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Abstract 

 We used a general circulation model of Earth’s climate to conduct simulations of the 12-

16 June 2009 eruption of Sarychev volcano (48.1°N, 153.2°E).  The model simulates the 

formation and transport of the stratospheric sulfate aerosol cloud from the eruption and the 

resulting climate response.  We compared optical depth results from these simulations with limb 

scatter measurements from the Optical Spectrograph and InfraRed Imaging System (OSIRIS), in 

situ measurements from balloon-borne instruments lofted from Laramie, Wyoming (41.3°N, 

105.7°W), and five lidar stations located throughout the Northern Hemisphere.  The aerosol 

cloud covered most of the Northern Hemisphere, extending slightly into the tropics, with peak 

backscatter measured between 12 and 16 km in altitude.  Aerosol concentrations returned to near 

background levels by Spring, 2010.  After accounting for expected sources of discrepancy 

between each of the data sources, the magnitudes and spatial distributions of aerosol optical 

depth due to the eruption largely agree.  In conducting the simulations, we likely overestimated 

both particle size and the amount of SO2 injected into the stratosphere, resulting in modeled 

optical depth values that were a factor of 2-4 too high.  Model results of optical depth due to the 

eruption show a peak too late in high latitudes and too early in low latitudes, suggesting a 

problem with stratospheric circulation in the model.  The model also shows a higher annual 

decay rate in optical depth than is observed, showing an inaccuracy in seasonal deposition rates.  

The modeled deposition rate of sulfate aerosols from the Sarychev eruption is higher than the 

rate calculated for aerosols from the 1991 eruption of Mt. Pinatubo. 
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1.  Introduction 

Sarychev Volcano (48.1°N, 153.2°E) in the Kuril Islands, Russia, erupted (Figure 1) over 

the period 12-16 June 2009, injecting approximately 1.2 Tg of sulfur dioxide into the lower 

stratosphere at an altitude of approximately 11-16 km [Haywood et al., 2010].  This was the 

second major stratospheric injection of SO2 in the span of a year, the previous one being the 

eruption of Kasatochi on 8 August 2008 [Kravitz and Robock, 2010].  The largest eruptions prior 

to these were Mount Pinatubo and Mount Hudson in 1991 [Carn and Krueger, 2004]. 

The climate effects of volcanic eruptions are well established [Robock, 2000].  These 

effects are due to the production of a large layer of sulfate aerosols in the stratosphere, which 

efficiently backscatters solar radiation, effectively increasing the planetary albedo and causing 

cooling at the surface.  For these radiative effects to accumulate, the aerosols must remain in the 

atmosphere for an extended period of time.  Stratospheric volcanic aerosols have an average e-

folding lifetime of 1 year [Budyko, 1977; Stenchikov et al., 1998; Gao et al., 2007].  Were the 

injection to occur only into the troposphere, the climate effects would be greatly muted, as the 

atmospheric lifetime of tropospheric aerosols is about a week [Seinfeld and Pandis, 2006]. 

Determining the climate effects requires an accurate assessment of the amount of sulfate 

aerosols created in the stratosphere, as well as the spatial and temporal patterns of the aerosol 

layer.  General circulation models are useful predictive tools for estimating volcanic effects, and 

they have been used with great success in replicating the effects of past volcanic eruptions [e.g., 

Oman et al., 2006a].  However, any model can benefit from further testing and improvement.  As 

such, we use the recent eruption of Sarychev to test one climate model’s ability to accurately 

create and transport sulfate aerosols. 
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 Kravitz et al. [2010] compared modeled results of sulfate aerosol optical depth with 

satellite and ground-based retrievals from the Kasatochi eruption.  Although the spatial pattern of 

aerosol distributions in the model and the observations largely agreed, they discovered a 

discrepancy of an order of magnitude in the actual values.  They were able to explain some of 

this discrepancy, but a factor of 2-4 remained unexplained.  A similar comparison between 

model results and observations of the eruption of Sarychev will allow us to expand this study and 

better analyze the discrepancy.  As in Kravitz et al. [2010], a large part of our comparison will be 

with the Optical Spectrograph and InfraRed Imaging System (OSIRIS), a Canadian instrument 

on the Swedish Odin satellite [Llewellyn et al., 2004].  Launched in 2001 and still currently 

operational, OSIRIS measures the vertical profile of limb-scattered sunlight spectra.  Previous 

work has demonstrated the capability of retrieving information about the vertical distribution of 

stratospheric aerosol from limb scatter measurements [Bourassa et al., 2007, 2008a; Rault and 

Loughman, 2007; Tukiainen et al., 2008]. 

 Our second means of comparison is with in situ measurements of aerosol size and 

concentration from balloon-borne instruments that are launched three or four times a year from 

Laramie, Wyoming (41.3°N, 105.7°W).  Past use of this very long term data set in analyzing 

volcanic aerosol layers in the stratosphere is well established [e.g., Deshler et al., 2006].  We 

suspect one of the main sources of discrepancy in Kravitz et al. [2010] was inaccurate estimation 

of aerosol size, which would have a significant impact on our determination of aerosol optical 

depth, as we describe in Section 3.  Direct in situ measurements of aerosol particle size help us 

address this hypothesis and provide additional useful data.  We discuss these measurements in 

more detail in Section 4. 
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 Finally, compare the model results to data from multiple ground-based lidar stations.  We 

use measurements of aerosol optical depth and particle size, where available, from an elastic 

backscattering lidar in Hefei, China (31.9°N, 117.1°E), two multi-wavelength aerosol Raman 

lidars in Leipzig, Germany (51.4°N, 12.4°E) and Ny-Ålesund, Svalbard (78.9°N, 11.9°E), a lidar 

in Halifax, Nova Scotia (44.6°N, 63.6°W) at Dalhousie University, and a lidar at the Mauna Loa 

Observatory (19.5°N, 155.6°W).  More description of these various instruments can be found in 

Section 5.  The locations of all of these data sources are shown in Figure 2. 

The primary purpose of this paper is to explore the differences between modeled sulfate 

aerosol optical depth and observed optical depth from the Sarychev eruption to analyze possible 

sources of discrepancy between the two.  A secondary purpose is to document the Sarychev 

eruption with an extensive set of observations.  We also want to continue the process of 

comparison of the model results to the OSIRIS retrievals that was begun in Kravitz et al. [2010], 

further showing indispensability of the OSIRIS measurements as a global atmospheric data 

source. 

 

2.  Climate Model 

To complete the climate modeling aspect of this study, we simulated the climate response 

with a coupled atmosphere-ocean general circulation model.  We used ModelE, which was 

developed by the National Aeronautics and Space Administration Goddard Institute for Space 

Studies [Schmidt et al., 2006].  We used the stratospheric version with 4° latitude by 5° longitude 

horizontal resolution and 23 vertical levels up to 80 km.  It is fully coupled to a 4° latitude by 5° 

longitude dynamic ocean with 13 vertical levels [Russell et al., 1995].  The aerosol module 

[Koch et al., 2006] accounts for SO2 conversion to sulfate aerosols, and the radiative forcing 
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(also called “adjusted forcing” in Hansen et al. [2005], which is the standard definition of 

radiative forcing as adopted by the IPCC [2001]) of the aerosols is fully interactive with the 

circulation.  The dry aerosol radius is specified to be 0.25 µm, and the model hydrates these to 

form a distribution with a median radius of approximately 0.30-0.35 µm, where aerosol growth is 

prescribed by formulas in Tang [1996].  This distribution is consistent with the findings of 

Stothers [1997], and was also used in the simulations of the eruptions of Katmai [Oman et al., 

2005] and Kasatochi [Kravitz et al., 2010].  For more details on the specifications used in these 

simulations, see Kravitz et al. [2010], which used the same modeling conditions. 

