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The effect of in vivo Fe exposure on the oxidative metabolism of the bivalve Mya arenaria was studied. Fe was
supplemented in natural seawater and resulted in a significant increase in the total Fe content in the bivalve
digestive gland (DG) between 9 to 17 days of exposure. Mortality of treated animals increased drastically
after day 18. Oxidative stress conditions were characterized in DG through assessment of the generation of
reactive oxygen species (ROS) and ascorbyl radical (A•) content. Both parameters were affected following a
biphasic profile showing significant increases by days 2 and 9 of Fe exposure. The content of 2-thiobarbituric
acid reactive substances (TBARS) was significantly increased over control values by days 2, 9 and 17 of
treatment. The labile Fe pool (LIP) in isolated DG was elevated over control values by day 7, and maintained
this increase until day 17 of Fe exposure. The content of NO, assessed by EPR spin trapping, was 60% lower in
DG of animals exposed for 2 days to Fe than in control values, with no further changes. The biphasic profile of
oxidative stress response to Fe exposure in DG suggests that at early stages of Fe supplementation the
cellular control mechanisms, such as CAT activity, were operative to limit oxidative damage, but further Fe
exposure overwhelmed these abilities. Moreover, the second phase could be understood as the consequence
of the exhaustion of cellular protective systems that could also involve NO.
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1. Introduction

Marine filters and deposit feeders ingest Fe bound to dissolved and
particulate matter in the water column and the sediment surface.
Among the filter feeders, bivalves are regarded especially useful as
bioindicators of pollution, as ingested metals can accumulate in both
their soft tissues and calcium carbonate shells (Tynan et al., 2005).
Relatively high Fe concentrations were detected in tissues of Antarctic
macrofauna such as the Antarctic soft shell clam Laternula elliptica
(Estévez et al., 2002). These bivalves colonize coastal waters (28 mg Fe/
g DM sediment) inWest Antarctica and are enriched in Fe compared to
bivalves of similar ecotype, Mya arenaria, colonizing less Fe charged
regions (7.5 mg Fe/g DM sediment) of the European Wadden Sea
(Estévez et al., 2002).

Fe is a micronutrient, essential for growth and cellular functioning
(Templeton and Liu, 2003) and is also involved as catalytic agent in
manybiochemical reactions. Fe is found in tissues, both as a catalytically
inactive element not directly available to biochemical reactions and
often constitutes the active centre of electron transferring enzymes or is
stored in specific Fe-binding proteins, such as ferritin. Further, there is a
labile ironpool (LIP)within cells andbodyfluids. This fraction comprises
a low-molecular-weight pool of weakly chelated Fe and represents the
catalytically active Fe fraction in a tissue. On the one hand, this fraction
potentially generates reactive oxygen species (ROS) since it catalyzes
the conversion of normal by-products of cell respiration, such as
hydrogen peroxide and superoxide anion, into highly damaging radical
species (hydroxyl radical); and also the conversion of ascorbate (AH−)
to ascorbyl radical (A•). On the other hand, the LIP serves as an
intracellular source of Fe which satisfies the continuous demand for the
synthesis of Fe-containing proteins. Thus, a permanent Fe flux from the
extracellularmedium to the cytoplasm is generated, and the nature and
magnitude of the Fe trafficking and Fe toxicity features in the tissues are
still under investigation. The potential for ROS production inmolluscs is
particularly significant in the lipid rich digestive gland (DG) which is a
primary accumulation site for ingested transition metals (Geyer et al.,
1982; González et al., 2008a, b).Moreover, hemocyte cells seem to be Fe
sinks in invertebrates, and arepossibly good indicators of the availability
of Fe to animals. Fe circulation in the hemolymph is an early event in Fe
distribution to the tissues after the initial incorporation into the DG
(Ahearn et al., 2004).

Viarengo et al. (1999) exposed Mytilus galloprovincialis to 600 μg/L
Fe and observed significant Fe accumulation in DG after 3 days of
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treatment. This Fe accumulation led to an increase in ROS generation,
assessed as oxidation of dihydrorhodamine, and lipid peroxidation (2-
thiobarbituric acid reactive substances (TBARS) accumulation). More
recently, Alves deAlmeida et al. (2004) reported a significant increase in
malondialdehyde (MDA) levels inDGof themussel Pernaperna exposed
to500 μg/L Feduringa 5 dayperiod. The authors proposed the induction
of phospholipid hydroperoxide glutathione peroxidase activity follow-
ing the exposure to Fe overload, as a potentially new biomarker of
toxicity associated with contaminant exposure in mussels.

