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Abstract

The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern
Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT),
which sampled the 0–2 m surface layer both under sea ice and in open water. Average surface layer densities ranged
between 0.8 individuals m22 in summer and autumn, and 2.7 individuals m22 in winter. In summer, under-ice densities of
Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter
sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that
during summer high densities of Antarctic krill in the 0–2 m layer were associated with high ice coverage and shallow mixed
layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-
ice densities from the 0–2 m layer were higher than corresponding values from the 0–200 m layer collected with
Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0–200 m densities on
several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic
nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their
limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with
the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval
Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings
emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on
Antarctic ecosystems induced by climate change.
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Introduction

Antarctic krill Euphausia superba often dominates the zooplankton

community in numbers and biomass south of the Antarctic Polar

Front (APF). It is a globally important fisheries resource [1,2,3],

with recent estimates of the total stock biomass ranging between

169 and 379 million metric tons [4,5]. Antarctic krill has adapted

to almost the entire range of marine habitats in the Southern

Ocean, including the abyssal plains [6] and the underside of pack-

ice [7,8]. Its potential distribution covers large parts of the

Southern Ocean, with the exception of the inner shelf areas of the

Ross and Weddell Seas [9,10]. In high-abundance regions, e.g.

near the Antarctic Peninsula, in the Scotia Sea and the Scotia Arc

archipelagos, Antarctic krill is a highly influential factor in the

ecosystem, capable of grazing as much as 55% of the net primary

production [11]. It also is often a dominant prey item in the diet of

many higher predators [12,13,14].

The life cycle and winter survival of Antarctic krill is closely

linked with sea ice [15]. An analysis of historical abundance data

from the entire Southern Ocean highlighted the significance of this

association by showing that krill density in summer is positively

correlated with the areal sea ice extent in the preceding winter

[16]. Until recently, knowledge on krill aggregations at the

underside of sea ice has been limited to semi-quantitative

observations on small spatial scales provided by divers and

submersible camera systems [8,17,18,19]. Under-ice data collected

during summer with upward-looking sonars provided first evidence

of elevated krill concentrations under pack-ice, in a narrow band

several kilometres away from the ice margin [20]. Yet the extent to

which Antarctic euphausiids and their larvae use the ice-water

interface layer as a habitat is poorly investigated, because most

quantitative sampling techniques integrate krill abundance over a

depth range of at least 50 m from the surface [1,3,21,22,23], and

the hydro-acoustic technology used to date has not been capable to

resolve the upper few meters of the water column [20,24,25].

In winter, ice algae accessible from the underside of ice floes

constitute an important resource for larval [26,27,28] as well as
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postlarval Antarctic krill [8,29]. The floating sea ice ensures low

but comparatively constant light exposure of algae, allowing

photosynthetic production, while phytoplankton production in the

water column is suppressed by low light availability due to deep

vertical mixing [30]. Data on Antarctic krill from the areas

covered by pack-ice, however, are scarce because of logistical

constraints [31]. The vertical distribution of Antarctic krill during

winter is still under debate due to a general scarcity of winter data

from the sea ice zone. One widely accepted assumption is that diel

vertical migration during winter ranges between 100 m depth at

night and more than 300 m at day [4]. If Antarctic krill relied

significantly on ice algae as a food source in winter, however, a

constant distribution at greater depth would be unlikely. To which

extent Antarctic krill depends on sea ice to survive the dark

months is therefore still unclear, and various alternative hypoth-

eses, e.g. usage of lipid deposits, reduced metabolism, benthic

feeding and starvation combined with shrinkage are being

discussed [32,33,34,35].

In order to investigate the importance of the ice-water interface

layer for euphausiids and other macrofauna, a new sampling

device was developed for the quantitative sampling of this

environment, the Surface and Under Ice Trawl (SUIT [36]; see

supporting information S1). Three expeditions conducted in the

same area in the Lazarev Sea provided the opportunity to

investigate seasonal and spatial patterns in the occurrence of

euphausiids in the surface layer.

This study aims to

1) Quantify the density and the population structure of

Antarctic krill in the immediate (0–2 m) surface layer, both

under sea ice and in open water in summer, autumn and

winter;

2) relate these data to environmental parameters, such as sea ice

properties, light regime and hydrography;

3) assess the importance of the ice-water interface layer in

relation to conventional standardised sampling of the 0–

200 m depth layer.

