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INTRODUCTION

Because of the highly episodic nature of primary
production in seasonally ice-covered areas, the ex -
port of organic carbon to the deep ocean, or its reten-
tion in the upper water, is determined by the interac-
tion between the development of the phytoplankton
community and the seasonal dynamics of zooplank-
ton (Andreassen et al. 1996, Wassmann et al. 1996,
2004, Sakshaug 2004, Lalande et al. 2007). A match
or mismatch between phytoplankton blooms and zoo-
plankton grazing has important consequences for the
ecosystem as it affects the magnitude and composi-
tion of the exported particulate matter and hence the

food supply to benthic communities (Grebmeier &
Barry 1991, Klages et al. 2004). The magnitude and
composition of the exported material is particularly
important in the deep Fram Strait, where food avail-
ability at the seafloor is the determinant factor con-
trolling large-scale distribution patterns of deep-sea
megafauna (Soltwedel et al. 2009).

The Fram Strait, located between Northeast Green-
land and the Svalbard Archipelago, is a gateway for
Atlantic Water entering the Arctic Ocean. The warm
Atlantic Water (3 to 4°C) transits northward with the
West Spitsbergen Current in the eastern Fram Strait,
where it merges with the cold Arctic Water (<0°C)
flowing southward with the East Greenland Current
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ABSTRACT: A sediment trap was deployed at 340 m from April to July 2003 to monitor the down-
ward export of particulate organic carbon (POC) at high temporal resolution in the marginal ice
zone of the eastern Fram Strait. Although POC fluxes remained <15 mg m−2 d−1, variations in the
magnitude and composition of the exported POC were observed during deployment. A first period
of elevated POC export associated with an increase in diatom fluxes and low zooplankton fecal
pellet fluxes was recorded at the beginning of May, suggesting a mismatch between phytoplank-
ton production and zooplankton grazing. A second period of elevated POC export composed of
coccolithophores, diatom resting spores and empty diatom frustules was observed in June. This
transition in the composition of the export fluxes reflected a shift in water masses caused by the
onset of an ice-edge eddy bringing warm Atlantic Water into the region at the beginning of June.
The cyclonic eddy also contributed to the rapid export of Phaeocystis pouchetii, a microalga that
does not significantly contribute to carbon export in stratified waters. The main contributors to the
zooplankton fecal pellet flux also varied according to the prevailing water mass, with copepod
fecal pellets dominating throughout the deployment, except at the beginning of June, when the
fecal pellet flux in Atlantic Water was dominated by appendicularian fecal pellets. These results
indicate that a prevalence of Atlantic Water may have a large impact on the magnitude and com-
position of POC export in the eastern Fram Strait.
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in the western Fram Strait (Schauer et al. 2004,
Polyakov et al. 2005). Sea ice conditions and the posi-
tion of the ice edge in the Fram Strait are mainly de -
termined by the interactions between the warm
Atlantic Water and the cold Arctic Water, with perma-
nent ice-covered areas in the west, permanent ice-
free areas in the southeast, and seasonally varying
conditions in the central and eastern Fram Strait
 (Blachowiak-Samolyk et al. 2007). Therefore, sea-
sonal and interannual variations in water mass distri-
bution and sea ice cover are major factors constrain-
ing the timing and magnitude of primary production
in the Fram Strait when sunlight is sufficient.