Our control ensemble consisted of a 20-member collection of 4-year runs (2007-2010), 

which involved increasing greenhouse gas concentrations in accordance with the 

Intergovernmental Panel on Climate Change’s A1B scenario [IPCC, 2007].  No temperature 

trend resulting from model spin-up was detected, due to corrective efforts utilizing previously 

run initial conditions and sufficient tuning.  

To examine the effects of the volcanic eruptions, we used a 20-member ensemble of 4-

year simulations covering the same time period.  In these runs, greenhouse gas concentrations 

increased in the same manner as in the control runs.  We also injected 1.5 Tg of SO2 into the grid 

box centered at 52°N, 172.5°W, distributed equally in the three model layers that cover an 

altitude of 10-16 km, on 12 June 2008.  We recognize that the coordinates, amount, and year 

used in this modeling study are not the same as the actual eruption.  The reason for choosing 

these particular values is to compare our simulations with those of the eruption of Kasatochi 

Volcano on 8 August 2008 for which these specifications are valid [Kravitz et al., 2010; Kravitz 

and Robock, 2010].  Due to the distribution of the sulfate aerosols by the general circulation of 

the atmosphere, our choice of spatial coordinates in simulating the eruption will not affect the 
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results.  Also, the difference in atmospheric composition in the model between the years 2008 

and 2009 is negligible, and any differences in results would be due to noise.  We have adjusted 

the labeling in our figures to make the eruption appear as if we simulated it in 2009, and for the 

reasons we discuss here, this will not be detrimental to our conclusions.  According to Haywood 

et al. [2010], the results of which appeared after we completed our model runs, the simulations 

reflect an incorrect choice of the amount of SO2 that was injected into the lower stratosphere.  

We address this later when we discuss the discrepancy between our modeled results and the 

observations of aerosol optical depth. 

ModelE has been shown to be realistic in simulating past volcanic eruptions.  Simulations 

of the climate response to volcanic eruptions with this model have been conducted for the 

eruptions of Laki in 1783-1784 [Oman et al., 2006a, 2006b], Katmai in 1912 [Oman et al., 

2005], and Pinatubo in 1991 [Robock et al., 2007].  In all of these cases, ModelE simulations 

agreed with observations and proxy records to such a degree that we are confident in this 

model’s ability to predict the climatic impact of volcanic eruptions, meaning model 

representation of aerosol optical depth is accurate.  Kravitz et al. [2010] also found the temporal 

and spatial patterns of optical depth generated by ModelE to be consistent with those measured 

by OSIRIS. 

 

3.  Aerosol Optical Depth:  Model vs. OSIRIS 

 Kravitz et al. [2010] performed an extensive comparison between the modeled sulfate 

aerosol optical depth and the retrievals obtained by OSIRIS.  They encountered a discrepancy of 

an order of magnitude, some of which was attributed to various assumptions made in both the 
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model and the radiative transfer of the satellite instrument.  The eruption of Sarychev gives us 

another opportunity to further investigate this discrepancy. 

 Figures 3 and 4 show the model calculations of the anomaly in spatial and temporal 

extent of total sulfate aerosol optical depth (mid-visible, λ = 550 nm).  Anomaly is defined as the 

difference between the volcano ensemble and the control ensemble, thus removing the 

contribution to optical thickness from tropospheric sulfate aerosols.  Therefore, we refer to these 

plots as volcanic sulfate aerosol optical depth.  The largest anomaly of nearly 0.1 in Figure 3 

occurs in August after the eruption.  McKeen et al. [1984] report the chemical lifetime of SO2 to 

be 30-40 days, giving an e-folding lifetime of 10-14 days.  However, the e-folding conversion 

times for aerosols from the 1982 eruption of El Chichón and the 1991 eruption of Mt. Pinatubo 

were 30-40 days [Heath et al., 1983; Bluth et al., 1992, 1997; Read et al., 1983], giving a 

chemical lifetime of 90-120 days.  Carslaw and Kärcher [2006] also calculate an e-folding time 

of the chemical conversion rate to be 30 days.  The actual conversion rate depends on details 

specific to each eruption, but this peak anomaly in August is consistent with these reported 

values of chemical lifetime. 

 The bulk of the aerosol cloud does not pass south of 30°N, which is consistent with 

Stothers [1996], although smaller values of sulfate optical depth are detectable in the Northern 

Hemisphere tropics.  Large scale deposition has removed most of the volcanic aerosols by 

February after the eruption, with nearly all remnants disappearing before April.  Radiative 

forcing due to the sulfate aerosols becomes smaller in magnitude than –0.25 W m-2 well before 

this time, dropping below this threshold even before winter. 

 Vertical profiles of stratospheric aerosol extinction were retrieved from the OSIRIS 

measurements at a wavelength of 750 nm using the SASKTRAN forward model [Bourassa et 
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al., 2008b].  Figure 5 shows a comparison between OSIRIS retrievals and climate model results, 

divided into three latitude bins.  In all latitude bins, background levels are very similar between 

the model average and OSIRIS, with differences in τ within ±0.002.  The OSIRIS background 

levels may be slightly higher in the Arctic bin (70°N to 80°N) due to assumptions made in model 

levels of sulfate aerosols, or perhaps the model has a slightly higher deposition rate than is found 

in the atmosphere, resulting in a lower equilibrium level of background aerosol.  We discuss later 

deposition rates from the eruption in more detail.  The model average is higher in June in the 

middle bin (50°N to 60°N) than the OSIRIS retrievals because the model output is given in 

monthly averages, and by late June, some of the aerosols due to Sarychev would already have 

formed. 

 In the middle bin, peak optical depth occurs in late July, approximately the same time in 

both the model and OSIRIS retrievals.  This implies an SO2 chemical lifetime of approximately 

40-50 days, which is in line with the results of McKeen et al. [1984].  Table 1 shows the 

comparison of decay in optical depth.  The model tends to have autumn deposition rates that are 

higher than are measured by OSIRIS, based on a linear fit of the data.  However, in the Arctic 

bin, peak optical depth occurs much later for the model, and in the near-tropical bin (20°N to 

30°N), the peak occurs earlier.  This is unlikely due to an incorrect conversion time from SO2 to 

sulfate, as a similar problem would be noticeable in all three bins.  A likely candidate is 

improperly calculated stratospheric circulation in the model, which distributes the aerosols to the 

tropics slightly too quickly and to high latitudes too slowly.  However, we are unable to 

accurately diagnose the cause of this problem at this time. 

 Similar to the comparison of modeled and retrieved aerosol optical depth for Kasatochi in 

Kravitz et al. [2010], the peak optical depth calculated by ModelE is nearly one full order of 
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magnitude larger than the retrievals obtained from OSIRIS in the Arctic bin and approximately 5 

times larger in the middle bin.  In Kravitz et al., several possible sources of discrepancy were 

outlined.  One prominent source is the difference in wavelength used to calculate optical depth.  