Nitric oxide (NO) is a regularly occurring radical intermediate of
many reactions mostly linked to its function as a signaling molecule
(Davis et al., 2001), and it is also an endogenous chelator capable of
binding Fe (Cooper, 1999). Thus, the NO–Fe complexes formed could
favor Fe extrusion and alter Fe cellular distribution. Recently, we
presented the first evidence for physiological NO generation in the
soft shell clam M. arenaria, and for the involvement of nitric oxide
synthase (NOS)-like enzymes in NO generation in the bivalve species
(González et al., 2008a).

In the present study, the oxidative effects produced by an
experimental increase of tissue Fe content were investigated in the
bivalve M. arenaria. The species was chosen because the natural Fe
concentrations in its tissues are lower as compared to the content in the
Antarctic soft shell clam L. elliptica. The effect of in vivo Fe exposure on
the oxidative status in DG of experimental animals was studied over a
17 day period. Oxidative stress condition possibly arising from Fe
exposure was characterized by assessing ROS generation rate in the DG
homogenates, the A• content, and the oxidative damage of lipids, as the
content of thiobarbituric acid reactive substances (TBARS). The LIP in
both, DG and hemocytes, was studied in order to correlate oxidative
metabolism to the presence of catalytically active Fe in the tissues. The
involvementof antioxidant enzymes in regulatingFe effects, suchasCAT
and SOD, was also evaluated. Moreover, since NO possibly affects the
cellular distribution by its ability to chelate Fe, the NO content was
assessed by EPR in tissue homogenates upon exposure to excess Fe.

2. Materials and methods

2.1. Animal collection and maintenance

Soft shell clams,M. arenaria L. (5.3 to 9.1 cm shell length and 3.2 to
6 cm shell width) were collected on an intertidal sand flat near
Bremerhaven, Germany in May 2006. At the AlfredWegener Institute,
Bremerhaven, animals were kept in two aquaria with fully aerated
natural seawater of 23–26‰ PSU, and at 10 °C for at least 1 week prior
to the experiments, to ensure that animals were healthy and not
stressed from sampling. The bottom of the aquaria was covered with
pebble stones. Animals were fed live phytoplankton twice a week,
using DT's live marine phytoplankton, premium reef blend consisting
of Nannochloropsis oculata, Phaeodactylum sp., Tricornotum sp.,
Chlorella sp., between 2 and 20 μm particle size with no Fe added.

2.2. In vivo Fe exposure

Experimental bivalves were placed in small aquaria containing
13 L (1 L/animal) of natural seawater of 23–26‰ at 10 °C, and 500 μM
of Fe as Fe–EDTA complex (1:2). Fe–EDTA was used in this study as
the Fe source both for the chemical nature of the complex and for its
existence in natural waters. EDTA is known to react withmetal cations
and it has been proven that exchange reactions do occur in natural
seawater (Hering and Morel, 1988). In the Fe incubation treatments
seawater was replaced every two days by a fresh solution to assure for
water quality and the constant Fe content in the medium. The animals
were fed during experimentation until two or three days before
killing. Sampling was performed at irregular intervals (0, 2, 7, 9 and
17 days) after performing some preliminary measurements of Fe
enrichment. Specimens were dissected and DG frozen and stored in
liquid nitrogen.

2.3. Total Fe content

Total Fe content was analyzed by two independent techniques:
(a) according to Bralet et al. (1992) with modifications: approxi-
mately 40 mg of DGwas homogenized in 1 mL of 150 mMKCl in 0.1 N
HCl, pH 2.5, prepared with IFW. The samples were incubated for 24 h
at 37 °C in the presence of 9 mg/mL pepsin, 4.5 mM 2,2′ dipyridyl and
103 mM ascorbic acid, pH 7 prepared in IFW. For each sample both, a
reactive blank, and a sample blank without adding 2,2′ dipyridyl were
prepared. Absorbance at λ=520 nm was measured. To determinate
the Fe content, a standard curve was prepared with Fe in a
concentration range from 0 to 120 μM; (b) by atomic absorption:
approximately 700 mg of N2 liquid frozen tissue was mineralized in a
microwave oven for 2 cycles, with 2 mL of HNO3. The samples were
diluted in 10 mL final volumewith 40% (v/v) HNO3 in IFW. The Fe was
determined by atomic absorption spectroscopy in air–acetylene flame
at λ=248.3 nm, with a Varian SpectrAA 220 equipment. To
determinate the Fe content, a standard curve was prepared with Fe
in a concentration range from 0 to 54 μM. All the used materials were
treated with HNO3 and IFW to avoid Fe contamination.

2.4. Determination of glutathione content

Glutathione content, as both reduced (GSH) and oxidized (GSSG)
forms, was determined according to Fariss and Reed (1987) using
high performance liquid chromatography (HPLC). Peaks were
detected at λ=365 nm with a photodiode array detector. Concentra-
tions of GSH and GSSG were calculated using GSH and GSSG
commercial standards, and then the GSSG/GSH ratio was calculated.
Total glutathione content was calculated as indicated by Eq. 1.