Materials and Methods

1. Ethics statement
All necessary permits were obtained for the described field

studies. Permits as required by the Dutch Wet bescherming Antarctica

(WBA) were issued by the Netherlands Ministry of Agriculture,

Nature and Food Quality (WBA ANT/03/003, WBA ANT/05/

004, WBA ANT/07/001).

2. Data collection
Research area. Sampling was performed during three

research missions of RV ‘‘Polarstern’’ in the Lazarev Sea

(Southern Ocean) in austral summer (ANT XXIV-2, November

28th 2007 to February 4th 2008), autumn (ANT XXI-4, March

27th to May 6th 2004), and winter (ANT XXIII-6, June 17th to

August 21st 2006). The expeditions were part of a multi-year field

experiment embedded in the interdisciplinary LAzarev Sea KRIll

Study (LAKRIS). The surveys sampled a regular station grid

covering the seasonal sea ice zone, from 6uW to 3uE and from

60uS to the continental ice shelf at approximately 70uS (Figure 1).

A detailed description of the area of investigation and the sampling

scheme was provided in Flores et al. (2011) [37].

Surface layer sampling. Surface and Under Ice Trawls

(SUIT [36]; see supporting information S1) were used to sample

macrozooplankton and micronekton in the upper two metres of the

water column. The net systems consisted of a steel frame with an

approximately 262 m net opening with a 15 m long, 7 mm half-

mesh commercial shrimp net attached (supporting information S1).

In autumn 2004, a circular plankton net (diameter 50 cm, 0.3 mm

mesh) was mounted inside the shrimp net to sample

mesozooplankton and krill larvae. In summer (2007/2008) and

winter (2006), the rear three meters of the net were lined with

0.3 mm plankton gauze. An Acoustic Doppler Current Profiler

(ADCP, type Nortek EasyV) was used in summer and winter to

estimate the amount of water entering the net mouth and to analyse

its flow properties. A detailed description of the SUIT and its fishing

properties is provided in supporting information S1. To avoid bias

incurred by diel patterns in the depth distribution of euphausiids,

sampling was predominantly conducted at night during all three

surveys. During summer and winter, however, altogether 6

locations were sampled both at day and at night , in order to

obtain a coarse appraisal of diel changes in the density of Antarctic

krill in the surface layer. Trawling was conducted both while the

ship was breaking through the ice, and along edges of large ice floes.

During ice edge trawling, the SUIT was towed under the ice at a

distance of approximately 10–80 m from the ice edge. During each

trawl, changes in ship speed, proportional ice coverage [%], ice

thickness [cm] and irregularities were estimated visually by an

observer on deck, in closest possible proximity to the net.

The catch was immediately sorted on board. After the collection

of all macrofauna .0.5 cm from either the entire sample or a

representative subsample, the mesozooplankton fraction was

preserved on 4% hexamine-buffered formaldehyde-seawater

solution. In autumn 2004, the mesozooplankton fraction was

obtained from the separate plankton net. Animals .0.5 cm

collected from this net were combined with the shrimp net catch in

subsequent analyses. Euphausiids were separated by species.

Displacement volume and number of individuals of each species

were noted. Euphausiids for length-frequency analysis were fixed

in formaldehyde solution for 48 to 96 hours before sex

determination and length measurement. Antarctic krill were

measured from the front edge of the eye to the tip of telson (the

‘‘Discovery’’ method). Thysanoessa macrura were measured from the

tip of the rostrum to the tip of the telson. Euphausiid furcilia larvae

from the mesozooplankton fraction were identified to species level

and counted.

Midwater sampling. Standardized double-oblique hauls to

a depth of 200 m were conducted with a rectangular midwater

trawl (RMT [38]) on all LAKRIS grid stations during the three

expeditions. The sampling device consisted of an RMT 1 (mesh

size = 0.33 mm) mounted above an RMT 8 with net openings of 1

and 8 m2, respectively. The RMT 8 had a mesh size of 4.5 mm at

the opening and a codend mesh size of 0.85 mm. A calibrated

digital flow meter (Hydro-Bios Kiel model 438 110) mounted

outside the net opening allowed the volume of water passing

through the net to be estimated. The average trawling speed was

2.5 knots (1.3 m s21).

Immediately after catch retrieval, euphausiids were removed

from the RMT 8 sample. If the sample size was larger than 1 litre,

a representative subsample was analysed. Euphausiids were stored

in 4% formalin-seawater solution for length measurements and

maturity stage analyses. RMT 1 samples were immediately

preserved in a 4% formaldehyde-seawater solution. A detailed

description of the RMT sampling procedure was provided by

Hunt et al. (2011) [23].