ModelE calculates optical depth in the mid-visible (λ=550 nm), and OSIRIS retrieves in the near 

infrared (λ=750 nm).  Since the radiative effects of the stratospheric aerosols follow an 

Ångstrom relationship, we would expect this to affect our results. 

 In ModelE, we assumed an aerosol dry radius of 0.25 µm, consistent with past data from 

volcanic eruptions as found by Stothers [1997].  We used this value for the current set of 

simulations, and it was also used in the simulations of Kasatochi [Kravitz et al., 2010] and 

Katmai [Oman et al., 2005].  Based on ambient relative humidity values, aerosols of this initial 

size will increase in radius by at most 20-40%, according to formulas by Tang [1996].  These 

formulas are explicitly used in ModelE and are thus suitable for our calculations.  This results in 

a hydrated aerosol median radius of 0.30-0.35 µm. 

 According to the ModelE code, an aerosol radius of this size would have an Ångstrom 

exponent of 0.75-1.05, resulting in OSIRIS retrievals being as little as 78% of ModelE results, 

based solely on using a different wavelength.  More succinctly, the radiation code in ModelE 

calculates 

 

283 

284 

285 

286 

AOD at 750 nm and rdry  0.25 m

AOD at 550 nm and rdry  0.25 m
 0.78 

 

Schuster et al. [2006] and Eck et al. [1999] have measured Ångstrom exponents of this value to 

be consistent with the particle sizes that we have assumed in our simulations. 
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 This alone does not fully explain the discrepancy between ModelE results and OSIRIS 

retrievals.  One additional source of error could be in assumed particle size.  To properly 

calculate optical depth, the model requires an assumption of particle size.  Moreover, the model 

assumes a unimodal gamma distribution, whereas reality may not have such a clearly defined 

distribution.  Haywood et al. [2010] indeed found two aerosol modes in a lognormal distribution:  

an Aitken mode with effective radius 0.0065 µm and an accumulation mode of effective radius 

0.095 µm.  ModelE cannot model aerosols with a dry radius below 0.01 µm, so our model results 

are incapable of capturing this smaller mode, although due to the very small size of these 

particles, contributions to optical depth from the Aitken mode are likely not significant.  Even in 

the accumulation mode, the results of Haywood et al. suggest a gross overestimation of particle 

size in our modeling study. 

 Russell et al. [1996] calculated a fit to a variety of measurements of aerosol effective 

radius for the eruption of Pinatubo.  In the first four months of the eruption, the effective radius 

increased linearly from a background level of approximately 0.12 µm in May before the eruption 

to 0.34 µm in September after the eruption, reaching a peak of 0.56 µm in April 1992.  This is 

not perfectly comparable with calculations of non-area-weighted radius, so a conversion must be 

made.  For a lognormal distribution, which is applicable to volcanic aerosols, 

 

305 

306 

307 

308 

309 

reff  rg exp
5

2
ln g 2




 

 

where rg is essentially the median radius, and σg is the distribution width.  Although the eruption 

of Pinatubo showed a clearly bimodal aerosol distribution structure for most of the aerosol 

lifetime [Russell et al., 1996], ModelE is only capable of representing a unimodal distribution, so 

- 12 - 



KRAVITZ ET AL.:  SARYCHEV OPTICAL DEPTH 

310 

311 

312 

313 

314 

315 

316 

317 

318 

319 

320 

321 

322 

323 

this is a good approximation.  Because ln g 2  0, exp
5

2
ln g 2




 1, meaning reff is always at 

least as large as rg. 

 Simulations of the eruption of Pinatubo performed with ModelE [Oman et al., 2006] used 

a dry radius of 0.35 µm, which results in a hydrated aerosol median radius of 0.47-0.52 µm.  

These results are consistent with Stothers [2001], but they are much higher than the observations, 

especially in the few months just after the eruption.  This raises the possibility that, despite being 

consistent with pyrheliometric data, the model tends to overestimate aerosol size. 

 To capture this possibility, we performed the same calculations using ModelE's radiation 

code, but specifying a dry radius of 0.08 µm, which is approximately 1/3 our initial estimate of 

dry radius.  This results in a hydrated aerosol radius of approximately 0.09-0.11 µm, again based 

on the formulas of Tang [1996].  We chose this radius to analyze the balloon-borne 

measurements of aerosol median radius, which are discussed in Section 4.  This much smaller 

radius results in an Ångstrom exponent of approximately 2, as well as the relation 
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330 

AOD at 750 nm and rdry  0.08 m

AOD at 550 nm and rdry  0.08 m
 0.38 

 

This clearly shows the importance of an accurate estimate of the aerosol radius.  An incorrect 

estimation of the aerosol radius in the model would mean a larger abundance of smaller particles 

and many fewer larger particles than the distribution we originally calculated.  Using the Mie 

theory formulation of optical depth, 

 

- 13 - 



KRAVITZ ET AL.:  SARYCHEV OPTICAL DEPTH 

331 

332 

333 

  Qext (m,r) r2 N(r) dr dz
0




0



  

 

this amounts to larger values of N for smaller values of r, and vice versa.  Also, since scattering 

is more efficient for smaller particles, as r decreases, Qext  increases.  Determining the cumulative 

effect of these changes without re-running the model simulations is difficult due to the 

dependence of the shape of the aerosol distribution on the initial dry radius, as well as available 

humidity that can contribute to aerosol growth, which has a large dependence upon model 

dynamics.  However, the effects of aerosol size alone can contribute another factor of 2-2.5 

beyond the estimates in Kravitz et al. [2010] of the discrepancy found in the Kasatochi 

comparison. 
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 To some degree, particle size can also have a systematic impact on the OSIRIS results. In 

order to retrieve the aerosol extinction profile from limb scatter measurements the shape of the 

scattering phase function must be known or assumed.  For the OSIRIS retrievals, a Mie code is 

used to calculate the scattering phase function for a log-normal particle size distribution.  In this 

case, the OSIRIS retrievals are performed using the scattering phase function for a median, or 

mode, radius of 0.08 μm and a mode width of 1.6.  Using the above definition, these values 

correspond to an effective radius of 0.14 μm.  These are the same assumptions used for the 

OSIRIS retrievals of aerosol extinction following the Kasatochi eruption shown in Kravitz et al. 

[2010] and Bourassa et al. [2010].  As discussed in detail by Bourassa et al. [2007], uncertainty 

in the particle size distribution systematically affects the retrieved extinction.  McLinden et al. 

[1999] show that for larger particle sizes, most likely in volcanically modified conditions, the 

phase function remains relatively stable at 750 nm, and systematic error remains on the order a 

few percent.  However, for dramatically larger particle sizes the impact on the OSIRIS retrievals 
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could be as large as 30 or 40 percent adding an additional factor of uncertainty due to particle 

size in the comparison between OSIRIS and the modeled optical depths. 

 Another reason explored in Kravitz et al. [2010] is the lower altitude level used to 

calculated the stratospheric aerosol optical depths from the OSIRIS retrieved extinction profiles.  