Several investigations using short-term drifting or
long-term moored sediment traps have been con-
ducted in the seasonally ice-covered Arctic Ocean
to estimate the magnitude and seasonal variability
of particulate organic carbon (POC) export (e.g.
Wassmann et al. 2004). However, fluxes were usu-
ally ob tained for brief deployments (~24 h) or for
long de ployments with low temporal resolution,
whereby each flux measurement corresponds to sev-
eral days or weeks. In the present study, a sediment
trap was deployed at high temporal resolution in the
marginal ice zone of the eastern Fram Strait to bet-
ter evaluate the temporal variability of POC export
in relation with the development of the phytoplank-
ton and zooplankton communities. This sediment
trap was de ployed as part of a time series of sedi-

ment trap de ployments performed since 2000 at
HAUSGARTEN, an observatory established by the
Alfred Wegener Institute for Polar and Marine
Research to detect and track the impact of large-
scale environmental changes in the transition zone
between the northern North Atlantic and the central
Arctic Ocean (Bauerfeind et al. 2009). This high res-
olution investigation of the magnitude and composi-
tion of the sinking material provides insight on the
processes affecting the downward POC export in
this remote region.

MATERIALS AND METHODS

Sampling

A modified automatic Kiel sediment trap with a
sampling area of 0.5 m2 and 20 collection cups (Krem-
ling et al. 1996) was deployed at 340 m for 80 d from
25 April to 14 July 2003 at the HAUSGARTEN obser-
vatory, located ~120 km west of Spitsbergen in the
eastern Fram Strait (78° 59’ N, 4° 27’ E; water depth =
2568 m; Fig. 1). Sediment trap sampling cups rotated
every 4 d to measure downward export fluxes at high
temporal resolution. Sample cups were filled with fil-
tered seawater poisoned with HgCl2 (0.14% final
solution) and adjusted to a salinity of 40 with NaCl, to
preserve samples during deployment and after recov-

ery. In the laboratory, swimmers were
removed with forceps and rinsed
under a dissecting microscope before
splitting of subsamples for the mea-
surement of POC, calcium carbonate
(CaCO3), biogenic particulate silica
(bPSi), phytoplankton cells, and zoo-
plankton fecal pellets. Preparations
and measurements of the subsamples
were per formed as described by von
Bo dungen et al. (1991), with the
exception of acidification of CaCO3

and POC filters, which were soaked
with 0.1 N HCl instead of fuming with
concentrated HCl. Filters for CaCO3

measurements were weighed before
acidification, rinsed with distilled
water to re move residual CaCl2 after
treatment, and reweighed after dry-
ing at 60°C. CaCO3 values were cal-
culated from the weight difference to
total mass, while POC measurements
were conducted on a Carlo Erba CHN
analyzer. POC fluxes were not cor-
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rected for dissolution of organic material in the sam-
pling cups and should be considered as minimum
 values. Subsamples for bPSi were filtered on polycar-
bonate filters (pore size: 0.8 µm), and bPSi mea -
surements were ob tained by wet-alkaline digestion
of the samples (von Bodungen et al. 1991).

Additional subsamples were used for the micro-
scopic analysis of phytoplankton cells and zooplank-
ton fecal pellets. Phytoplankton cells were enumer-
ated by inverted microscopy according to the
Uter möhl (1958) method. A minimum of 50 to 100
phyto plankton cells of the dominant groups were
counted at 4 magnifications (100, 160, 250, and
400×) using phase contrast microscopy. Only the
dominant and identifiable cells were counted,
including intact cells, empty frustules, and resting
spores of diatoms. Zooplankton fecal pellets were
enumerated (50 to 700 pellets depending on the sub-
sample) using a dissecting scope. The length and
width of each fecal pellet were measured at 2 mag-
nifications (20 or 25×), and pellet volumes were cal-
culated based on the cylindrical or ellipsoidal shape
of the pellets. According to their shape and size,
cylindrical pellets were attributed to calanoid cope-
pods and ellipsoidal pellets with a diameter >60 µm
were attributed to ap pen di cularians (Sampei et al.
2009). Ellipsoidal pellets with a diameter <60 µm
may be attributed to the small cyclopoid copepod
Oi tho na similis (Sampei et al. 2009), but no pellets
corresponding to this size were measured. Fecal pel-
let volumes were converted to fecal pellet carbon
(FPC) using a volumetric carbon conversion factor of
0.057 mg C mm−3 for copepod pellets and 0.042 mg
C mm−3 for appendicularian pellets (González &
Smetacek 1994, González et al. 1994). POC, CaCO3,
bPSi, phytoplankton cells, and zooplankton FPC
fluxes were averaged to daily fluxes for each collec-
tion period.