Hydrography and environmental data. Vertical profiles of

temperature, salinity and density were obtained by lowering a

CTD (Conductivity, Temperature, Depth) probe to depths varying

between 1,000 m and the sea floor. The CTD (type SBE 911plus)

Antarctic Krill under Pack-Ice
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was supplemented by an altimeter (type Benthos PSA-916) to

measure the distance to the sea floor, a transmissometer (type Wet

Labs C-Star) to measure the attenuation of light, and a

chlorophyll-sensitive fluorometer (type Dr. Haardt BackScat;

only in winter 2006 and summer 2007/2008). The temperature-

salinity profiles were used to calculate the mixed layer depth (MLD

[m]) for each station [39]. Solar radiation [W m22] was measured

by the ship’s meteorological system. Bottom depth [m] was

estimated for each station position using modeled global

bathymetry from a publicly available database [40,41]. The

proportion of the distance the SUIT was towed under sea ice was

used to estimate the percentage of sea ice coverage for each SUIT

haul. SUIT hauls with a proportional ice coverage .10% were

considered under-ice hauls. The full procedure of environmental

data collection was explained in Hunt et al. (2011) [23].

3. Data analysis
Of the 56 quantitative SUIT hauls, 18 were conducted in

summer, 16 in autumn, and 22 in winter (Table 1). Data from

RMT hauls conducted at these SUIT locations were also analysed

for comparison of krill densities and size distributions from the 0–

2 m layer with corresponding datasets from standardised 0–200 m

sampling. Hauls conducted at daytime (surface radiation

.10 W m22) were excluded from the autumn and winter datasets

because of the known diel vertical migration behaviour of

Antarctic euphausiids in these seasons [4,24]. The number of

animals caught was standardised to the surface area sampled and

expressed as the density of individuals per square metre [ind. m22].

Initial data exploration showed that the distribution of animal

densities was highly skewed. Densities were therefore log

(x+0.001)-transformed to conform with the model assumptions of

subsequent statistical analyses. Variance analysis (ANOVA) was

conducted to assess the significance of the effect of season and the

presence of sea ice during SUIT hauls, and the interaction of the

two factors. Test results for ice-open water comparisons within

each sampling season were confirmed with the non-parametric

Mann-Whitney U-test, which is robust against non-normal

distribution of the data. Overall densities of animals for different

Figure 1. Euphausia superba. Spatial distribution of the surface layer density of postlarval krill in (A) summer (2007/2008), (B) autumn (2004), and
(C) winter (2006). Minimum (Ice min) and maximum (Ice max) pack-ice extent during the sampling period is indicated by approximate 15% ice
coverage derived from satellite data. The entire survey area was covered by sea ice in winter 2006. ASF: Antarctic Slope Front; ice = under-ice,
ow = open water SUIT hauls.
doi:10.1371/journal.pone.0031775.g001
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years and ice conditions were expressed both as averages (i.e.

arithmetic mean) and geometric means (i.e. the exponent of the

mean of the log(x+0.001)-transformed densities).

Non-linear relationships between environmental variables and

densities of postlarval Antarctic krill were investigated with

Generalized Additive Models (GAM, [42]). The following

environmental variables were included in the analysis:

N MLD;

N water temperature (0 m – MLD);

N water temperature (0–200 m);

N salinity (0 m – MLD);

N salinity (0–200 m);

N attenuation (0 m – MLD);

N attenuation (0–200 m); - potential temperature at depth of

temperature maximum;

N chlorophyll a conc. (0–200 m; only 2006 and 2007/2008);

N ocean depth;

N solar radiation;

N proportional ice coverage during SUIT hauls;

N average ice thickness during SUIT hauls.

Due to multiple interactions of environmental variables with

sampling season, separate models were computed for each season.

Collinearity of variables was assessed by calculating correlation

coefficients and variance inflation factors (VIF: e.g. [43]). VIF

values above 10 are generally considered indicative of high

collinearity [43]. Using a stepwise procedure, the variable with the

highest VIF value was repeatedly removed until the VIF values of

all remaining variables were below 10. Gaussian additive models

were fitted using cubic splines and cross-validation to obtain the

optimal degrees of freedom for each variable [44]. The optimal

model was estimated by stepwise backward exclusion of insignif-

icant model terms with the highest P-value, until the Akaike

information criterion (AIC) reached a minimum. Sometimes the

estimated degrees of freedom of smooth terms were so low that a

linear relationship may have been sufficient. In that case the model

was tested with parametric terms, and preferred if these were

significant and the AIC was lower. Regression assumptions were

assessed visually by plotting the response variable against fitted

values and residuals against variables.