The lower bound is chosen to be the θ = 380 K level of potential temperature.  This assumption 

is made to avoid attempting to retrieve extinction from clouds, dust, and other scattered signal 

that are not stratospheric sulfate.  However, using this as the lower bound for measurements has 

the potential to reduce optical depth measurements, as OSIRIS will not account for aerosols 

between the θ = 380 K line and the true thermal tropopause.  Figure 6 again shows optical depth, 

taking into account this new lower bound, as well as combining the effects of the Ångstrom 

exponent described above.  Compared with Figure 4, optical depth in the midlatitudes and 

subtropics is largely unchanged, with some areas of slight increase, indicating the thermal 

tropopause is actually higher than the θ = 380 K line.  However, high latitude optical depth 

patterns are much lower, sometimes by more than a factor of 2, indicating OSIRIS possibly 

underestimates high latitude optical depth by assuming too high a base altitude for measurement.  

Combining these results with scaling due to wavelength, as well as the possibility of using an 

incorrect aerosol radius, gives the bottom left and top right panels of Figure 6. 

 Haywood et al. [2010] reported the upper tropospheric/lower stratospheric loading due to 

Sarychev to be 1.2 Tg of SO2.  Although we were unable to obtain other firm estimations for this 

value, this indicates our modeled aerosol optical depth values are overestimated by 25%.  Arlin 

Krueger [personal communication, 2010] estimated the atmospheric loading to be 1.5 Tg, which 

was exactly his estimate of the loading due to Kasatochi.  Kai Yang’s group at NASA Goddard 

Earth Sciences and Technology Center reported the atmospheric loading to be near 2.0 Tg SO2 
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[A. Krueger, personal communication], which was the same value they reported for the eruptions 

of Okmok and Kasatochi [Yang et al., 2010].  Since the model results show higher optical depths 

than the OSIRIS retrievals, we suspect the model overestimated the atmospheric loading, so, for 

the purposes of calculating discrepancy, we will scale our model results by 0.8.  The results of 

this are shown in the bottom right panel of Figure 6.  This panel shows that the maximum 

overestimation of aerosol optical depth by the model due to these reasons is quite large, although 

not as large as the overestimation of optical depth due to Kasatochi in Kravitz et al. [2010]. 

 Figure 7 shows the combination of these three sources of error in comparison with 

OSIRIS retrievals.  When these potential errors are taken into account, the fit of the model to the 

observations of the volcanic aerosols is quite good.  Under this scaling, the fit to the background 

level of stratospheric aerosols is very poor, which is expected, since the assumptions we made 

regarding overestimation are specific to volcanic aerosols.  Also, the mismatch of aerosol decay 

rates becomes visibly clear.  The decay rate in the summer appears to be good, although the 

small amount of data is not conducive to the construction of a linear fit.  However, as in Figure 5, 

the autumn decay rate in the model appears to be larger than is observed.  Also more apparent is 

the peak in subtropical optical depth, which is much larger and much earlier than is observed. 

 Kravitz et al. [2010] discovered evidence for additional sources of discrepancy in their 

comparison, some of which may also be relevant to the eruption of Sarychev.  Although we 

cannot quantify the degree to which they might affect our results, we can briefly discuss them. 

 One of the largest potential sources of discrepancy is that not all of the SO2 may have 

been injected above the tropopause, meaning some of the aerosols would have formed in the 

troposphere and deposited very rapidly.  This leaves the option that the model’s overestimation 

of SO2 loading is even greater than is discussed above. 
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 Additionally, as was found by Schmale et al. [2010] for the eruption of Kasatochi, not all 

of the volcanic aerosol layer is necessarily composed of sulfate, which will affect the radiative 

properties of the aerosol layer.  Schmale et al. also discovered some SO2 remained as late as 

three months after the eruption, possibly indicating overly rapid conversion of SO2 into sulfate in 

the model.  Both of these would indicate a potential source of additional overestimation of 

sulfate aerosol optical depth by the model. 

 Finally, some additional possible sources of discrepancy are related to possible inaccurate 

representations of removal processes in the model.  The model can potentially have an incorrect 

rate of aerosol deposition, although our comparison in Section 3 suggests this is a negligible 

explanation of discrepancy.  More unknown is the phase of the QBO and its effects on the 

removal efficiency, and the phase and magnitude of tropical modes, which we would not 

necessarily expect the model to accurately represent, given the large natural variabilities of these 

processes. 

 

4.  Comparison using in situ aerosol profiles 

 Our second means of comparison with model output is in situ aerosol measurements from 

balloon-borne instruments lofted from Laramie, Wyoming (41.3°N, 105.7°W).  Use of this very 

long-term data source has been well established for both volcanic eruptions and background 

stratospheric aerosol concentrations [e.g., Deshler et al., 2006].  The size resolved number 

concentration measurements are fit to either unimodal or bimodal lognormal size distributions of 

the form [e.g., Hoffmann and Deshler, 1991; Deshler et al., 1993] 

 

422  n(r) 
Ni

ln( i) 2

1

r
exp 

ln2 r /ri 
2  ln2( i)









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  
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where Ni  is aerosol number density, ri is the aerosol median radius, and  i  is the standard 

deviation of the distribution.  Deshler et al. [2003] provide more details on the specifics of the 

measurements, their uncertainties, and the derivation of size distributions and their moments. 

Measurement uncertainties lead to an error of the fits by ±30% for the median radius, ±20% for 

the standard deviation, and ±40% for surface area and volume. In the aerosol measurements 

following the Sarychev eruption, the larger aerosol mode has such a low number concentration 

that the fit is effectively unimodal.  Deshler et al. [1997] showed the Pinatubo aerosols 

developed a clearly bimodal structure approximately 40 days after the eruption, so perhaps the 

Sarychev eruption did not eject enough material to create this larger mode. 

 Figure 8 shows in situ measurements from 22 June 2009, ten days after the initial 

eruption of Sarychev.  For comparison, it also shows results from 3 July 2007, over a year after 

Soufriere Hills and prior to Kasatochi.  This sounding was chosen because it was approximately 

the same time of year as the 22 June 2009 sounding, has a similar temperature profile, and was a 

relatively clean period for volcanic eruptions.  We chose a sounding within close temporal 

proximity to 2009, as the stratospheric aerosol layer has become increasingly thick since 

approximately 2000, so only recent soundings would be suitable for comparison [Hofmann et al., 

2009]. 

 The 2009 measurements show no significant differences from the 2007 measurements.  If 

the chemical lifetime of SO2 for this eruption is on the lower end of the estimates given in the 

previous section, similar to the values reported by McKeen et al. [1984], then a significant 

amount of aerosols from Sarychev would have been formed by 22 June 2009.  Moreover, back-
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trajectory calculations show the volcanic plume could have reached Laramie by this time 

[Haywood et al., 2010]. 

 Radiosondes are launched every 12 hours from Sakhalin Island (47.0°N, 142.7°E), which 

is very close to the eruption site of Sarychev (48.1°N, 153.2°E).  The initial plume height of 11-

16 km [Haywood et al., 2010] corresponds to a potential temperature range of 342-400 K, 

according to radiosonde data from 00Z 16 June 2009 [Durre et al., 2006].  This station is 

southwest of the eruption site, so this result should not have been altered by the eruption, due to 

the predominating westerlies at this latitude.  Due to the stratosphere’s inherent stability, 

stratospheric motion is often confined to isentropic layers [Holton, 2004].  Although cross-

isentropic motion is possible, due to diabatic heating or lofting of the isentropes due to the 

pressure wave of the volcanic eruption, it is plausible that the volcanic plume remained confined 

to this range of potential temperatures through its passage over Laramie.  The 22 June 2009 

sounding reports the potential temperature range of 342-400 K corresponds to an altitude range 

from below the tropopause up to 16 km.  Therefore, it is unlikely that the measurements from 22 

June 2009 show any aerosols from the Sarychev eruption, as these altitudes show little difference 

from background levels. 

