27.8 38.4 2.8 8.9 42.3 39.5

Feb 0.9 334.1 41.3 61.5 2.6 8.9 64.0 61.4

Mar 0.7 374.9 52.2 81.6 2.7 9.6 73.3 70.6

Apr 1.3 272.2 42.2 62.1 4.1 10.0 53.3 49.2

May 1.2 118.9 23.1 27.2 5.3 11.7 28.1 22.8

Jun 0.3 591.4 69.9 62.5 34.9 58.0 85.2 50.3

Jul 0.0 638.3 142.8 93.1 105.7 135.1 166.2 60.5

Aug 0.0 483.0 120.3 73.2 84.1 117.4 144.7 60.6

Sep 0.0 327.2 81.9 45.2 58.8 78.5 99.9 41.1

Oct 0.5 127.1 23.3 19.1 11.1 18.8 28.5 17.4

Nov 1.7 159.2 27.9 34.4 5.6 10.8 39.8 34.2

Dec 0.3 190.2 24.1 33.0 3.1 8.1 35.5 32.4

SD standard deviation which is a measure of statistical dispersion of precipitation data, 1st Q first quartile of precipitation data which is the value
such the 25% of the values fall at or below this value, Median centre or midpoint value of the ordered precipitation data, 3rd Q third quartile of
precipitation data which is the value such the 75% of the values fall at or below this value, Q3–Q1 interquartile range and is a distance between
1st and 3rd quartile

Fig. 2 Domain size of PRECIS simulation
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Observational precipitation data is used to validate the
results of the modeled data interpolation for baseline
period. For this purpose, total monthly precipitation data
of 25 Meteorological stations of Pakistan Meteorological
Department is used. Location of observational stations is
shown in Fig. 3. Out of these, data for 21 stations is

available for the entire baseline period (1961–90), whereas
records of precipitation for four stations, namely, Dir, Sadu
Sharif, Rafiqui, and Bhawalnagar are available for shorter
periods (Table 2). These stations are included to increase
the coverage of the validation data points. Monthly data is
averaged for the baseline/available period, and the basic

Fig. 3 Topography (DEM) of the study area and location of observational stations
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statistics are given in Table 3. As the analysis are made on
averaged data, therefore, year to year fluctuations of
monthly precipitation are not considered.

Elevation data (Fig. 3) is obtained from void filled
seamless SRTM version 3 data freely available from the
CGIAR-CSI SRTM 90 m Database: http://srtm.csi.cgiar.org

3.1 Interpolation methods

In this paper, different deterministic and geostatistical
interpolation techniques have been used to model the
PRECIS precipitation data to generate surfaces at higher
resolution. Deterministic interpolations use mathematical

Month Min Max Mean SD 1st Q Median 3rd Q Q3–Q1

Jan 3.9 111.4 43.1 35.8 11.5 33.8 76.0 64.5

Feb 5.4 172.6 63.8 52.0 20.1 43.9 103.4 83.3

Mar 5.6 242.2 88.0 66.2 34.8 78.4 142.3 107.5

Apr 2.8 167.9 58.7 48.0 19.4 46.6 100.3 80.9

May 4.0 96.7 39.2 29.2 17.2 27.9 64.3 47.1

Jun 2.8 122.6 46.2 36.1 18.3 32.9 70.4 52.0

Jul 27.5 359.4 170.7 105.9 81.2 145.8 267.0 185.8

Aug 23.0 326.3 157.6 98.3 67.7 143.0 253.8 186.2

Sep 9.3 146.5 60.0 39.4 24.6 56.7 96.9 72.3

Oct 0.6 70.2 24.3 22.7 4.8 14.0 44.7 39.9

Nov 0.7 50.7 17.1 15.8 4.0 10.9 30.9 26.9

Dec 3.0 90.7 34.8 28.5 10.4 28.9 57.7 47.3

Table 3 Summary statistics of
30 years (1961–1990) averaged
observed precipitation data in
mm/month