Results

1. Hydrographical setting and ice coverage
The eastern Weddell Gyre fed Warm Deep Water of

circumpolar origin into the survey area during all seasons. This

water mass reached as far south as approximately 69uS, where the

Antarctic Slope Front (ASF) was situated (Figure 1). Much colder

and fresher waters of the Antarctic Coastal Current prevailed

south of the ASF. The hydrography of the area was further

influenced by current jets and eddies forming around the Maud

Rise seamount [45]. In summer (2007/2008), sea ice extended

north up to 60uS in December 2007, but retreated to a residual

area south of 67uS in late January 2008 (Figure 1 A). In autumn

(2004) the young pack-ice was largely confined to waters south of

68uS (Figure 1 B). Heavy pack-ice was present throughout the

entire area of investigation in winter (2006) (Figure 1 C). The

hydrography of the Lazarev Sea during the sampling of this study

was described in detail by Hunt et al. (2011) [23].

2. Antarctic krill
Distribution and population structure. Antarctic krill was

clearly the most abundant krill species and the only euphausiid

caught in the 0–2 m surface layer in all three seasons. The average

surface density was highest in winter (2006) (2.70 ind. m22),

followed by autumn (2004) (0.82 ind. m22), and summer (2007/

2008) (0.79 ind. m22) (Table 1). In summer, densities were highest

at the north and the south slopes of the Maud Rise seamount,

between 64uS and 67uS 3uE (Figure 1 A). Elevated densities were

concentrated north of 66uS along the 0u meridian in autumn

(Figure 1 B), and at 3uW in winter (Figure 1 C). A few

exceptionally high catches were obtained in these areas. These

were one haul in summer (6.33 ind. m22), one haul in autumn

(9.60 ind. m22), and two hauls in winter (17.86 and 23.11 ind.

m22).

The overall size range of postlarval Antarctic krill (13–54 mm)

was largely similar in all three sampling seasons (Figure 2). Modes,

however, occurred at different lengths in each season. In summer,

the dominating fraction was juveniles, peaking at 18 mm. A

Table 1. Euphausia superba.

Summer Autumn Winter

ow ice total ow ice total total (ice)

n 7 11 18 13 3 16 19

Postlarval krill Average 0.11 1.22 0.79 1.0 0.01 0.82 2.70

Geometric mean 0.06 0.48 0.21 0.15 0.00 0.08 0.04

Min ,0.01 0.01 ,0.01 0.01 0 0 0

Max 0.21 6.33 6.33 9.60 0.01 9.60 23.11

Furcilia larvae Average 0 0 0 ,0.01 0.08 0.02 0.06

Geometric mean 0 0 0 ,0.01 0.08 ,0.01 0.01

Min 0 0 0 0 0.05 0 0

Max 0 0 0 0.03 0.11 0.11 0.48

Density of postlarval krill and furcilia larvae [ind. m22] at the open surface and under ice (0–2 m) in summer (2007/2008), autumn (2004) and winter (2006). Geometric
mean values significantly different from each other (ANOVA p,0.05) were printed in bold. ice = under-ice SUIT hauls; ow = open water SUIT hauls; n = number of
samples.
doi:10.1371/journal.pone.0031775.t001
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second mode appeared at 30 mm (Figure 2 A). A single mode at

36 mm was observed in autumn (Figure 2 B). The mode in winter

(28 mm) was considerably lower (Figure 2 C). No significant

difference was apparent in any sampling season, when size

distributions of postlarval Antarctic krill sampled by SUIT were

compared with RMT length-frequency data (Table 2).

A diel pattern in the surface density of postlarval Antarctic krill

was apparent from the five day/night comparative locations that

yielded a sufficient number of animals in summer and winter. In

summer, densities of postlarval Antarctic krill were higher at day

than at night, both under ice and in open water (Figure 3 A). In

winter, a much more pronounced opposite pattern was recorded.

The under-ice density at night was up to two orders of magnitude

above daytime values (Figure 3 B).

Furcilia larvae of Antarctic krill were the dominant euphausiid

larvae in the 0–2 m surface layer in autumn and winter, but had

not yet developed from earlier stages in summer, because sampling

was performed early in the season. In contrast to postlarval

Antarctic krill, they were significantly more abundant under ice

than in open water in autumn (Table 1). In winter, a diel pattern

similar to postlarval krill was observed in the furcilia larvae

(Figure 3 C).