 Figure 9, similar to Figure 8, shows results from measurements on 7 November 2009, 

five months after the eruption, and from 17 October 2005. The 2005 measurements were chosen 

because 2005 was a quiescent year for stratospheric aerosols, yet according to Hofmann et al. 

[2009], was still close enough in time to the eruption to have comparable levels of background 

stratospheric aerosol, and the time of year and tropopause heights were similar in both profiles.  

The aerosols have had time to age since the June sounding, resulting in much larger volumes and 

surface areas.  The aerosols have also settled, which is evidenced by a large area of increased 
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volume and surface area from the tropopause (13.0 km at this time and latitude) to 19.0 km in 

altitude, with a strong peak at 14.0 km.  The reported median radius at 14 km in altitude is 

approximately 0.07-0.08 µm, which motivates our choice of radius in the calculations in Section 

3. 

 Deshler et al. [1997] calculated a subsidence rate in the Southern Hemisphere of 3-4 km 

a-1 for the stratospheric aerosols from Pinatubo, which is consistent with the fall rate of a particle 

of radius 0.5 µm.  This is likely much larger than the Sarychev aerosols, implying that 

gravitational settling mechanisms would result in a much slower fall speed for the Sarychev 

aerosols.  However, assuming the Pinatubo deposition rate for the eruption of Sarychev, the 

aerosol plume would have descended no more than 1.5-2 km over the period June to November 

and 2.5-3 km over the period June to March.  Therefore, to explain the large peaks in Figure 9 at 

14.0 km, the initial plume height cannot have been greater than 16.0 km in altitude.  This is again 

consistent with the results in Haywood et al. [2010].  However, if the initial plume height were 

16.0 km, at the same deposition rate, the aerosols could not have descended below 13.0 km by 

March 2010.  The tropopause height in March was measured to be 11.0 km, and no significant 

stratospheric aerosol layers were detected at this time in the model results or any of the data 

sources, meaning all aerosols had been deposited out of the atmosphere and thus must have 

descended lower than this height.  Thus, assuming a rate of deposition identical to the Pinatubo 

rate is contrary to our findings, meaning it is likely that the Sarychev aerosols have a higher 

deposition rate than the Pinatubo aerosols. 

 This faster deposition rate can be explained by a number of factors.  A large part of the 

atmospheric lifetime of stratospheric aerosols is poleward transport, where large scale descent of 

air in the winter is responsible for removal of the aerosols [e.g., Hamill et al., 1997].  If the 
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aerosols already begin at high latitudes, as in the case of Sarychev, the absence of the need for 

poleward transport will necessarily decrease the atmospheric lifetime.  Oman et al. [2005] 

obtained similar results in their simulations, as they found an e-folding lifetime of 1 year for 

aerosols from Pinatubo, a tropical eruption, and 8-9 months for aerosols from Katmai, a high 

latitude eruption.  Moreover, a large part of the aerosol plume from Sarychev is concentrated in 

the midlatitude storm tracks, where tropopause folding is responsible for even more removal of 

stratospheric aerosols [e.g. Kravitz et al., 2009].  Finally, the relatively small amount of aerosols 

created was insufficient to avoid these deposition factors, meaning very little aerosol remained in 

the stratosphere by the following spring.  Conversely, Pinatubo was a very large eruption, 

injecting gases and particles to much higher altitudes, and thus aerosols remained in the 

stratosphere for multiple years afterwards. The processes controlling aerosol deposition at higher 

altitudes may be weighted significantly different than processes near the tropopause where 

dynamics is more of a factor. These differences may account for the calculation of a slower 

deposition rate from Pinatubo [Deshler et al., 1997]. 

 Mie theory was used to calculate aerosol extinction profiles and optical depth at 758 nm 

from the in situ aerosol profiles on 17 October 2005, 22 June 2009, and 7 November 2009, 

Figure 10.  The profiles and optical depths on 17 October and 22 June are quite similar. In 

contrast, the 7 November 2009 sounding shows a stratospheric optical depth of  0.0044, over 

three times higher than observed earlier. The increase in optical depth on 7 November 2009 is 

from an increase in aerosol between the tropopause and 20 km.  This increase in aerosol optical 

depth by more than a factor of three is due to the eruption of Sarychev. OSIRIS measurements 

for the latitude bin 40°N-45°N and for the week of 7 November 2009 give an optical depth of 

0.0109, which is over a factor of two greater than the in situ measurements. This is nearly within 
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the in situ measurement error of ± 40% which applies to any aerosol moment calculated. After 

accounting for the sources of discrepancy we discuss in Section 3, as well as the uncertainty in 

the in situ measurements, the model and in situ measurements are relatively similar.  The 

uncertainty is too large for us to reliably determine the degree to which they disagree. 

 

5.  Further comparison using lidar data 

 To better characterize our results, our simulations will be compared with observations 

from five ground-based lidar sources in Hefei, China (31.9°N, 117.1°E), Leipzig, Germany 

(51.4°N, 12.4°E), Ny-Ålesund, Svalbard (78.9°N, 11.9°E), Halifax, Nova Scotia, Canada 

(44.6°N, 63.6°W), and Mauna Loa, Hawaii (19.5°N, 155.6°W) (Figure 2).   

 The lidar in Hefei is an elastic backscattering lidar for profiling aerosol backscatter 

coefficient at 532 nm based on a Nd:YAG laser with a second harmonic generator.  Aerosol 

coefficient profiles below about 25 km above ground level were derived from lidar data using the 

Fernald method with an assumed lidar ratio of 50 sr. 

 The results from this lidar (Figure 11) show a peak in backscatter in September 2009 at 

an altitude of 18-19 km, which corresponds to an aerosol optical depth of approximately 0.014.  

All profiles are very similar above 21 km in altitude, suggesting this as an upper bound for the 

plume height.  July 2009 shows a slight peak, whereas the profile for June 2009 is nearly 

identical to months prior.  All backscatter profiles from December 2009 onward are similar to the 

background.  However, aerosol optical depth measurements from 2010 are slightly larger than in 

early 2009, prior to the eruption, suggesting a small amount of aerosol remained in the 

stratosphere through at least the winter following the eruption. 
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 Although we would not expect the model to perfectly capture the distribution of the 

aerosol plume, the aerosol optical depth measurements at Hefei are of similar magnitude to the 

climate model results.  The lidar measures a peak optical depth of 0.014 in September, whereas 

the model calculates a peak of 0.012 in August.  This is consistent with our comparison with 

OSIRIS, in that the modeled peak optical depth at this latitude occurs earlier than is observed.  

The autumn deposition rate also appears to be higher in the model than the observations.  The 

altitude of reported peak backscatter is at a similar altitude to peak aerosol retrievals as seen in 

the 7 November 2009 in situ measurements.  Optical depth measurements from the lidar are 

slightly higher than in situ calculations, but the difference is within the range of uncertainty. 