Total glutathione = ðGSSG=mg FM × 2Þ + GSH=mg FM ð1Þ

The pH in the DG was measured according to Pörtner et al. (1990)
and the tissue redox potential (ΔE) was calculated based on Nernst's
Eq. (2) and the tissue specific pH (Schafer and Buettner, 2001).

ΔE = ΔE-−ðRT= nFÞ ln ½GSH�2 = ½GSSG� ð2Þ

2.5. ROS production by tissue homogenates

DG samples were homogenized (1:5 w/v) in a 100 mM Tris–HCl,
pH 7.75 buffer, with 2 mM EDTA and 5 mM MgCl2 (Gallagher et al.,
1992). Measurements were conducted according to Viarengo et al.
(1999) withmodifications. Briefly, the homogenates were centrifuged
at 4 °C for 20 min at 10,000 g and the supernatants were employed.
The reaction was followed in a 30 mM HEPES, pH 7.2 buffer, with
200 mM KCl and 1 mM MgCl2. The fluorescent probe 2′,7′ dichloro-
fluorescein diacetate (DCFH-DA) was added to the buffer, in a final
concentration of 40 μM. Then, after addition of 10 to 5 μL of the
supernatant, the reaction mixture was incubated at 35 °C during
10 min. The fluorescent compound DCF, generated by radical-
dependent oxidation of the probe, was detected spectrofluorome-
trically at λex=488 nm and λem=525 nm. Protein content was
calculated according to Lowry et al. (1951).

2.6. Determination of A• content

Measurements were performed at room temperature (18 °C) by
EPR using a Bruker (Karlsruhe, Germany) spectrometer ECS 106 with
a cavity ER 4102ST. Homogenates from DG were prepared in pure
DMSO with 1 mM desferroxamine (DF) (1:4) and immediately
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transferred to a Pasteur pipette for A• detection. Instrument settings
were as follows: 9.76 GHz microwave frequency, 10 mW microwave
power, 50 kHz modulation frequency, 1 G modulation amplitude,
3487 G centered field, 327.68 ms time constant, 81.92 ms conversion
time, 1 · 105 receiver gain and 15 G sweep width. Quantification of
the spin adduct was performed using an aqueous solution of 4-
hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL) introduced
into the same sample cell used for the samples. EPR spectra for
both, sample and TEMPOL solutions, were recorded at exactly the
same spectrometer settings and the first derivative EPR spectra were
double integrated to obtain the area intensity, from which the
concentration of the radical was calculated according to Kotake et al.
(1996).

2.7. Determination of the content of AHˉ

The content of AH− was measured by reverse phase HPLC with
electrochemical detection. DG sampleswere homogenized inmetapho-
sphoric acid 10% (w/v) according to Kutnink et al. (1987). Commercially
available AH− (Sigma, St Louis, USA) was used as standard.

2.8. Determination of TBARS content

BARS content in DG homogenates was measured according to
Uchiyama andMihara (1978), as described in Storch et al. (2001), and
Abele et al. (2002). Malondialdehyde standards were prepared from
1,1,3,3-tetraethoxypropane.

2.9. Determination of LIP in DG

The LIP in isolated DGwas determined by a fluorescence technique
with the Fe sensor calcein (CA) according to Darbari et al. (2003) with
modifications by Robello et al. (2007). DG was homogenized in
40 mM potassium phosphate buffer, 120 mM KCl, pH 7.4 (1:10). The
homogenate was centrifuged at 8700g for 15 min at 4 °C and the
supernatant removed to Eppendorf tubes and centrifuged again at
8700g for 15 min at 4 °C. The supernatant was filtered through filters
with 30,000 nominal molecular weight limit (Centricon YM30). The
filtered solution was then reduced with equal volume of 8% (v/v)
thioglycolic acid. Fe in the reduced solution was measured using 1 µM
CA solution in 40 mM potassium phosphate buffer, 120 mM KCl, pH
7.4. When Fe is added to CA solution a fraction of the dye binds free
Fe2+ leading to the generation of the Fe-bound (quenched) complex
[CA–Fe], while another fraction remains free as unbound CA and
provides the residual fluorescence. The fluorescence (λexc=485 nm,
λem=535 nm) was recorded until stabilization of the signal (F1) and
then deferoxamine (DF) was added to a final concentration of 1 mM.
The fluorescence was monitored until a new stabilization of the signal
(F2). The magnitude of the absolute change in fluorescence (F2–F1) is
equivalent to the amount of Fe bound to CA. The fractional increase of
fluorescence (ΔF) that reflects the LIP concentration was calculated
according to Eq. 3,

ΔF = ðF2−F1Þ= F2 ð3Þ

The LIP was assessed using Eq. 4 and a dissociation constant (Kd)
value of 0.46 μM.