S. no. Location Latitude (dd) Longitude (dd) Altitude (m) Period

1 Dir 35.19972 71.87977 1,375.0 1967–1990

2 Sadu Sharif 34.81336 72.35134 961.0 1974–1990

3 Balakot 34.38000 73.35000 995.4 1961–1990

4 Muzaffarabad 34.35000 73.46707 838.0 1961–1990

5 Kakul 34.18333 73.25000 1,308.0 1961–1990

6 Garhi Dopatta 34.13000 73.37000 813.5 1961–1990

7 Risalpur 34.07000 71.99000 304.2 1961–1990

8 Peshawar 33.99948 71.49618 328.8 1961–1990

9 Murree 33.90972 73.39011 2,133.6 1961–1990

10 Cherat 33.82019 71.88439 1,372.0 1961–1990

11 Islamabad 33.61599 73.09932 508.0 1961–1990

12 Kohat 33.57027 71.43955 564.6 1961–1990

13 Kotli 33.51713 73.89873 614.0 1961–1990

14 Jhelum 32.93324 73.73354 287.2 1961–1990

15 Mianwali 32.58503 71.54390 204.6 1961–1990

16 Sialkot 32.51700 74.55512 255.1 1961–1990

17 DIKhan 31.83000 70.90000 171.2 1961–1990

18 Lahore_A 31.54260 74.32474 214.0 1961–1990

19 Lahore_B 31.52064 74.40294 216.2 1961–1990

20 Faisalabad 31.41694 73.08338 185.6 1961–1990

21 Rafiqui 30.76000 72.28000 150.0 1972–1990

22 Multan 30.20141 71.43457 122.0 1961–1990

23 Bahawalnagar 30.00001 73.25001 161.1 1963–1990

24 Bahawalpur 29.38991 71.67021 110.0 1961–1990

25 Khanpur 28.65019 70.65043 88.4 1961–1990

Table 2 Location and observa-
tion period of meteorological
stations in the study area
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functions to generate surfaces from the measured points,
based on either the extent of similarity or the degree of
smoothing (Johnston et al. 2001). Among various deter-
ministic interpolation techniques, inverse distance weight-
ed, local polynomial interpolation, and radial basis
functions are used to generate models. These techniques
are well described in literature (Hardy 1971; Bouhamidi
2001; Johnston et al. 2001; Hofierka et al. 2002; Lloyd
2005; Zhao et al. 2005; Sarra 2006).

Geostatistic interpolations are based on the theory of
regionalized variables and rely on both statistical and
mathematical functions. These use a variogram model to
describe the spatial continuity of the input data to estimate
values at unsampled locations. From this group, ordinary
kriging and its multivariate extension ordinary cokriging
are used to generate models. Ordinary kriging depends on
models of spatial autocorrelation formulated in terms of

covariance or semivariogram functions. The main charac-
teristics of these models are sill, range, and nugget. Sill
represents the total variation in the data, and range is the
distance where autocorrelation vanishes. Nugget effect
refers to the situation when sampling locations are close
to each other but difference between measurements is not
zero. This occurs in semivariogram/covariance model due
to either measurement errors or variations at scales too fine
to detect. The reader is referred to Isaaks and Srivastava
(1989) and Clark and Harper (2000) for basic theory and
modeling details. Among various variogram models, only
three (spherical, exponential, and rational quadratic) models
with the nugget effect are used in this study. Elevation data
is used as secondary data (Goovaerts 2000) in ordinary
Cokriging models. Models with nugget effect that provide
the optimal fit to the semivariance points are selected for
further evaluation with observational data.

Month Deterministic models Geostatistical models

IDW LPI RBF_swt RBF_mq OK_sph OK_exp OK_rqd

Jan 15.83 15.34 15.27 15.31 15.62 15.68 15.54

Feb 24.97 24.22 24.12 24.18 24.68 24.79 24.54

Mar 31.86 30.96 30.84 30.86 31.24 31.35 31.11

Apr 24.08 24.06 23.92 23.92 23.92 23.94 23.88

May 11.25 11.23 11.03 11.45 11.49 11.48 11.44

Jun 36.68 35.91 35.62 36.15 35.41 35.89 35.31

Jul 53.54 53.75 53.32 54.4 53.38 53.68 53.29

Aug 40.45 40.65 40.37 41.18 40.41 40.46 40.41

Sep 23.74 23.58 23.53 23.55 23.51 23.47 23.45

Oct 7.84 7.97 7.91 7.81 7.89 7.92 7.88

Nov 14.45 14.27 14.26 14.27 14.37 14.47 14.32

Dec 14.41 14.00 14.00 14.04 14.26 14.39 14.16

Table 4 Comparison of
cross-validated root mean
square prediction errors
(RMSE) in mm/month
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4 Results and discussions

4.1 Quality checking of RCM output

To check the suitability of the PRECIS simulation output
for further interpolation and generation of precipitation
surfaces for the study area, station data and PRECIS output
are compared (Fig. 4a, b) for mean value and standard
deviation derived from the mean monthly precipitation of
baseline period. Results show overall good agreement. Pattern
of mean precipitation for both data sets is similar during
different months except for November and December, and the
same is the case with SD. PRECIS overpredicted the mean
precipitation during June, September, and November. The
maximum difference is during March, whereas minimal is
noted for the month of October. Standard deviation of
PRECIS data is higher compared to the station data except
for the months May, July, August, and October. June is the
month with highest difference, whereas May has least
difference.