 MARTHA (Multiwavelength Atmospheric Raman lidar for Temperature, Humidity, and 

Aerosol profiling), a multiwavelength Raman lidar in Leipzig, Germany, has been in operation 

since 1996 [Mattis et al., 2010].  From it, we can obtain vertical profiles of the particle 

backscatter coefficient at the three wavelengths of 355, 532, and 1064 nm, the extinction 

coefficient at 355 and 532 nm, the corresponding lidar ratio at 355 and 532 nm, and profiles of 

depolarization ratio at 532 nm.  Mattis et al. [2002a, 2002b] and Ansmann et al. [2002] describe 

in more detail the current system in operation, as well as error analysis.  This lidar has been used 

to evaluate the aerosol cloud resulting from past volcanic eruptions, including Pinatubo [Mattis, 

1996; Ansmann et al., 1997] and Kasatochi [Mattis et al., 2010].  It has also had success in 

retrieving aerosol microphysical properties [Wandinger et al., 1995; Müller et al., 1999]. 

 The results from this lidar (Figure 12) show optical depth measurements about a factor of 

2 lower than model results but approximately a factor of 2 higher than the in situ measurements.  

The peak value of approximately 0.025 occurs in late July and mid August, which is 2-4 weeks 

later than modeled peak optical depth.  This factor of 2 can be explained by several potential 
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reasons.  The spatial distribution of the volcanic plume in the model would not be expected to 

perfectly match the lidar observations, especially considering the coarse spatial resolution of the 

model.  Also, several assumptions in both the model and observations could alter the results, 

including the assumed lidar ratio of approximately 38 in determining optical depth, the base 

altitude from which backscatter is integrated, an inaccurate estimation of the eruption size and 

particle radius (as was discussed in Section 3), and in situ measurement uncertainty (as discussed 

in Section 4).  With the exception of those factors detailed in Sections 3 and 4, we are unable to 

accurately quantify the degree to which our comparison is affected.  Aerosol optical depth 

returns to near background levels by December following the eruption. 

 To partly resolve discrepancies between this lidar and OSIRIS, Figure 13 shows the same 

backscatter results as Figure 12, but optical depth is recalculated at 750 nm, using both the 

thermal tropopause and the 380 K potential temperature line as the lower bound for integration.  

Comparing with Figure 7, making these corrections still results in optical depth calculations that 

are of the same order of magnitude as the OSIRIS retrievals and the corrected model output.  

However, the differences between these corrections and the values in Figure 12 are rather small. 

 The Koldewey Aerosol Raman Lidar (KARL) is part of the AWIPEV research base in 

Ny-Ålesund, Svalbard (78.9°N, 11.9°W, www.awipev.eu) and in operation since 2001. The light 

source is a Nd:YAG laser, which transmits pulses at the three wavelengths of 355, 532, and 1064 

nm at a repetition rate of 50 Hz. With a 70-cm telescope elastic backscattering at those three 

wavelengths as well as N2 and H2O Raman signals and the depolarization ratio at the two shorter 

wavelengths are detected. Backscatter coefficient profiles are calculated using the Klett method 

with different lidar ratios [Klett, 1981]. KARL has mainly been used for characterizing the Arctic 

spring troposphere, where Arctic haze occurs [Ritter et al., 2004; Hoffmann et al., 2009]. In 
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recent years, stratospheric volcanic aerosols, e.g. from the Kasatochi volcano [Hoffmann et al., 

2010] have also been observed. 

 The results from KARL (Figure 14) agree very well with the model simulations.  

Modeled optical depth values and decay rates are nearly identical to the lidar retrievals.  

Measured peak optical depth occurs in late July, which is earlier than the August peak in the 

model.  This is also consistent with the comparison with OSIRIS, in which modeled optical 

depth peaked later than measured optical depth at this latitude.  However, the maximum sulfate 

aerosol optical depth of above 0.08 is found in August above Spitsbergen, which agrees with the 

model results.  The temporal variability of backscatter ratios and hence aerosol optical depth is 

very high within the first 2 months after the volcanic eruption, due to the occurrence of several 

distinct layers of enhanced backscatter (Figure 15).  In September, stratospheric aerosol optical 

depth was still high with 0.04 but less variable, due to a more uniform distribution of the sulfate 

aerosols within the stratosphere.  The temporal evolution of aerosol optical depth shown in 

Figure 14 matches the model output for the Arctic bin in Figure 5.  As stated earlier, these values 

are much higher than the aerosol optical depths obtained with OSIRIS but could be confirmed by 

co-located sun photometer measurements.  These values are higher than the in situ measurements 

by approximately one order of magnitude, but the comparability of these two sources of 

measurement is uncertain, due to the large difference in latitude between the two sites. 

 The Dalhousie Raman Lidar is operated in Halifax, Nova Scotia, Canada (44.6°N, 63.6°W) 

and measures vertical profiles of atmospheric scattering.  The instrument employs a frequency-

doubled ND:YAG laser which transmits pulses of 532 nm wavelength light into the atmosphere 

at a repetition rate of 20 Hz.  The receiver consists of a 25-cm telescope and photomultipliers 

with fast counting electronics to detect the signals.  Profiles of the aerosol backscatter cross-
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section are derived from the measured elastic lidar signals using the Klett Inversion technique 

[Klett, 1981], assuming a constant lidar ratio of 40 sr for stratospheric aerosols.  A more detailed 

description of the instrument and aerosol optical property retrievals can be found in Bitar et al. 

[2010]. 

 The results for the lidar in Halifax (Figure 16) show peak backscatter in July of very 

similar values to peak backscatter in the Leipzig lidar results.  The altitudes of this peak 

backscatter are more concentrated, ranging between 14-16 km for the Halifax results and 12-16 

km for the Leipzig results.  Also, the peak occurs approximately one month earlier than the 

Leipzig measurements.  These altitude ranges are consistent with model input, the findings of 

Haywood et al. [2010], and the in situ measurements discussed in Section 4.  Backscatter is near 

background levels for the June and December measurements.  Calculations of optical depth show 

a peak of approximately 0.02, again in July, with a lower peak in August.  This pattern matches 

the model output quite well, although the modeled values of optical depth are approximately a 

factor of 2 larger than the retrievals.  The decay rate of optical depth also matches between the 

two sources.  The in situ measurements in November are approximately one order of magnitude 

higher than the lidar measurements, but we are unable to determine what caused this large 

discrepancy. 

 The NOAA Mauna Loa Observatory lidar uses a 30 Hz Nd:YAG laser producing the 1064 

nm and 532 frequency-doubled wavelengths.  The power at each wavelength is about 15 W, and 

two 61-cm diameter mirrors are used to collect the scattered light.  Photon-counting 

photomultiplier tubes are used for both wavelengths and are electronically gated when needed.  

The data acquisition electronics has 300 m altitude resolution, and files are normally saved every 

5.6 minutes.  The molecular signal is usually normalized in the interval from 35 to 40 km. The 
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molecular profile is derived from the Hilo radiosonde and a Mass Spectrometer Incoherent 

Scatter model for the upper stratosphere.  The error due to the signal statistics is about 5%.  The 

lidar is a primary instrument of the Network for the Detection of Atmospheric Composition 

Change. 