LIP = ðΔF × ½CA�Þ + ½ðKd × ΔFÞ= ð1−ΔFÞ� ð4Þ

2.10. Determination of LIP in hemocytes

To assess the LIP in hemocytes cells were withdrawn from the
adductor muscle of the clams using a 1 mL plastic syringe with an
hypodermic needle, after 0, 2, 7, 9 and 17 days of Fe exposure of the
animals. Thepooled haemolymphof two to three animalswere stored in
Eppendorf tubes on ice. Samples were centrifuged at 2000 g for 30 s, the
pellet was resuspended in washing medium consisted in 580 mMNaCl,
11 mM KCl, 28 mM MgSO4, 25 mM MgCl2, 11 mM CaCl2, 2.4 mM
NaHCO3, 153 M HEPES at pH 7.0. Then, the samples were centrifuged
at 2000 g for 30 s and the pellet resuspendedwith aminimumof support
medium consisting of the same washing medium with 0.1% (w/v)
glucose. Sampleswere observed under opticalmicroscope to control the
quality of the cells before used. Two to three pools were prepared for
each experimental condition and more than 100 cells were analyzed in
each case. The hemocytes in the support medium were loaded with
20 μM Phen Green SK (PG) for 30 min at 4 °C. The PG chelates the labile
Fe in the cells. The cellswere centrifuged at 2000 g for 20 s and thepellet
was resuspended in supportingmediumtowashaway thePG. Cellswere
then analyzed by a Leica IRBE confocal laser scanning microscope and
Leica TCS-NT software (Bensheim, Germany) equipped with a krypton/
argon laser to perform the fluorescence measurements. The objective
lenswas 63× (numerical aperture 1.2) and themicroscope sample stage
was cooled to 4 °C. Green fluorescence of the PG SK was excited at
λ=488 nm at a laser intensity of 8 mW and the fluorescence emission
was recorded using a 550 nm long pass filter. The pinhole was set at 1.0.
Single-cell fluorescencewas determined bymanually defining the three
dimensional regionsof interest (a single cell) scanningvertically through
the cell at a z-scan width of 1.2 µm. Image processing and evaluation
were performed using the software of the Leica TCS imaging system.
Afterwards, the labile Fe was removed from PG by the addition of an
excess of the cell-permeable chelator DF (5 mM). After 60 min of
incubation of the cells in the presence of the chelator, fluorescence was
assessed in the confocal microscope. Labile Fe concentration was
determined from the cellular fluorescence by calculating the difference
in fluorescence between DF charged cells and PG charged cells.

2.11. Determination of antioxidant enzymes

Homogenates from DG were prepared in 30 mM potassium
phosphate, 120 mM KCl, pH 7.4. SOD activity (E.C. 1.15.1.1) was
measured based on its capacity to inhibit the reduction of cytochrome
c by superoxide radicals generated by a xanthine oxidase/xanthine
system, at λ=550 nm in 50 mM potassium phosphate buffer with
0.1 mM EDTA, pH 7.8, and 10 μM xanthine and the amount of xanthine
oxidase required to detect a change of 0.025 absorbance units min−1

according toMcCord and Fridovich (1969). OneUnit SODwasdefined as
the amount of tissue extract that gave 50% inhibition of cytochrome c
reduction under the assay conditions. Catalase activity (EC 1.11.1.6)was
assayed spectrophotometrically by the decomposition of H2O2 at
λ=240 nm in a reaction mixture consisting of 50 mM potassium
phosphate buffer (pH 7.0) and 15 mM H2O2 (Aebi, 1984). Protein
measurements were performed according to Lowry et al. (1951).

2.12. Determination of the content of nitrate and nitrite

The total content of nitrate and nitrite was assessed by the Griess
reaction, according to Verdon et al. (1995) with modifications. The
isolated DGwas homogenized in 14 mM sodium phosphate buffer, pH
7.1 (1: 1.5). Nitrate content in the extracts was reduced to nitrite by
the addition of nitrate reductase enzyme and NADPH as a cofactor.
Then the sample was incubated for 2 h at room temperature before
addition of the Griess reagent and incubation for 10 min. The
concentration of nitrate plus nitrite was measured spectrophotomet-
rically at λ=540 nm. Quantification was performed using a nitrate
and nitrite standard curve in the range of 0 to 75 μM.

2.13. Determination of NO content

The isolated DG were homogenized in 60 mM Tris–HCl buffer,
100 mM KCl, pH 7.0 (1:0.7), supplemented with the spin trap solution,



Table 1
Effect of Fe supplementation on the GSSG/GSH ratio in DG from M. arenaria.