4.2 Interpolation of PRECIS data

Initially, seven interpolation models in ArcGIS 9.2 have
been used to generate the monthly precipitation surfaces

from the PRECIS baseline data. Out of these four models,
namely, inverse distance weighted (IDW), local polynomial
interpolation (LPI), spline with tension radial basic function
(RBF_swt), and multiquadric radial basic function
(RBF_mq) belong to the deterministic models, whereas
the remaining three models, namely, OK_sph (Ordinary
Kriging with Spherical variogram), OK_exp (Ordinary
Kriging with Exponential variogram) and OK_rqd (Ordi-
nary Kriging with Rational Quadratic variogram) are
geostatistical models. Interpolation model results are com-
pared on the basis of cross-validated root mean squared
error (RMSE) of interpolated data. Cross-validated RMSE
is the square root of the average of squared differences
between the measured and predicted values. This is
obtained from calculations repeated for total number of
data points’ time, while omitting one different data point
every time (Wilks 2008). Results are tabulated in Table 4.

Since deterministic and geostatistical modeling are based
on different concepts, therefore, both model sets are
evaluated separately for their interpolation performance.
Overall, the performance of all the models is comparable.
However, the best results in the form of least RMSE are
from OK_rqd in geostatistical models and from RBF_swt
model with exception of the month of October in
deterministic models. Interpolation of October is better

Table 5 Cross-validated root mean square prediction errors (RMSE) in mm/month of monthly surfaces of precipitation generated by OCK_rqd
and OK_rqd models

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

OCK_rqd 15.49 24.29 30.61 22.91 10.85 36.49 54.98 41.33 24.17 8.02 13.97 13.98

OK_rqd 15.54 24.54 31.11 23.88 11.44 35.31 53.29 40.41 23.45 7.88 14.32 14.16
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Fig. 7 Monthly precipitation surfaces for baseline period (resolution 250 m)
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Fig. 9 Monthly precipitation surfaces for 2080s under IPCC A2 scenario
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achieved by RBF_mq instead of RBF_swt. This may be
attributed to the distribution of data with least standard
deviation and minimal difference of third and first quartile
among all the months as shown in Table 1. Best model
results for monthly surfaces in both model types are then
further compared for their performance with validation
(observational) data. Modeled mean precipitation values for
the location of the climatic stations are compared with the
recorded mean precipitation and evaluated with the coeffi-
cient of determination (r2). Results presented in Fig. 5 show
that the r2 values of OK_rqd (geostatistical model)
interpolated surfaces are better than the RBF_swt (deter-
ministic model) for all months which is in accordance with
the results of Goovaerts (2000) who also found better
performance of geostatistical models for spatial prediction of
precipitation. The results for the months from July to October
are comparatively poor. Out of these, July and August are the
monsoon months with maximum rainfall as shown in Table 3.

r2 values for these months are 0.46 and 0.50, respectively.
The performance is worst for the months September and
October with r2 values 0.20 and 0.14, respectively.

To further investigate the influence of elevation on the
spatial and temporal distribution of precipitation, another
model OCK_rqd (Ordinary Cokriging with Rationale Qua-
dratic variogram) is applied. In this method, the elevation
data from the SRTM is used as secondary variable to
generate the monthly surfaces. Selection of final monthly
surfaces is based on the same criteria of least cross-validated
RMSE values. RMSE values are presented in Table 5.

Months from January to May, November and December
show decrease in RMSE whereas months from June to
October show increase in RMSE. This increased RMSE for
the months June to October is due to weak correlation of
PRECIS simulated data with the elevation (r2 values 0,
0.08, 0.08, 0.05, and 0.09, respectively). When validated,
these monthly interpolated surfaces with the observational