 Figure 17 shows weekly observations from the Mauna Loa Observatory.  The lidar 

detected aerosols from the Sarychev eruption as early as July 1, at which time the aerosol cloud 

remained confined to 14-16 km in altitude, which is similar to the in situ measurements.  

Throughout its lifetime, the plume rose in altitude and spread to an altitude of approximately 16-

23 km, which is still the lower stratosphere in the tropics.  The plume ceased to be detectable by 

February, 2010.  Modeled optical depth at this latitude shows a large peak in August of nearly 

0.01, whereas the lidar shows a rather consistent optical depth, reaching a slight peak of 0.004.  

Modeled optical depth also decays much more rapidly, showing very low levels by November, 

2010, whereas the lidar detected aerosols for a few months after.  The in situ measurements agree 

with the lidar measurements quite well, showing a difference of approximately a factor of 2, 

which is within the uncertainty range. 

 In general, the model results show agreement with the lidar retrievals, with differences in 

aerosol optical depth being at most a factor of 2, with the exception of the Mauna Loa lidar, 

where the differences were somewhat larger and the timeseries of optical depth values have very 

different shapes.  The Hefei lidar and the Svalbard lidar, both in agreement in magnitude with the 

model results, were far in latitude from the original eruption site and assumed a lidar ratio of 

approximately 50 sr.  In contrast, the Leipzig and Halifax lidars were closer to the same latitude 

as the eruption and assumed a lower lidar ratio of approximately 40 sr.  Thus, two likely 

explanations for the discrepancies in difference between lidar optical depth and model optical 
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depth are a difference in lidar ratio and a difference between modeled stratospheric circulation 

and the real world.  The factor of 2 can be explained by the same mechanisms as were discussed 

in Section 3, i.e., an overestimation of particle size, the lidars’ assumed higher base of integration 

to avoid contamination of the measurements by cirrus clouds, and the amount of SO2 injected in 

the model.  The larger disagreement with the Mauna Loa observatory is similar to our findings 

for OSIRIS, in that for this particular eruption, the model did not accurately calculate optical 

depth for the tropics.  The in situ measurements agreed quite well with OSIRIS and 

measurements from three of the lidar sites, showing at most a difference of a factor of 2, which 

can be explained by measurement uncertainties and predicted sources of discrepancy. 

  

6.  Discussion and Conclusions 

 We evaluated ModelE simulations of the Sarychev volcanic plume using several different 

observational data sets.  In so doing, we discovered several areas in which ModelE could be 

improved.  The model has issues with stratospheric circulation, specifically the latitudinal spread 

of the aerosols.  We also found that the model deposits the aerosols out of the atmosphere too 

quickly during autumn and winter. 

 We found that, however, after accounting for expected sources of discrepancy, the model 

results and all reported sources of data show good agreement.  Due to the difficulty of 

determining the degree to which different wavelengths of measurement affect discrepancies 

between OSIRIS and the lidar data, we are currently unable to make a thorough comparison of 

the OSIRIS observations with the model results.  However, intercomparison with the model 

results and the lidar data suggests that OSIRIS is an accurate, useful means of obtaining 

stratospheric aerosol optical depth. 
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 Despite the agreement among our different sources of data, volcanic observation systems 

still require a great deal of improvement.  A range of reported amount of SO2 injected into the 

stratosphere, if used to force a climate model, would result in a large range of predicted climate 

effects.  Moreover, estimates of aerosol particle size are very sparse.  As we discuss in Section 3, 

accurate measurement of particle size, both initially and as the aerosols age, are essential to 

accurate determining the radiative effects. 
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Table 1.  Results from the linear fit to optical depth data shown in Figure 5.  The annual decay 
rate of optical depth in the model is approximately 5-7 times the decay rate measured by 
OSIRIS. 
 
(a) OSIRIS 
 

Bin 
Decay Rate 

(τ a-1) 
R2 

Decay Rate 
calculated from Figure 5 

(log10(τ) a-1) 
R2 

70°N – 80°N 0.0329 0.58 1.9003 0.59 
50°N – 60°N 0.0178 0.48 1.0607 0.50 
20°N – 30°N 0.0045 0.10 0.3833 0.10 

897 

898 

899 
900 

 

 

(b) ModelE (linear fit not plotted) 
 

Bin 
Decay Rate 

(τ a-1) 
R2 

Decay Rate 
calculated from Figure 5 

(log10(τ) a-1) 
R2 

70°N – 80°N 0.1707 0.95 2.6730 > 0.99 
50°N – 60°N 0.1303 0.97 2.7113 0.99 
20°N – 30°N 0.0201 0.90 2.3871 0.81 
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Figure 1.  The eruption of Sarychev volcano on 12 June 2009 as seen from the International Space Station [NASA, 2009].  Image 
courtesy of the Image Science & Analysis Laboratory, NASA Johnson Space Center.
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908 

 
Figure 2.  The locations of all point measurements used in our discussion of the Sarychev eruption.  The site of the eruption is 
indicated by a red square.  The in situ measurements from Laramie are indicated by a green dot.  Lidar stations are indicated by orange 
dots.  OSIRIS is a global measurement, so it cannot be included in this figure.
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912 