Fe exposure Day 0 Day 17

Total glutathione content (nmol/mg FM) 1.2±0.1 1.4±0.3
GSSG/GSH ratio 0.5±0.1 0.8±0.3
ΔE (mV) −215±3 −208±4

Six animals (6)were employed in each experiment performed by duplicate. Data from 3
independent experiments are shown.
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10 mM sodium-N-methy-D-glucamine dithiocarbamate (MGD):1 mM
FeSO4. The supernatantwas immediately transferred to Pasteur pipettes
for EPRmeasurements. The spectrawere recorded at room temperature
(18 °C) in the EPR spectrometer described above, operating at 9.76 GHz
microwave frequency, 20 mW microwave power, 50 kHz modulation
frequency, 5.983 G modulation amplitude, 200 G field scan, 327.68 ms
time constant, 83.886 s sweep time. Quantification of the spin adduct
was performed using an aqueous solution of TEMPOL as described
above.
2.14. Statistical analyses

Data in the text and tables are expressed asmean±S.E.M. Statistical
tests were carried out using Statview for Windows, ANOVA, SAS
Institute Inc., version 5.0.
3. Results

Fully aerated natural seawater used to maintain experimental M.
arenaria in the laboratory had a content of Fe of 10.7±0.2 nM. The
animals were kept in this water for more than 2 months without
mortality. DG of M. arenaria collected in the natural habitat and kept
in the aquaria over 2 months had a total Fe content of 39±4 ng Fe/mg
FM, evaluated spectrophotometrically after enzymatic digestion. To
further corroborate this start value, Fe content was measured by
atomic absorption, and the obtained value (49±10 ng Fe/mg FM) did
not differ significantly from the value measured spectrophotometri-
cally. The content of Fe in DG of bivalves exposed to seawater
supplemented with 9 μM Fe over 9 days was 45±11 ng Fe/mg FM,
showing that even an increase by close to 1000-fold did not lead to
significantly higher Fe levels in the DG. Exposure to 500 μM dissolved
Fe in natural seawater resulted in a significant increase in DG total Fe
content after 9 days. Until day 17 (Fig. 1) concentrations increased
further, close to tripling the control values. Survival of the animals was
not significantly affected by high Fe exposure during the initial
17 days of the treatment (1–2 deaths out of 22 animals). Mortality
increased, however, drastically by day 18when 60–80% of the animals
from the Fe treatment died so that the experimental protocol was
stopped after day 17.

In spite of the fact that previous data on alterations in the activity
of antioxidant enzymes in other molluscs (Alves de Almeida et al.,
2004) would suggest that glutathione metabolism could be affected
by Fe exposure, total glutathione content, the GSSG/GSH ratio and
Fig. 1. Kinetic profile of the total Fe content in DG from M. arenaria exposed to seawater
supplemented with 500 μM Fe. Fe content was assessed spectrophotometrically, as
indicated in theMaterial andMethods Section. Twenty animals (20) (4 animals per group)
were employed in each experiment. Measurements were performed by duplicate.
*significantly different from the value at day 0 with pb0.01. ANOVA.
tissue redox potential (ΔE) in the DG was no significantly changed by
high Fe treatment (Table 1).

DCFH-DA oxidation rate by DG homogenate was evaluated as an
index for the chemical ROS generation capacity. Data in Fig 2A indicate
that ROS generation capacity followed a biphasic response with a
significantly higher value after 2 days, as compared to values in DG
homogenates from animals at day 0 of exposure to Fe. A second
Fig. 2. Kinetic profile of oxidative stress and oxidative damage indicators in DG from M.
arenaria. A. ROS generation rate, assessed ad DCFH-DA oxidation rate in tissue from
animals exposed to seawater supplemented with 500 μM Fe. Twenty animals (20)
(4animals per group)were employed ineachexperiment.Measurementswereperformed
by duplicate. *significantly different from the value at day 0 with pb0.05. ANOVA. B. A•
content in tissue fromanimals exposed to seawater supplementedwith 500 μMFe. Fifteen
animals (15) (3 animals per group) were employed in each experiment. Measurements
were performed by duplicate. nd stands for non-detectable signal. *significantly different
from the value at day 0 with pb0.01. ANOVA. C. TBARS content in tissue from animals
exposed to seawater supplemented with 500 μM Fe. Twenty animals (20) (4 animals per
group) were employed in each experiment. Measurements were performed by duplicate.
*significantly different from the value at day 0 with pb0.001. ANOVA.
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increase on DCFH-DA oxidation occurred by day 9 of treatment. The
ratio A• content/AH− content is an index of the oxidative stress in the
hydrophilic fraction (Kozak et al., 1997; Estévez et al., 2001; Galleano
et al., 2002). Typical EPR spectra of A•were recorded in DG from both,
control and Fe-exposed animals. The EPR spectrum showed the
characteristic two lines at g=2.005 and aH=1.8 G, in agreement with
computer simulated signals obtained using the parameters men-
tioned above. Moreover, DMSO did not form a spin adduct by itself. A
biphasic increase of the A• content in DG of Fe-exposed M. arenaria
was detected on day 2 (4-fold over the A• value on 0 day) and day 9
(25-fold over the A• content on 0 day) (Fig. 2B). The AH− content in
the DG from animals exposed to excess Fe was not significantly
different from the content in control bivalves (0.48±0.01 nmol/
mg FM) at all studied time points. The ratio A• content/AHˉ content is
0.9±0.2, 4.2±0.8, 1.9±0.7 and 20±1.5 (a.u. 10−4) for days 0, 2, 7
and 9 of exposure of excess Fe, respectively, showing significant
increases at day 2 and 9 over day 0 of treatment.