Remote sensing

Daily sea ice concentrations in the sampling region
were obtained by analysis of satellite-derived
Advanced Microwave Scanning Radiometer for EOS
(AMSR-E) data provided by the National Snow and
Ice Data Centre. The 89 GHz AMSR-E sensor and the
ARTIST Sea Ice (ASI) algorithm were used, yielding
a spatial resolution of 6.25 × 6.25 km (Spreen et al.
2008). Satellite-derived chlorophyll a concentrations
(chl a) above the sediment trap were obtained from 7
April to 15 July 2003 from the GlobColour Project
(ESA). Chl a concentrations were retrieved at a reso-

lution of 4 km and for 8 d binning periods using the
semi-analytical GSM algorithm (Garver & Siegel
1997, Maritorena et al. 2002) applied to merged
water leaving reflectance spectra from SeaWiFS,
MODIS and MERIS datasets (Maritorena & Siegel
2005). GSM was selected over usual empirical algo-
rithms to minimize the impact of optical constituents
(colored detrital material and non-algal particles).
Although the GSM algorithm has not been validated
for the Arctic Ocean, the semi-empirically derived
chl a concentration patterns are more realistic than
the ones obtained using empirical algorithms (Bé lan -
ger et al. 2008).

RESULTS

Ice and chl a concentrations

Ice concentration in the sampling region was ~20%
during the first weeks of deployment, in creased to
~40% at the beginning of June, and remained at this
concentration for the rest of the deployment period
(Fig. 2a). Chl a concentrations were >1 mg m−3 at
the start of the deployment and ranged between 0.5
and 1.5 mg m−3 for most of the deployment period
(Fig. 2b). The highest chl a concentration was
observed in May, while the lowest chl a concentra-
tion was measured in June (Fig. 2b).
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Fig. 2. Temporal variations in satellite-derived (a) sea ice con-
centration averaged over the sampling region (78.5 to
79.5° N, 2.5 to 6.5° E) and (b) chl a concentration averaged
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CaCO3, bPSi, and phytoplankton cell fluxes

CaCO3 fluxes were high at the end of April,
decreased during the month of May, and increased
again at the beginning of June, while bPSi fluxes
were elevated at the beginning of May and low in
June and July (Fig. 3). Concurring with the elevated
bPSi fluxes, an enhanced export of diatoms was ob -
served at the beginning of May (Fig. 4). Pennate
diatoms, mainly the chain-forming Fragilariopsis
cylinders and F. oceanica, and centric diatoms of the
genus Thalassiosira spp. reached their highest flux
values in the first week of May, while empty diatom
frustules and resting spores of Chaetoceros spp.
mostly contributed to the phytoplankton flux in June.
Elevated fluxes of Phaeocystis pouchetii were ob -
served at the beginning of June, while increased
cocco lithophore fluxes (mainly of Emiliania huxleyi
and a few Coccolithus pelagicus) were observed dur-
ing most of the month of June. Fluxes of large identi-
fiable phytoplankton cells decreased to low values
during the month of July (Fig. 4).

POC and FPC fluxes

POC fluxes were <15 mg C m−2 d−1 during the com-
plete deployment (Fig. 5a). Periods of increased POC
export were observed at the beginning of May (12 d
>5 mg C m−2 d−1) and at the end of June (16 d >10 mg
C m−2 d−1). FPC fluxes remained <5 mg C m−2 d−1 dur-
ing the deployment, were highest at the end of May
and in June, and de creased considerably in July