Figure 3.  Time progression of anomaly in stratospheric sulfate aerosol mid-visible optical depth for the eruption of Sarychev from 
June 2009 to February 2010.  Both the volcano ensemble and the baseline ensemble are averages of 20 runs.  By February 2010, 
volcanic aerosols remaining in the atmosphere are at very low levels. 
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Figure 4.  Zonally averaged anomalies in stratospheric sulfate aerosol mid-visible optical depth 
and clear sky shortwave radiative forcing (W m-2) at the surface due to sulfate aerosols.  Only the 
Northern Hemisphere values are plotted, as the Southern Hemisphere values are zero.  Results 
shown are for model simulations of the Sarychev volcanic eruption.  Both the volcano ensemble 
and the baseline ensembles are averages of 20 runs.  Results shown here are similar to those in 
Figure 3, i.e., most of the sulfate aerosols have been deposited out of the atmosphere by 
February, 2010.  Radiative forcing due to the sulfate aerosols ceases to be detectable even 
sooner. 
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Figure 5.  Total stratospheric aerosol optical depth measured by OSIRIS at 750 nm and model 
results of optical depth at 550 nm.  The month labels indicate the beginning of each month.  All 
blue values are individual retrievals from OSIRIS, divided into three latitude bands.  All red dots 
are individual grid box measurements of aerosol optical depth for each latitude band (72 for each 
latitude that falls into the above bands).  The model output is placed on the 15th of each month, 
as these values represent monthly averages.  The red line is an average of all red points (log10 is 
taken after averaging), indicating an average of model optical depth in the given latitude band.  
The green line is the median of all red points.  Black lines are linear fits to aid in understanding 
atmospheric deposition rates, the details of which are in Table 1.  For OSIRIS measurements, the 
vertical column extends only from the 380 K level of potential temperature to 40 km altitude.  
OSIRIS coverage of the Arctic is not available from November to March due to the lack of 
sunlight. 
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Figure 6.  Zonally averaged total stratospheric aerosol optical depth anomaly as calculated by 
the model.  Top left shows anomaly in zonally averaged optical depth, scaled using the θ = 380 
K line as the tropopause instead of the thermal tropopause.  Bottom left shows the same field 
multiplied by 0.78 to reflect the difference in measured optical depth due to a change in 
wavelength, assuming a dry radius of 0.25 µm.  Top right is again scaled using the θ = 380 K 
line as the tropopause and is also multiplied by 0.38 to reflect the difference in measured optical 
depth due to a change in wavelength, assuming a dry radius of 0.08 µm.  Bottom right is the 
same as the top right but multiplied by 0.8 to reflect our overestimation of the initial SO2 
loading, which should have been 1.2 Tg instead of 1.5 Tg. 
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Figure 7.  OSIRIS retrievals and model output of sulfate aerosol optical depth, as in Figure 5, 
but scaled to reflect sources of discrepancy.  OSIRIS retrievals are unchanged from the values in 
Figure 5.  Model output is scaled using the θ = 380 K line as the tropopause instead of the 
thermal tropopause.  Model output is also multiplied by 0.8 to reflect our overestimation of the 
initial SO2 loading, which should have been 1.2 Tg instead of 1.5 Tg.  The top and bottom 
magenta lines denote multiplication of this resultant by 0.78 and 0.38, respectively, to denote 
changes in optical depth that would result from Ångstrom exponent scaling.  The top line, a 
multiplication by 0.78, assumes a dry radius of 0.25 µm, and the bottom line, a multiplication by 
0.38, assumes a dry radius of 0.08 µm.  All multiplication is performed before taking log10. 
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Figure 8.  Profiles of temperature, total aerosol concentration (condensation nuclei), aerosol 
median radius, effective radius, surface area, and volume derived from size resolved particle 
concentration measurements from balloon flights from Laramie, Wyoming.  Temperature and 
number concentration are measured, and the other products are derived.  The blue line shows 
measurements on 22 June 2009, ten days after the largest eruption of Sarychev.  The red line 
shows 3 July 2007, which was free of volcanic activity after Soufriere Hills in 2006 and prior to 
Kasatochi.  Measurements are shown from the 22 June 2009 tropopause at 15.0 km to balloon 
burst at 30.5 km. 
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Figure 9.  Same as Figure 8 but for measurements from Laramie, Wyoming, on 7 Nov 2009 
(blue line), several months after the eruption of Sarychev, and 17 Oct 2005 (red line), which was 
a period of low perturbations of stratospheric aerosol with otherwise similar atmospheric 
conditions to the 2009 measurement.  Measurements are shown from the tropopause, at 13.0 km, 
to balloon burst at 31.0 km.  The volcanic layer appears to have begun to settle through the lower 
stratosphere, with a large peak at 14.0 km in altitude. 
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Figure 10.  Aerosol extinction profiles from in situ measurements on 17 October 2005, 22 June 
2009, and 7 November 2009, calculated at 758 nm.  The lower limits of the lines are defined by 
the tropopause on each day.  The error bars on 7 November 2009 represent a ± 40% uncertainty 
and apply to the other two profiles as well. The aerosol optical depth (AOD) for each day is 
shown at the top.
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Figure 11.  Lidar retrievals from Hefei, China compared with ModelE output.  The lidar is capable of measuring backscatter up to 25 
km in altitude.  The left panel shows monthly averages of backscatter as a function of altitude, with a maximum in September, 2009.  

The backscatter ratio is defined as the fraction 
molecules  particles

molecules

, where β is backscatter, so any values less than 1 are spurious and are 

likely due to instrument noise.  In the right panel, the black line shows integrated (15-25 km) optical depth through the stratosphere, 
assuming a lidar ratio of 50 sr.  The red line shows zonally averaged stratospheric aerosol optical depth calculated by the model in the 
grid latitude band containing the Hefei lidar (28-32°N).  Aerosol concentrations return to background levels by Spring of the year 
following the eruption. 
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Figure 12.  Backscatter coefficient profiles at 1064 nm and aerosol optical depth at 532 nm from 
the lidar in Leipzig.  Backscatter coefficients are defined as the scattering coefficient (units m-1) 
at 180 degrees (units sr-1) and are scaled by 10-6, giving units of Mm-1 sr-1.  Each strip of 
backscatter measurements is a 10 day mean profile.  Aerosol optical depth was calculated using a 
lidar ratio of 38 sr, which is the mean value of all cases for which the lidar ratio could be 
measured.  Black dots are stratospheric optical depth measurements calculated using this ratio.  
Red dots show zonally averaged stratospheric aerosol optical depth calculated by the model in 
the grid latitude band containing the Leipzig lidar (48-52°N).  Black horizontal lines indicate the 
height of the tropopause.  Triangles show the plume top heights of individual eruptive events.  
Peak backscatter and optical depth occur in mid-August, and aerosols have returned to low levels 
by winter following the eruption. 
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Figure 13.  Same as Figure 12, but optical depth is recalculated at 750 nm, using both the 
thermal tropopause and the 380 K potential temperature line as the lower bound for integration. 
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Figure 14.  Aerosol optical depth at 532 nm from the KARL lidar and an SP1A sun photometer in Ny-Ålesund, Svalbard.  Lidar 
aerosol optical depth was calculated using two different lidar ratios of 50 and 60 sr and integrating the extinction coefficient between 
the thermal tropopause height and 20 km.  The lidar ratios were obtained in case studies from 13 July (50±10 sr) and 3 September 
(60±10 sr) according to the transmittance method [Chen et al., 2002]. The tropopause height was derived from co-located daily 
balloon soundings. Photometer AOD are daily means, which are reduced by the monthly long-term means from 1995-2008 without 
extreme events (June: 0.07, July: 0.05, August: 0.045, September: 0.035).  Model output is zonally averaged stratospheric aerosol 
optical depth in the grid latitude band containing the Svalbard lidar (76-80°N).  Model output values represent monthly averages, so 
they are placed on or near the 15th of each month.
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Figure 15.  Backscatter ratio profiles at 532 nm for selected days (30 min temporal and 30 m spatial resolution) for the KARL lidar in 
Ny-Ålesund, Svalbard.  Altitude is scaled relative to the thermal tropopause height, which is obtained from co-located daily balloon 
soundings.  In the first two months after the eruption, distinct layers with maximum backscatter ratio above 2 are measured.  Late 
August and September show much smoother profiles with still large values of up to 1.5.
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Figure 16.  Backscatter and aerosol optical depth from the lidar in Halifax.  Backscatter is measured at 532 nm, and the units are the 
same as in Figure 12.  Measurements below 13 km in altitude show strong interference from cirrus clouds and are omitted.  Aerosol 
optical depth was calculated using a lidar ratio of 40 sr.  Lidar optical depth values are averaged between 15 and 20 km to avoid 
interference from cirrus clouds.  Red asterisks show zonally averaged stratospheric aerosol optical depth calculated by the model in 
the grid latitude band containing the Halifax lidar (44-48°N).
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Figure 17.  Observations of the Sarychev eruption cloud from the Mauna Loa Observatory.  Some observations are missing due to 
interference from cirrus clouds.  The top panel shows the top and bottom of the Sarychev aerosol layer as measured at the Mauna Loa 
Observatory.  In the bottom panel, the blue line shows optical depth calculations from the observatory, which are obtained from 
measured backscatter using a lidar ratio of 40 sr.  The red line shows optical depth as calculated by the model, zonally averaged over 
the grid band spanning latitudes 16-20°N. 
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