As lipid oxidation is an important indicator of oxidative tissue
damage associated with Fe accumulation, TBARS content was analyzed
in DG. Again, the data in Fig. 2C followed the biphasic accumulation
profile. After 2 days of exposure to Fe, TBARS content in DG showed a
significant increase by approximately 3.8-fold compared to control
values. This increase was followed by a decrease to control values at
treatment day 7. Afterwards TBARS concentration increased constantly
until day 17 (Fig. 2C).

Data in Fig. 3 show that the LIP in DG tissue increased on day 7 of
exposure to high dissolved Fe concentration. By day 9, the LIP increase
was accompanied by a significant induction of the oxidative stress
signals, ROS and A• content and correlated with the final increase of
tissue TBARS content. Since the labile Fe in the hemocytes may
represent one of the pathways for Fe elimination from the DG to the
shell where it is incorporated into the organic matrix, the LIP content
in the hemocytes wasmeasured. Data in Fig. 4 indicated that the LIP in
the hemocytes had increased significantly by day 7 (140%), and values
increased further until exposure day 17 (166%). Contrary, oxidative
stress effectsmeasured on day 2 of treatment cannot be attributed to a
significant increase of the LIP, since neither total Fe content nor the LIP
were enhanced over the initial values in the 0 day exposure group.

SOD activity shown in Fig. 5 were constant over an initial period of 0
to 7 days of exposure to Fe, and decreased significantly at days 9 and 17
of exposure compared to controls. The H2O2 scavenging antioxidant,
CAT increased after 2 days of treatment compared to controls (day 0)
but the activity was back to control level on day 7 of exposure (Fig. 5).
CAT activity was, however, increased again on day 9 of exposure
compared to controls (Fig. 5).

We further investigated the reactive nitrogen species content,mainly
NO, in DG throughout the experimental time period. The content of
nitrate and nitrite, as indicator of tissue NO content, decreased by
Fig. 3. Kinetic profile of LIP content in DG from M. arenaria exposed to seawater
supplemented with 500 μM Fe. Twenty animals (20) (4 animals per group) were
employed in each experiment. Measurements were performed by duplicate. *signif-
icantly different from the value at day 0 with pb0.05. ANOVA.
approximately 85% on day 2 with no further alterations over the 17 day
lasting experimental period (Table 2). The nitrate and nitrite contents
might however overestimate the intracellular NO content since both are
small and stable inorganic molecules that can freely enter cells through
the membrane from the extracellular fluid. Thus, NO content in DG
homogenates was assessed directly by EPR spin trapping with MGD–Fe
at room temperature. The EPR signal is characterized by an isotropic
triplet signal at g=2.03 and aN=12.5 G, and its features are unique and
enable a fingerprint-like identification of NO (Fig. 6). The extra peak
detected in DG which is not visible in the computer-simulated signal
seems to be due to the formation of the complex Cu–MGD, as previously
reported (Gisone et al., 2003) (Fig. 6, line d). The NO-dependent EPR
signal was neither detectable in the absence of homogenate nor in the
presence of boiled homogenate (Fig. 6). The content of NO was
significantly lower (60%) in DG of animals exposed to Fe excess over
2 days, as compared to DG of animals not exposed to Fe. No further
changes were recorded over the rest of the treatment time (Table 2), in
agreement with the time pattern of nitrate and nitrite content.

4. Discussion

Even after 17 days of treatment when Fe concentrations were
drastically elevated over the natural Fe content in coastal seawater,
the Fe content inM. arenariaDGwas raised to only 38% of the in situ Fe
concentration in DG of the Antarctic soft shell clam L. elliptica
(Malanga et al., 2008) (Table 3). This Antarctic species is permanently
exposed to high environmental Fe concentrations during approxi-
mately 40 years of species specific lifespan. By contrast, M. arenaria
died already after 18 days of exposure in Fe enriched seawater,
suggesting storage capacities as well as physiological tolerance to be
overruled by Fe toxicity. ForM. arenaria the rapid increase apparently
represented a Fe overload situation, entailing severe oxidative stress
and resulting in damage to cellular structures, severe enough to
compromise survival. The slow accumulation of Fe may reflect the
normal bioaccumulation of dissolved Fe into DG and possibly forms a
first line of defense in M. arenaria against uncontrolled Fe uptake.