(Fig. 5a). The contribution of FPC to the POC flux
ranged between 10 and 30% at the beginning of the
deployment, substantially increased to supply >85%
of the POC flux at the end of May, and remained
between 40 and 70% until mid-June when the contri-
bution of FPC to the POC flux decreased to an aver-
age of 10% for the rest of the deployment (Fig. 5b).
Copepod fecal pellets were present in all samples
and dominated the FPC fluxes, except during a short
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period at the beginning of June when they were
nearly absent from the samples (Fig. 5c). Appendicu-
larian fecal pellets completely dominated the FPC
fluxes at the beginning of June but were nearly
absent at the start of the deployment (Fig. 5c). Cope-
pod and appendicularian fecal pellet volumes
steadily increased with time until a rapid de cline in
June (Fig. 5d). The low copepod fecal pellet volume
recorded at the beginning of June re sulted from the
small fragments of broken fecal pellets collected in
the sample (Fig. 5d).

DISCUSSION

An unusual increase in ice concentration in the
sampling region, instead of the expected decrease in
ice cover due to melting at the beginning of June, in -
dicated the formation of an ice-edge eddy, a common
feature along the ice edge in the Fram Strait (Wad -
hams & Squire 1983, Johannessen et al. 1987a,b). In-
deed, ice concentration maps revealed the presence

of a cyclonic eddy transporting ice over a large area
directly above the sediment trap from 2 June to 2 July
(Fig. 6). With typical scales of from 30 to 40 km and a
lifetime of at least 20 to 30 d, mesoscale eddies have a
large impact on ice distribution in the Fram Strait
 (Johannessen et al. 1987a,b, Shuchman et al. 1987).
In addition to dragging ice away from the main ice
pack, cyclonic eddies transport warm Atlantic Water
beneath the ice (Wadhams & Squire 1983, Johan-
nessen et al. 1987b). Therefore, the coincident de-
ployment of the sediment trap with the occurrence of
an ice-edge eddy provided a unique opportunity to
assess the influence of the advection of warm Atlantic
Water on POC export in the eastern Fram Strait.

POC export prior to the ice-edge eddy

The enhanced diatom and diatom-specific bPSi
fluxes at the beginning of May suggest that the
deployment of the sediment trap coincided with the
onset of a bloom. Although satellite-derived measure-
ments have limited viewing conditions and were par-
tially hindered by ice cover, the chl a concentration
recorded at the end of April was above the threshold
value of 1.0 mg m−3 defining a bloom (Wu et al. 2007),
supporting an enhanced primary production at the
time of the deployment. A phytoplankton bloom
occurs when nutrient-rich water is exposed to light
during ice break-up and water from the melting ice
gives rise to strongly stratified surface water (Peinert
et al. 2001, Fortier et al. 2002, Sakshaug 2004, La -
lande et al. 2007). The influence of ice on primary
production was reflected by the export of ice-associ-
ated pennate diatoms Fragilariopsis spp. known to be
quantitatively important during the spring bloom in
the Arctic Ocean (von Quillfeldt 2000). A large
export of pennate diatoms recorded from the end of
April to the beginning of May 2003 by another long-
term sediment trap deployed at the HAUSGARTEN
observatory emphasizes the importance of the spring
bloom for POC export in the region (Bauerfeind et al.
2009). The elevated CaCO3 fluxes ob served prior to
the increase in diatom-specific bPSi fluxes at the start
of the deployment may reflect the release of forami-
nifera from melting sea ice. High benthic foraminif-
era fluxes due to sea-ice rafting were observed from
January to May in the eastern Fram Strait (Hebbeln
2000); however, the low abundance of foraminifera
collected in the sediment trap was not sufficient to
explain the elevated CaCO3 fluxes observed during
the first days of deployment in our study, and these
high CaCO3 fluxes remain unexplained.
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Because zooplankton fecal pellets sink rapidly
(Turner 2002), the absence of a coincident increase in
zooplankton fecal pellet fluxes with the increase in
diatom fluxes at the beginning of May suggests that
fecal pellets were retained in the upper water column
or were not abundantly produced. However, the
enhanced export of diatoms implies a lack of reten-
tion, and low fecal pellet fluxes likely reflect low zoo-
plankton biomass and fecal pellet production at the

