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Localization is essential for data assimilation with
ensemble-based Kalman filters in large-scale systems.
Two localization methods are commonly used: Covari-
ance localization (CL) and domain localization (DL). The
former applies a localizing weight to the forecast covari-
ance matrix while the latter splits the assimilation into
local regions in which independent assimilation updates
are performed. The domain localization is usually com-
bined with a weighting of the observation error covari-
ance matrix, denoted observation localization (OL). OL
results in a similar localization effect to that of covari-
ance localized filters. In order to improve the perfor-
mance of domain localization with weighting of the ob-
servation errors, a regulated localization scheme is in-
troduced. Using twin experiments with the Lorenz-96
model, it is demonstrated that the regulated localization
can lead to a significant reduction of the estimation er-
rors as well as increased stability of the assimilation pro-
cess. In addition, the numerical experiments point out
that the combination of covariance localization with a se-
rial processing of observations during the analysis step
can destabilize the assimilation process.

Twin experiments are conducted using the Lorenz-96
model [7] implemented in the Parallel Data Assimilation
Framework (PDAF, http://pdaf.awi.de). The ensemble
size is chosen to consist of 10 model states. The local-
ization functions wCL

,wOL are chosen to be 5th-order
polynomials mimicking a Gaussian function, but having
compact support. In the experiments, the support radius
and the forgetting factor (covariance inflation) is varied.
For each pair of these parameters 10 experiments are
conducted using different random numbers to generate
the initial ensemble from a long state trajectory. The
performance of the assimilation experiments is assessed
using the time-mean RMS deviations from the true state
that was used to generate the observations.

Four combinations of filter algorithms and localization
methods are compared:

• LSEIK-fix: Local SEIK filter [5] using fixed OL.

• LSEIK-reg: Local SEIK filter using regulated OL.

• EnKF-sqrt: Square-root formulation of Ensemble
Kalman filter (following [2]) using CL.

• EnSRF: Ensemble square-root filter with sequential
processing of observations [6] using CL.

• OL results in a longer effective localization length
scale compared to CL. The length scale increases
for more accurate observations.

• A regulated localization function for OL has been in-
troduced. For a single observation, it results in iden-
tical effective localizations for CL and OL.

• Numerical experiments show a significant improve-
ment of the assimilation performance with regulated
localization for small observation errors.

• The EnSRF method with CL showed an inferior as-
similation performance. It is caused by the combi-
nation of CL with sequential processing of observa-
tions.

Previous studies [1–4] found that CL and OL are not equiv-
alent. However, if the observations have only a small in-
fluence the difference induced by the localization methods
is small. If the influence of the observations is larger, OL
requires a smaller localization length scale and, still, can
lead to inferior assimilation results than using CL.
The published findings can be explained by considering
the effect of the localization on the Kalman gain. Follow-
ing [1], the gain for CL is in case of a single observation:

KCL
=

wCL

HPHT+σ2
R
P f H

For OL the gain is is:

KOL
=

wOL

wOLHPHT+σ2
R
P f H

Here, wCL and wOL are the localization functions applied
in the CL and OL methods. While for CL the localization
function enters the gain as a simple factor this is not the
case for OL.

The effective localization length scale in the Kalman gain
is different for both methods. It depends on the relative
size of the estimated state error variance (P) and obser-
vation error variance σ2

R as is shown in figure (1). If the
observation error is particularly small, the effective local-
ization length in OL will be much larger than that of CL.
This behavior can disturb the assimilation performance.
To obtain an identical effective localization length scale in
OL, a distinct weight function wOLR is required. It can be
derived by equating both of the gain equations shown in
the left column. The calculation leads to the regulated
localization function

wOLR
=

wCLσ2
R

HPHT+σ2
R

(

1− wCLHPHT

HPHT+σ2
R

)

−1

The function is always narrower than the weight function
wCL. It avoids the widening of the effective localization
length scale for small observation errors.
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Figure 1: Effective localization functions in the Kalman
gain for different observation error variances σ2

R and state
error variance 1. (red): Weighting term for CL and

for OL with regulated localization. (blue): Weighting term
for OL. The effective weighting is increasingly wider for
observation localization for decreasing σ2

R.
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Figure 2: Time-mean
RMS errors averaged over
each 10 experiments.

The regulated localization
(LSEIK-reg) results in a
significant reduction of
the errors compared to
fixed-OL (LSEIK-fix), in
particular for small obser-
vation errors. In addition,
the parameter region
with minimum errors is
increased.

The EnKF-sqrt method
shows errors that are very
similar to those obtained
with LSEIK-reg. How-
ever, EnKF-sqrt diverges
in case of the smallest
observation errors for long
localization radii. Here,
LSEIK-reg is still stable.

The EnSRF is less stable
with larger errors com-
pared to LSEIK-reg and
EnKF-sqrt. This behavior
is caused by the combina-
tion of CL with sequential
processing of observa-
tions, which renders the
update equation of the
covariance matrix to be
inexact.
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