An initial response with elevated oxidative stress parameters in
the DG tissue was visible by day 2 of Fe exposure, however by day 7 all
parameters were back to control values. This initial phase of elevated
oxidative stress, occurring before significant Fe accumulation was
observed in DG of exposed animals, can possibly be attributed to
physiological stress under the experimental exposure conditions. We
did notmeasure themetabolic rates, but it is possible that Fe exposure
triggers an initial stress response including accelerated respiration as
the animals are pumping to rid themselves of the inflowing Fe
enriched sea water.

Chemically the initial phase of stress response in DG tissue to Fe
exposure at day 2, could be explained by i) A direct effect of Fe.
However, as the total Fe content was not significantly increased over
the 0 day levels until day 7 of Fe exposure, it seems that intracellular
Fe cannot directly explain the cellular response. ii) An indirect effect
of excess Fe. During the last years, the investigation of the mechanism
involved in the oxidation of Fe2+ in seawater has been studied. The
mechanism proposed by King et al. (1995) considered the generation
of hydrogen peroxide, as shown in reaction 2.

Fe2+ + O2→
k1 Fe3+ + O•−

2 ð1Þ

2Hþ + Fe2+ + O•−
2 →

k2 Fe3+ + H2O2 ð2Þ

Hydrogen peroxide is a good candidate for triggering cellular
responses since it is the most stable of the reactive intermediates of
oxygen reduction (Boveris, 1998). H2O2 diffuses freely into the tissue
and increases the oxidative stress (measured as DCFH-DA oxidation,
A• content) and further causes oxidative damage assessed as TBARS



Fig. 4. Determination of LIP by confocal microscopy in hemocytic cells of M. arenaria stained with PG. (A) Kinetic profile of LIP quantification as the intensity of the cellular
fluorescence. (B) Confocal image of hemocytic cells from M. arenaria stained with PG after 0, 7 and 17 days of exposure to seawater supplemented with 500 μM Fe. In column (I)
images from samples without DF treatment, and in column (II) images from samples treated with DF are included. The intensity shown in panel A represents the differences between
the number of fluorescence cells recorded in columns I and II. Scale bar 10 μm. *significantly different from the value at day 0 with pb0.01. ANOVA.
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content. H2O2 is especially toxic through Fenton reaction with Fe2+

where it gives rise to the extremely reactive hydroxyl radical
(reaction 3)

Fe2+ + H2O2→
k3 Fe3+ + OH� + HO• ð3Þ

In this first phase, H2O2 induced oxidative stressmay have triggered
the endogenous antioxidant system in such a manner that by day 7 of
exposure to excess Fe both,A• andTBARS content,were again reduced to
the starting values. The antioxidant enzyme most clearly triggered by
this initial oxidative stress was the H2O2-decomposing CAT, whereas
activity SOD was not further induced. The reduction of SOD activity
following day 9 of exposure to Fe probably supports the oxidative stress
situation at the end of the exposure experiment. On day 17 only one half
of the SOD activity in control animal DG was recorded. Further,
Fig. 5. Determination of CAT concentration ( ) and SOD activity (□) in DG ofM. arenaria
exposed to seawater supplemented with 500 μM. Fifteen animals (15) (3 animals per
group) were employed in each experiment. Measurements were perfomed by triplicate.
*significantly different from the value at day 0 pb0.1.
induction of other protective mechanisms, such as metallothioneins,
might act as effective transient control of heavymetal effects during the
initial phase of heavymetal exposure, see alsoViarengo et al. (1999) and
Alves de Almeida et al. (2004), but this protective mechanism was not
analyzed in our study.

The steady state concentration of the LIP could be described by the
following equation (Eq 5), where each term refers to the change in the
concentration of Fe bound to each physiological available Fe-chelator
in cells.

d½Fe�
dt

=
d½Fe�
dt

� �
citrate

+
d½Fe�
dt

� �
ATP

+
d½Fe�
dt

� �
ADP

+
d½Fe�
dt

� �
oxalate

+
d½Fe�
dt

� �
NO

+
d½Fe�
dt

� �
other physiological chelators

ð5Þ

NO can readily diffuse across cell membranes and part of its
functions is causing Fe release from the cell (Radi et al., 1995). NO can
bind to Fe and endogenous thiols generating dinitrosyl-Fe, dinitrosyl-
diglutathionyl-Fe or dinitrosyl-glutathionyl Fe complexes among
Table 2
NO and NO2

−+NO3
− content in DG of M. arenaria exposed to 500 μM Fe.