start of the deployment. In fact, the proportion of
fecal pellets in the POC flux remained low until it
abruptly increased above 85% at the end of May due
to a considerable increase in fecal pellet fluxes, sug-
gesting that zooplankton biomass was low during the
first weeks of deployment and rapidly increased in
May. This large increase in fecal pellet fluxes may
reflect the advection of zooplankton in the region,
but most likely reflects the seasonal ontogenetic mi -
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gra tion of copepods. Hirche (1997) reported a south−
north gradient in the timing of the ascent of the pop-
ulation of the copepod Calanus hyperboreus from the
Norwegian Sea to the central Arctic Ocean, with the
ascent beginning in March in the Norwegian Sea, in
April in the Greenland Sea, and in June in the central
Arctic Ocean. Given the location of the Fram Strait
between the Greenland Sea and the central Arctic
Ocean, it is probable that the overwintering cope-
pods surfaced in May in the region.

The plausible mismatch between zooplankton
grazing and the phytoplankton bloom before the
return of the overwintering copepods resulted in an
increased export of intact phytoplankton cells and
POC at the beginning of May. Previous investiga-
tions in the Arctic Ocean have also shown that a
rapid increase in food supply and low zooplankton
biomass during the spring bloom may cause a large
export of ungrazed phytoplankton cells (Olli et al.
2002, Wassmann et al. 2004, Lalande et al. 2007).
This mismatch period is commonly followed by a
period of reduced POC export and elevated fecal pel-
let fluxes due to the extensive grazing pressure
resulting from higher abundances of large copepods
and sufficient feeding conditions. The increase in the
contribution of fecal pellets to the POC flux at the
end of May, with fecal pellets comprising nearly the
entire POC flux, reflects this expected match be -
tween phytoplankton and zooplankton. In the east-
ern Fram Strait, zooplankton abundance and bio-
mass is dominated by calanoid copepods (Hop et al.
2006), as reflected by a majority of copepod fecal pel-
lets exported at that time. This large contribution of
copepod fecal pellets to the POC flux is comparable
to the export of fecal pellets from the copepod
Calanus finmarchicus, which accounted for 92% of
the total carbon export at the end of a spring bloom in
May in the Norwegian Sea (Graf 1989).

Despite the low amount of diatoms collected in the
sediment trap following the elevated diatom and di-
atom-specific bPSi fluxes measured in the first weeks
of May, another increase in bPSi fluxes was observed
at the end of May. The almost complete contribution
of fecal pellets to the POC flux at that time suggests
that the bPSi was exported through fecal pellets.
Thus, fecal pellets enhanced the export of bPSi in the
eastern Fram Strait, similar to previous observations
made at a nearby station off northern Spitsbergen,
where fecal pellets were the most prominent source
of sinking particulate silicate (Andreas sen et al.
1996), and in the Antarctic Polar Front region, where
fecal pellets contributed significantly to biogenic sil-
ica and POC fluxes during spring (Dagg et al. 2003).

