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To date, the software package SCIATRAN [V. V. Rozanov et al., 2002; A. Rozanov et al., 
2005, 2008] has been used for modelling radiative processes in the atmosphere for the 
retrieval of trace gases from satellite data from the satellite sensor SCIAMACHY 
(Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY onboard the 
satellite ENVISAT). This SCIATRAN version only accounted for radiative transfer 
within the atmosphere and reflection of light at the earth surface. However, radiation also 
passes the air-water interface, proceeds within the water and is modified by the water 
itself and the water constituents. Therefore, SCIATRAN has been extended by oceanic 
radiative transfer and coupling it to the atmospheric radiative transfer model under the 
terms of established models for radiative transfer underwater [Kopelevich, 1983; Morel et 
al., 1974, 2001; Shifrin, 1988; Buitevald et al., 1994; Cox and Munk, 1954a, 1954b; 
Breon and Henriot, 2006; Mobley, 1994] and extending the data bases to include the 
specific properties of the water constituents [Pope and Fry, 1997; Haltrin, 2006; Prieur 
and Sathyendranath, 1981]. 
 

 
Figure 1: Scheme of atmospheric and oceanic coupled radiative transfer 

 



So far, the coupling for the scalar radiative transfer is included. To analyse the quality of 
this new scalar coupled ocean-atmosphere radiative transfer version of SCIATRAN, 
model results of this and of the uncoupled SCIATRAN version are compared to 
observations, using satellite and in-situ measurements. In particular, we compared 
MERIS-TOA (top of the atmosphere) reflectances with SCIATRAN calculations. The 
data were chosen due to varying chlorophyll concentrations at different sites during 
different seasons. The main input parameters required to model the measured data 
properly, such as concentrations of water vapour, ozone, chlorophyll, aerosol optical 
thickness as well as observation and illumination geometry, are taken from the MERIS 
satellite and AERONET data base measurements and used in the same way for both 
versions. Each version takes the optical properties of organic and inorganic small 
(phytoplankton, bacteria, dust etc. < 1µm) and large (phytoplankton, zooplankton, sand 
etc. >/= 1µm) particles measured by in-situ observations into account. Furthermore, in 
the coupled version the single scattering albedo and the extinction coefficient can be set. 
Nevertheless, these two properties of water particles have a non-neglecting impact on the 
modelled result, but they are not often measured and not available from the MERIS 
satellite data at all. Therefore, common values based on theory and own tests are used.   
 
Figure 2 shows first results of these comparisons for two sites in the Pacific Ocean. 
 

 
Figure 2:                                                                             

Modelled (red line: coupled, green line: uncoupled SCIATRAN version) and     

measured (blue star: MERIS data) reflectances at the top of the atmosphere for  

(left panel) an oceanic region with chlorophyll concentration of 0.21806335 

mg/m³, near the aerosol station Dunedin (New Zealand, 163.47° E and 42.59° S), 

and (right panel)an oceanic region with chlorophyll concentration of 

0.091333464 mg/m³, near the aerosol station Midway Island (Atoll close to 

Hawaii, 177.35° W and 28.34° N), both on September 18, 2006. The purple cross 

shows the deviation of the coupled version versus measured reflectance, and the 

small cyan star the deviation of the uncoupled version versus measured 

reflectance in absolute values. 

 

CONCLUSION 
 

As the above pictures show, each version yields close agreement to the satellite 
measurement, but the reflectance modelled by the coupled version is closer to the measured 
one than those modelled by the uncoupled version. However, there are still differences 
which will be analysed and explained. 
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