Fig. 10 Monthly precipitation surfaces for 2080s under IPCC B2 scenario
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station data, r2 values for the months June to September
improved because observational data has reasonable corre-
lation with elevation (r2 values 0.44, 0.25, 0.32, and 0.43,
respectively). Figure 6 shows the increase in r2 values from
0.69 to 0.70, 0.46 to 0.49, 0.50 to 0.56, and 0.20 to 0.25 for
the months of June, July, August, and September, respec-
tively, when compared with OK_rqd model. For the rest of
the months, there is no significant change in r2 values
except for the month of October where it drops to 0.11.
Improvement in the results for the monsoon months with
the inclusion of elevation data confirms that elevation is an
important factor in the distribution of rainfall during this
season. This is also in accordance with the results of some
studies carried out in different parts of the world (Phillips et
al. 1992; Goovaerts 2000; Agnew and Palutikof 2000) that
elevation is a strong determinant of climate. The least
correlation of the interpolated precipitation with the
observations is during the month of October. Detailed

investigation of the data reflects that traces of precipitation
with high frequency are reported by the PRECIS, and
perhaps, such small quantities are not recorded as signifi-
cant precipitation at the observational stations. This resulted
into weak correlation between both data sets. Poor
performance of interpolation methods for the month of
September can again be attributed to the limitation of the
PRECIS to capture the precipitation pattern.

4.3 High-resolution baseline precipitation

Monthly precipitation surfaces for the baseline period
except for September and October at a resolution of
250 m generated by OCK_rqd geostatistical interpolation
method are presented in Fig. 7. Spatial pattern of precipi-
tation is similar for the winter (November, December, and
January) and spring (February, March, April, and May). It is
lowest in the southern parts and increases as we move toward

Fig. 11 Monthly precipitation changes for 2080s under IPCC A2 scenario
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northern areas with the increasing altitude. In contrary,
monsoon months (June, July, and August) present a different
pattern of precipitation increasing from south toward north,
but maximum in southern Himalayan region, and to further
north it decreases with the least precipitation in extreme
north. This is because of the reason that Himalayan
Mountains serve as barriers to the monsoon winds coming
from the south and yield maximum rainfall in southern
ranges of Himalayas. Northern areas receive precipitation
from western cyclonic disturbances originating in the
Mediterranean.

4.4 High-resolution climate change scenario precipitation

Amajor caveat in any estimation of climate change is the fact
that parameters for modeling are fitted to the current climatic
conditions but are not known to remain valid under changed
climate. However, it is assumed that if the estimates of a

modeling adequately represent the current climate, we can
use its climate change estimates with confidence. Based on
this assumption, precipitation data of PRECIS for climate
change scenarios A2 and B2 for the period 2080 s (2071–
2100) is interpolated using the model OCK_rqd to generate
surfaces. September and October months are excluded
because of their poor results for baseline period. Results
are presented in Fig. 8. These indicate decrease in
precipitation during winter, increase in spring and mon-
soon. For August, A2 scenario shows increase in precipi-
tation, whereas B2 scenario shows decrease.

Spatial patterns of 2080s precipitation under A2 and B2
are shown in Figs. 9 and 10. Amount of changes under both
scenarios are shown in Figs. 11 and 12. Both future
scenarios show almost the same pattern but with varying
magnitude of precipitation. In 2080s, northern areas that are
under the influence of western cyclonic disturbances, and
southern plains will have less precipitation during monsoon,

Fig. 12 Monthly precipitation changes for 2080s under IPCC B2 scenario
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whereas Himalayan southern regions will have more
precipitation. Overall western and southwestern areas will
receive less precipitation throughout the year except for peak
monsoon months.

Further, results of t test at 95% confidence interval show
that changes in precipitation over the study area are
significant for all months except July, August, and
December. P values for these months are 0.170, 0.450,
0.494 (under A2 scenario) and 0.140, 0.248, 0.131 (under
B2 scenario), respectively.

5 Conclusion

Among important climatic variables, precipitation is difficult
to represent due to high inherent variability in its spatial and
temporal patterns. It is even more difficult in the study area in
which different mechanisms are responsible for its occurrence.
In this paper, PRECIS-RCM-generated precipitation surfaces
are evaluated with the observational data and further
downscaled for more detailed regional information
(250 m×250 m) to further conduct climate change impact
assessments in various sectors. Although the results have
associated uncertainties, these provide good evidence that
(1) PRECIS capture pattern of current precipitation for most
of months; (2) the usefulness of GIS-based interpolation
technique (Ordinary Cokriging) for the fine-scale spatial
interpolation precipitation; and (3) patterns of precipitation
vary temporally and spatially significantly at small scale.

It is also noted that the systematic errors of RCM or driving
GCM cannot be improved by the interpolation techniques
used. This is the case with the months of September and
October precipitation that need to be improved in RCM
simulations for the study area. This methodology can also be
applied for the fine-scale spatial distribution of other climatic
variables such as temperature in the study area.
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