Influence of Atlantic Water on POC export

The advection of warm Atlantic Water due to the
formation of an ice-edge eddy at the beginning of
June directly in the collection area of the sediment
trap rapidly modified the composition of the POC flux.
The first effect associated with the onset of the eddy
was the large collection of the haptophyte Phaeocystis
pouchetii in the sediment trap. Although blooms of P.
pouchetii are often recorded in the Fram Strait (Hop
et al. 2006), P. pouchetii does not contribute signifi-
cantly to carbon export unless deep mixing acceler-
ates the downward export (Reigstad & Wassmann
2007). Because Phaeocystis spp. cells are typically re-
tained in the upper 50 to 100 m (Reigstad & Wass-
mann 2007), P. pouchetii cells collected at 340 m were
likely exported within the downwelling columns
found on either side of a cyclonic eddy (Niebauer &
Smith 1989). In fact, P. pouchetii cells were potentially
exported deeper than the sediment trap depth, as the
cyclonic motion and warm water influence of eddies
were previously observed beyond 600 m in the east-
ern Fram Strait (Wadhams & Squire 1983, Johan-
nessen et al. 1987b). The large P. pou chetii export
was followed by a period of elevated coccolithophore
and CaCO3 fluxes, suggesting that a coccolithophore
bloom was taking place at the surface and that the
eddy contributed to the rapid export of these small
cells. Typically observed in the warmer waters of the
northern North Atlantic and the Norwegian Sea,
cocco litho phore blooms were recently ob served fur-
ther north (Hegseth & Sundfjord 2008). In their study,
Hegseth & Sundfjord (2008) concluded that the coc-
colithophore bloom observed in the marginal ice zone
of the  Barents Sea in August 2003 was due to the sub-
surface circumpolar boundary current carrying water
of  Atlantic origin west of Svalbard and then east -
wards along the Eurasian Shelf break. The same
boundary current explains the presence of a cocco -
litho phore bloom in the Atlantic Water of the eastern
Fram Strait in June 2003, which was probably carried
to the sediment trap by the ice-edge eddy.

Appendicularian fecal pellet fluxes abruptly domi-
nated the export of fecal pellets at the onset of the ice-
edge eddy. Appendicularians are soft-bodied zoo-
plankton commonly abundant in the cold waters of
sub-Arctic and Arctic seas that often contribute sub-
stantially to carbon export through fecal pellets and
which were also abundant in the Fram Strait in
spring 2003 (Bauerfeind et al. 1997, Vargas et al.
2002, Hopcroft et al. 2005, Blachowiak-Samolyk et al.
2007). The dominance of appendicularian fecal pel-
lets and the near absence of copepod fecal pellets in
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the fecal pellet fluxes during several days suggest a
higher grazing pressure from appendicularians. In -
deed, these filter-feeders are capable of much higher
rates of ingestion, growth, and reproduction than
copepods, allowing them to respond more rapidly to
shifts in primary productivity (Hopcroft et al. 2005).
Thus, it appears that appendicularians were either
advected with the Atlantic Water or were better
adapted to take advantage of the change in phyto-
plankton composition associated with the rapid input
of Atlantic Water, which contributed to a large export
of carbon through appendicularian fecal pellets in
June. Another possible explanation for the near
absence of copepod fecal pellets in fecal pellet fluxes
may be the fragmentation of the copepod fecal pel-
lets due to orbital currents of up to 40 cm s−1 associ-
ated with the eddy (Johannessen et al. 1987a,b), a
possibility supported by the fragmented copepod
fecal pellets collected in the sediment trap at the
onset of the eddy.

After several days, the almost total contribution of
appendicularian fecal pellets to fecal pellet fluxes
decreased toward an equal contribution of copepods
and appendicularians, and eventually back to a pre-
dominance of copepod fecal pellets in the fecal pellet
fluxes. This shift in the composition of the fecal pellet
fluxes possibly reflects a decrease in the influence of
Atlantic Water, with fecal pellet fluxes returning to
their pre-eddy proportions after 20 to 24 d. Although
ice concentration maps indicate the presence of the
eddy until the beginning of July, the material col-
lected in the sediment trap suggests that the eddy sig-
nal disappeared earlier at depth. Concurrently with
the increasing proportion of copepod fecal pellets,
the fecal pellet fluxes and the average size of fecal
pellets rapidly decreased at the end of June. While
the steady increase in fecal pellet size from May to
June probably reflected the increasing size of the
zooplankton present in the community, the rapid de -
crease in the size of zooplankton fecal pellets in June
may reflect fragmentation processes above the sedi-
ment trap. Indeed, the small pieces of pellets col-
lected in the sediment trap, the steady decrease in
fecal pellet fluxes, and the low proportion of fecal pel-
lets in the POC flux suggest that coprophagy, the
ingestion of fecal pellets by copepods, and/or
coprorhexy, the fragmentation of fecal pellets by
cope pods, occurred in June (Noji et al. 1991, Turner
2002, Wexels Riser et al. 2002). The fragmentation of
fecal pellets through coprophagy and coprorhexy
likely contributed to the retention of fecal pellets in
the upper water column by lowering their sinking
rates (Noji et al. 1991, Turner 2002, Wexels Riser et al.