Association with sea ice. The relation between the under-

ice and open water 0–2 m surface layer densities of postlarval

Antarctic krill significantly differed among sampling seasons

(ANOVA: p,0.01). In summer, Antarctic krill density at the

surface was significantly higher under ice than in open water. In

autumn, the density of postlarval Antarctic krill was significantly

lower under ice than in open waters. The integrated under-ice

density, however, was based on only three of the 16 quantitative

stations sampled on the LAKRIS grid in that season (Table 1).

The highest local and average densities of postlarval Antarctic krill

were recorded under the winter sea ice (Figure 1, Table 1).

The density of postlarval Antarctic krill in the 0–200 m stratum

significantly differed among the sampling seasons (ANOVA:

p,0.01), but was not significantly related to the presence of sea

ice (ANOVA: p.0.1). In summer, both the average and geometric

mean densities in the 0–200 m stratum were lower than in the 0–

2 m layer in ice-covered waters, but above the values of the 0–2 m

surface layer in open waters (Figure 4 A, B). In autumn, however,

average and geometric mean densities were considerably higher in

the 0–200 m depth layer than in the 0–2 m surface layer, both in

open water and under ice (Figure 4 C, D). In winter, average krill

density in the 0–200 m stratum was below the average density

from the ice-water interface layer, mainly due to a few

exceptionally high SUIT catches yielding densities up to 5 times

above maximum values from the 0–200 m layer (Figure 1 C).

Because of this high variability in the SUIT data, geometric mean

densities showed the opposite pattern (Figure 4 E, F).

Relationship with environmental parameters. The

density of postlarval Antarctic krill in the surface layer was

significantly related to different combinations of environmental

variables in each sampling season. In summer, parametric terms

for average ice thickness and attenuation in the mixed layer,

combined with smooth functions of proportional ice coverage

during SUIT hauls and MLD obtained a very good model fit,

explaining 94.6% of the deviance. The modelled krill density was

positively affected by both decreasing ice thickness and attenuation

in the mixed layer, an approximate proportional ice coverage

.12%, and a MLD ,12 m or between 20 and 30 m (Figure 5 A,

B; Table 3). In autumn, the most parsimonious model related krill

density to the parametric term of water temperature in the mixed

layer, and a smooth function for salinity in the upper 200 m.

Modelled density was highest at a combination of high water

temperatures in the mixed layer and low salinities (Figure 5 C;

Table 3). In winter, the best model included the parametric

predictors ocean depth and MLD, and a smooth function for the

water temperature in the mixed layer. The modelled krill density

was positively associated with both increasing depth and MLD and

water temperatures in the mixed layer between approximately

21.83uC and 21.76uC (Figure 5 D; Table 3).

Figure 2. Euphausia superba. Length-frequency distributions of postlarval krill from the surface layer (0–2 m) on the LAKRIS grid in (A) summer
(2007/2008), (B) autumn (2004), and (C) winter (2006).
doi:10.1371/journal.pone.0031775.g002

Table 2. Euphausia superba.

Summer Autumn Winter

Surface 0–200 m Surface 0–200 m Surface0–200 m

Mean length
[mm]

25.2 26.7 36.7 35.2 30.1 33.7

Range [mm] 13–52 13–52 17–54 21–58 18–52 20–54

p 0.98 0.45 0.06

Comparison of the size distributions of postlarval krill in the surface layer and
the 0–200 m layer in summer (2007/2008), autumn (2004) and winter (2006). p:
Kolmogorov-Smirnov test significance.
doi:10.1371/journal.pone.0031775.t002

Antarctic Krill under Pack-Ice

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e31775



Comparison with Thysanoessa macrura. Only in summer

(2007/2008), postlarval Thysanoessa macrura were caught in the 0–

2 m surface layer. Occurring at 16 of the 18 quantitative hauls,

average surface layer density was below that of Antarctic krill.

(0.24 ind. m22), although they locally reached higher densities

(Table 4). Overall, the density of T. macrura was slightly higher

under ice than in open waters. Unlike Antarctic krill, however, the

density of T. macrura was not significantly related to the presence of

sea ice (Figure 6 A; Table 4). In contrast to Antarctic krill, they

were only abundant at night and almost not caught at day. The

length of postlarval T. macrura caught in summer ranged between 8

and 30 mm. They exhibited a unimodal overall size distribution,

peaking at 16 mm.