Treatment (day) NO NO2
−+NO3

−

(pmol/mg FM)

0 99±3 613±38
2 41±7a 93±22a

7 42±17a 95±7a

9 43±2a 96±11a

17 31±1a 95±5a

For the determination of nitrates and nitrites content, twenty five animals (5 animals
per group) were employed. The measurements were performed in duplicates.
For the determination of NO, fifteen animals (3 animals per group) were employed.

a Significantly different from the value measured in day 0, pb0.001. ANOVA.



Fig. 6.NOdetection inDGofM.arenaria. (a) Computer-simulated spectrumemploying the
parameters, g=2.03 and aN=12.5 G. (b) spectrum at day 0, (c) spectrum at day 9,
(d) spectrum of Cu2+ 50 μMwith MGD-Fe, (e) spectrum from boiled DG; and (f) reactive
blank spectrum (no animal tissue added).
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other nitrosyl–Fe complexes (Pedersen et al., 2007) as indicated in
(Eq 6).

d½Fe�
dt

� �
NO

=
d½Fe�
dt

� �
dinitrosyl complex

+
d½Fe�
dt

� �
dinitrosyl�diglutathionyl complex

+
d½Fe�
dt

� �
dinitrosyl�glutathionyl complex

+
d½Fe�
dt

� �
other physiological complexes

ð6Þ

Thus, NO could favor Fe release from the cell avoiding its
accumulation by the formation of the complexes described above
that can leave the cell through the membrane. In agreement with the
hypothesis that NO is part of the system controlling Fe uptake in the
first instance of exposure, we showed that NO content in DG was
drastically decreased by day 2 of treatment. On the other hand, NO has
previously been shown to inhibit lipid peroxidation inmany biological
systems (Dee et al., 1991; Kanner et al., 1991; Hogg et al., 1993; Rubbo
et al., 1994; Gorbunov et al., 1995; Sharpe et al., 2003) through its
ability of binding catalytically active Fe (Radi et al., 1995). Thus, the
decreased NO content in DG measured by day 2 of exposure to excess
Fe could also play a role in the increase in lipid peroxidation, as
previously proposed for other biological systems (Radi et al., 1995).
Also, it should not be discarded that the activity of NOS-like enzymes
could be partially inhibited by the initial radical-dependent stress
triggered by the Fe treatment.

The LIP increases in hemocytes and DG by day 7 of experimental
exposure to Fe, suggesting that the cellular mechanisms that limit Fe
uptakewere overwhelmed. Once the LIP has increased, the catalytically
Table 3
Comparison of Fe-dependent oxidative parameters between DG of L. elliptica and M.
arenaria.

M. arenaria day
17+500 μM Fe

L. elliptica
natural habitat

Ref.

Total Fe content
(nmol Fe/mg FM)

1.88±0.06 5.00±1.00a Malanga et al. (2008)

TBARS
(pmol/mg FM)

226±20 420±70a Malanga et al. (2008)

a Significantly different from the value measured at day 17+500 μM in M. arenaria,
pb0.01.
active Fe is able to efficiently catalyze Fenton (Boveris, 1998; Pierre and
Fontecave, 1999) and Haber-Weiss reactions (Rauen et al., 2000;
Livingstone, 2001, Eqs. 2 and 3) and consistently and drastically
accelerated A• formation and accumulation of TBARS. TBARS reflects
the accumulation of the oxidized substances, includingMDA, which are
generated over a period, whereas A• represents the instantaneous
metabolic generation of reactive species. Thus, by day 17 when the
cellular metabolism was severely disturbed, TBARS content in DG was
still high as compared to control animals maintained in water not
supplementedwith Fe. Contrary, A• content was almost non-detectable
in animals after 17 days of exposure, suggesting a metabolic collapse
due to oxidative damage, that included the enzymes responsible for ROS
generation. This second phase of the response seems to reflect fatal
damage as a consequence of the exhaustion of cellular defense by Fe
overload, most clearly seen in the SOD activity, which would led to
enhanced death rates in the Fe-exposed group.

The index of lipid radical content/α-tocopherol content can be
understood as indicator of the damage/protection ratio (Galleano et al.,
2002; Malanga et al., 2009). This index was 1.6±0.3 and 1.3±0.2 for L.
elliptica and M. arenaria respectively. In both cases animals were taken
directly from the natural habitat (Puntarulo et al., 2005). These data
suggest that chronically high Fe content in Antarctic species is
adequately controlled by endogenous mechanisms in L. elliptica,
whereas these mechanisms not seem to have developed inM. arenaria,
a species coming from low Fe environments. In conclusion, the data
presented here speak for an ability to minimize Fe uptake and limit
oxidative damage in molluscs, adapted to low natural Fe levels, when
exposed to excess dissolved Fe in seawater. However, when the
endogenous mechanisms in charge of regulating Fe uptake are
overwhelmed by polluting concentrations of Fe, survival is affected
which documents the vicious effects of environmental contamination
with transition metals.
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