2002). These processes possibly occurred in response
to a decline in food availability at this time, as re -
flected by the diatom resting spores and empty
diatom frustules collected in the sediment trap.

A significant decrease in POC, phytoplankton cell,
and fecal pellet fluxes occurred during the last days
of the short deployment in July. This decline may
reflect the prevalence of a retention food chain due to
a more complex zooplankton community, with a
higher capacity of recycling in summer compared to
spring, which is in accordance with observations pre-
viously made in the Barents Sea (Olli et al. 2002). On
the other hand, the reduced fecal pellet fluxes in July
may reflect the onset of the descent of copepods to
depth, as supported by observations of the prepara-
tion for the descent of Calanus hyperboreus in July in
the Greenland Sea (Hirche 1997), the aggregation of
C. hyperboreus over the ocean floor of the Greenland
Sea in late July (Hirche et al. 2006), and the accumu-
lation of overwintering stock of Calanus spp. at depth
in July in the Barents Sea (Arashkevich et al. 2002).
However, it is more likely that the low export fluxes
observed in July reflect the retention capacity of the
higher zooplankton abundance and biomass ob -
served later in the season in the eastern Fram Strait
(Blachowiak-Samolyk et al. 2007).

CONCLUSIONS

The deployment of a sediment trap at a high tempo-
ral resolution allowed us to better assess the develop-
ment of the phytoplankton and zooplankton commu-
nities and their influence on the magnitude and
composition of the downward POC export in the east-
ern Fram Strait. Although high POC export was asso-
ciated with the sinking of the diatom bloom at the
beginning of May, most of the POC export was asso-
ciated with the advection of Atlantic Water in the
sampling region due to an ice-edge eddy. The input
of Atlantic Water affected the composition of the
exported phytoplankton cells and zooplankton fecal
pellets, underscoring the importance of water masses
in shaping POC export in the eastern Fram Strait. A
similar influence of water masses was observed in
the Barents Sea, where the composition of the sink-
ing particles was different in Arctic and Atlantic
waters (Olli et al. 2002) and where the main contribu-
tors to the fecal pellet flux varied depending on the
prevailing water masses and phytoplankton bloom
stage (Wexels Riser et al. 2008). Although water
masses strongly influence export fluxes, ice cover
also affects POC export in the eastern Fram Strait,
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mainly through the release of particles during ice
melt (Bauerfeind et al. 2009). Nonetheless, our
results suggest that the recent increases in the vol-
ume and temperature of the Atlantic Water flowing
into the Arctic Ocean through the Fram Strait (Wal-
czowski & Piechura 2006) likely affected the composi-
tion of the POC flux, and that potential ‘atlantifica-
tion’ of the Fram Strait could significantly influence
POC export in this region.

Furthermore, the immediate shift in the composi-
tion of the export fluxes during the formation of the
ice-edge eddy suggests that such events lead to rapid
POC export. Smith et al. (1987) concluded that, since
approximately 10 to 20% of the marginal ice zone of
the Fram Strait is impacted by cyclonic eddies, these
features may introduce large spatial and temporal
variability into biological processes and may have
significant impact on the entire food web of the
region. This hypothesis was confirmed by our results,
which clearly showed that eddies are important for
the downward export of small phytoplankton cells,
further implying that their effect should be consid-
ered in the estimation of annual POC export.
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