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Aspects of the practical application of  
ensemble-based Kalman filters 



• Ensemble generation 

• Localization 

• Covariance inflation 

• Observations and their errors 

• Model errors 

• Bias correction 

• Validation data 

Overview 
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Data Assimilation - in short 



System Information: Chlorophyll in the ocean 

mg/m3 mg/m3 

Information: Model	

 Information: Observation	


•  Generally correct, but has errors 

•  all fields, fluxes, …	


•  Generally correct, but has errors 

•  sparse information  
  (only surface, data gaps, one field)	



Combine both sources of information by data assimilation	





Data Assimilation 

  Optimal estimation of system state: 

•  initial conditions     (for weather/ocean forecasts, …) 

•  trajectory                (temperature, concentrations, …) 

•  parameters             (growth of phytoplankton, …)  

•  fluxes                      (heat, primary production, …) 

•  boundary conditions and ‘forcing’       (wind stress, …) 
! 

  Characteristics of system: 

•  high-dimensional numerical model - O(107) 

•  sparse observations 

•  non-linear 
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Data Assimilation 

Consider some physical system (ocean, atmosphere,…)	



time	



observation	



truth	



model	



state	


Variational assimilation 
	



Sequential assimilation 
	



Two main approaches: 

Optimal estimate basically by least-squares fitting	
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Zoo of ensemble-based/error-subspace Kalman filters 

  A little “zoo” (not complete): 

EAKF ETKF 

EnKF(94/98) 

SEIK 

EnSQRTKF 

SEEK RRSQRT ROEK 

MLEF 

(Properties and differences are hardly understood)  

EnKF(2003) 

EnKF(2004) 

SPKF ESSE 
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Issues of the practical application 

  No filter works without tuning 

  Covariance inflation (forgetting factor) 

  Localization 

  Other issues 

  Optimal initialization unknown (is it important?) 

  Ensemble integration still costly 

  Simulating model error 

  Bias (model and observations) 

  Observation errors are often unknown 

  Nonlinearity 

  Non-Gaussian fields or observations 

  … 
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Ensemble generation 



What is the “right” ensemble? 

  Ensemble represents 
  state estimate and error covariance matrix 

  uncertainty of (initial) state estimate 

  correlations between observed and unobserved variables 

  Methods (just a selection) 
  Deviations between model and observations 
    (not all variables/locations observed) 

  Variability from long model integration 
    (self-consistent; correct timing required;  
     related to eigenvalues) 

  random drawing vs. SVD-based selection 

  Set of short-term model integrations 

  “Breeding” 
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Sampling Example 
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3D Box - interchanged intializations 

Ensemble size=10 
 
Covariance matrix P 
from long model 
simulation 
 
MC: random sampling  

of P 
 
2nd: sample low-rank 

approximation of P 
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Localization 



Domain localization - Local SEIK filter 

•  Analysis: 
•  Update small regions  
   (e.g. single vertical columns) 

•   Consider only observations  
  within cut-off distance 

  neglects long-range  
    correlations 
 

•  Re-Initialization: 
•  Transform local ensemble 

•  Use same transformation matrix  
  in each local domain 

Nerger, L., S. Danilov, W. Hiller, and J. Schröter. Ocean Dynamics 56 (2006) 634 



Local SEIK filter II – Observation localization 

Localizing weight 

  reduce weight for remote  
    observations by increasing  
    variance estimates 

  use e.g. exponential decrease  
    or polynomial representing  
    correlation function of compact  
    support 

  similar, sometimes equivalent,  
    to covariance localization used  
    in other ensemble-based KFs 
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Example: 
 

Assimilation of pseudo sea surface height  
observations in the North Atlantic 

(twin experiment) 
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FEOM – Mesh for North Atlantic 

finite-element discretization 

surface nodes: 16000  
3D nodes: 220000 
z-levels: 23 
eddy-permitting 



Configuration of twin experiments 

  Generate true state trajectory for 12/1992 - 3/1993  

  Assimilate synthetic observations of sea surface height 
   (generated by adding uncorrelated Gaussian  
   noise with std. deviation 5cm to true state) 

  Covariance matrix estimated from variability of 9-year       
   model trajectory (1991-1999) initialized from climatology 

  Initial state estimate from perpetual 1990 model spin-up 

  Monthly analysis updates 
  (at initial time and after each month of model integration) 

  No model error; forgetting factor 0.8 for both filters 
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•  Not aimed at oceanographic  
  relevance!	



Modeled Sea Surface Height (Dec. 1992) 

-  large-scale deviations of small amplitude  

-  small-scale deviations up to 40 cm 



 Improvement of  Sea Surface Height (Dec. 1992) 

•  Improvement: red - deterioration: blue 

⇒  For N=8 rather coarse-scale corrections 

⇒  Increased ensemble size adds finer scales (systematically)  

N=8	

 N=32	
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 True and estimated errors (Dec. 1992) 

Correction only possible, if state error present! 



 Global vs. Local SEIK, N=32 (Mar. 1993) 

-  Improvement regions of global SEIK also improved  
   by local SEIK  

-  localization provides improvements in regions not  
  improved by global SEIK 

-  regions with error increase diminished for local SEIK 

rrms = 83.6% rrms = 31.7% 
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Relative rms errors for SSH 

-  global filter: significant improvement for larger ensemble 

-  global filter with N=100: relative rms error 0.74 

-  localization strongly improves estimate 
    - larger error-reduction at each analysis update 
    - but: stronger error increase during forecast 

-  very small radius results in over-fitting to noise  



Covariance inflation 



Covariance inflation 

  True variance is always underestimated 
  finite ensemble size 
  sampling errors (unknown structure of P) 
  model errors 

➜  can lead to filter divergence 

  Simple remedy 

➜  Increase error estimate before analysis 

  Possibilities 

  Multiply covariance matrix by a factor  
(inflation factor, 1/forgetting factor) 

  Additive error (e.g. on diagonal) 
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Impact of inflation on stability & performance 

Experiments with Lorenz96 model 

 

 

 

 

 

 

 

•  Increased stability with stronger inflation (smaller forgetting factor) 
•  Optimal choice for inflation factor 
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Observations and their errors 



Real observations 

  They are not ideal 

  Incomplete (space, time) 

  Errors only estimated 

  Errors can be correlated 

  Can be biased 

➜ Usual way of handling: pragmatism 
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Observation availability 

  Strongly irregular data availability 

  Frequent data gaps 

  Assume constant error and homogeneous spatial influence 

14.10.2007 00:00±6h 27.10.2007  00:00±6h 
Surface temperature 

S. Losa, Project DeMarine Environment 



Satellite Ocean Color (Chlorophyll) Observations 

Natural Color 3/16/2004 Chlorophyll Concentrations 

Source: NASA “Visible Earth”, Image courtesy the SeaWiFS Project, 
NASA/GSFC, and Orbimage 
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•  Daily gridded SeaWiFS chlorophyll data 

  gaps: satellite track, clouds, polar nights 

  ~13,000-18,000 data points daily  
    (of 41,000 wet grid points) 
  irregular data availability 

Assimilated Observations 
mg/m3 

Nerger, L., and W.W. Gregg. J. Marine Systems 68 (2007) 237 



Error Estimates 

Regional data errors from comparison with 2186 
collocation points of in situ data  
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Observation errors II 

•  Account regionally for larger errors caused by 

  aerosols (North Indian Ocean, tropical Atlantic) 

  CDOM (Congo and Amazon) 

•  Error estimates adjusted for filter performance and stability 



Model Errors 



Model errors 

  Representation of reality is not exact 

  Incomplete equations (e.g. missing processes) 

  Inexact forcing (e.g. wind stress on ocean surface) 

  Accounting for model error 

  Inflation (partly) 

  Simulate stochastic part 

  Bias estimation 
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Bias correction 



Assimilation with global SEIK filter 
mg/m3	

mg/m3	



mg/m3	



•  some improvements of estimated  
  total Chlorophyll 

•  Increased estimation errors in  
  region with polar night 

•  SEIK assimilation crashes  
  (earlier for larger ensemble sizes) 



Bias Estimation 

  un-biased system:  
   fluctuation around true state  

  biased system:  
  systematic over- and underestimation 
  (common situation with real data) 

  2-stage bias online bias correction 
1. Estimate bias 
 (using fraction of covariance matrix used in 2.) 

2. Estimate de-biased state 

  Forecast 

1. forecast ensemble of biased states 

2. no propagation of bias vector 
 Nerger, L., and W.W. Gregg. J. Marine Systems, 73 (2008) 87-102 



Estimated Chlorophyll - April 15, 2004 

•  strongly improved surface  
  Chlorophyll estimate 

•  intended deviations (Arabian  
  Sea, Congo, Amazon) 

•  other deviations in high- 
  Chlorophyll regions 

mg/m3 mg/m3 

mg/m3 



Comparison with independent data  

•  In situ data from SeaBASS/NODC over 1998-2004 
   (shown basins include about 87% of data) 

•  Independent from SeaWiFS data  
  (only used for verification of algorithms) 

•  Compare daily co-located data points 

⇒  Assimilation in most regions below SeaWiFS error 

⇒  Bias correction improves almost all basins 
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Validation data 



Validating a data assimilation system 

  Need independent data for validation 

  Necessary, but not sufficient: 
Reduction of deviation from assimilated data 

  Required:  
- Reduction of deviation from independent data 
- Reduction of errors for unobserved variables 

  Want to assimilate all available data 

  Data-withholding experiments 

  Twin experiments 

  Validate with data of small influence 
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In-Situ chlorophyll data 

  In situ data from SeaBASS/NODC over 1/1998-2/2004 

  Independent from SeaWiFS data  
(only used for verification of algorithms) 

  North Central Pacific dominated by CalCOFI data 

  North Central Atlantic dominated by BATS data 



Summary 

  Practical assimilation with ensemble-based Kalman filters 

➜ Care and pragmatism required 

➜  “pure” filter works suboptimal or not at all 

  Theoretical foundation is incomplete 

➜ Advancements in between 
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Thank you! 
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