In the 0–200 m layer, postlarval T. macrura occurred in all three

seasons. During summer, they were on the average tenfold more

abundant in the 0–200 m layer than at the surface (Figure 6 A, B).

The density of T. macrura was not related to the presence of sea ice

(ANOVA: p.0.1). In autumn 2004 and winter 2006, very low

average densities (,1.0 ind. m22) were recorded in the 0–200 m

stratum compared to summer values. In summer, the overall size

distributions of the 0–2 m surface and 0–200 m stratum were not

significantly different from each other (Kolmogorov-Smirnov test,

p.0.05).

Discussion

1. Association of Antarctic krill with sea ice
The present study is the first multi-seasonal investigation of the

distribution of Antarctic krill in the top 2 m layer of the ocean,

using a micronekton net capable of sampling under closed pack-

ice. Covering an area of about 1,000 km in latitudinal, and 200–

300 km in longitudinal extent, our results show that significant

parts of the Antarctic krill population in the Lazarev Sea can be

found in the ice-water interface layer almost year-round, both near

the ice edge and hundreds of kilometres deep in the pack-ice

(Figure 1). This contrasts with earlier findings suggesting that krill

aggregations under ice occur in a narrow band in the marginal ice

zone [20].

The potential importance of sea ice habitats for the recruitment

and survival of Antarctic krill was highlighted for the south-west

Atlantic sector of the Southern Ocean, where populations have

been declining in parallel with a decrease in the duration and

extent of the winter sea ice coverage during the last 3 decades of

the 20th century [16]. This decline is presumably linked to

decreasing recruitment success caused by loss of sea ice habitats

[46], as larval Antarctic krill are assumed to depend on ice algae to

survive their first winter [26,27,28]. Our results emphasize the

significance of sea ice as an almost year-round key habitat for

postlarval Antarctic krill. This supports the notion that postlarval

Figure 3. Euphausia superba. Day/night comparisons of the surface layer density of (A) postlarval krill at three locations in summer (2007/2008), (B)
postlarval krill, and (C) furcilia larvae at two locations in winter (2006). Scaling of y-axis differs. Denotations above bars are location codes. d = daytime,
night = night-time; ice = under-ice, ow = open water SUIT hauls.
doi:10.1371/journal.pone.0031775.g003

Figure 4. Under-ice versus open water comparison of geomet-
ric mean densities of postlarval Euphausia superba in (A–B)
summer (2007/2008), (C–D) autumn (2004), and (E–F) winter
(2006). (A, C, E) Euphausia superba from the 0–2 m layer, and (B, D, F)
from the 0–200 m layer. Error bars denote value ranges. Bold red bars
indicate 25% to 75% percentile ranges. ice = under-ice, ow = open water
SUIT hauls.
doi:10.1371/journal.pone.0031775.g004
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Figure 5. Euphausia superba. Generalized Additive Models of the density of postlarval krill. Effect of additive smoothing functions of (A)
proportional ice coverage during SUIT hauls, and (B) mixed layer depth in summer (2007/2008), (C) salinity in the 0–200 m depth layer in autumn
(2004), and (D) temperature in the mixed layer in winter (2006) on the fitted density of postlarval krill. Dashed lines show 95% confidence intervals of
smoothers.
doi:10.1371/journal.pone.0031775.g005

Table 3. Euphausia superba.

Sampling season Overall model statistics Model terms

Environmental variables Linear estimate df p

Summer AIC 9.6 Ice thickness 20.2096 ,0.01

Expl. deviance 94.6% ATC(MLD) 22.2845 ,0.01

s(Ice coverage) 3.0 ,0.01

s(MLD) 3.0 ,0.01

Autumn AIC 35.7 Temperature (MLD) 2.0715 ,0.01

Expl. deviance 70.8% s(salinity 0–200 m) 2.2 0.03

Winter AIC 59.2 Depth 0.0007 0.01

Expl. deviance 72.2% MLD
s(temperature (MLD))

0.0261 2.9 0.01
0.01

Parameters for optimal models relating the density of postlarval krill to environmental variables in summer (2007/2008), autumn (2004) and winter (2006). ATC:
attenuation; df: estimated degrees of freedom of smoother; MLD: mixed layer depth; s: Cubic Splines smoother.
doi:10.1371/journal.pone.0031775.t003
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Antarctic krill can sometimes also rely significantly on ice algae as

a food source, as well as other organisms thriving in and under the

ice [8,29,47]. There were, however, significant seasonal differences

in the association of Antarctic krill with sea ice, as well as in overall

density, size composition, and diel variability. These differences

need to be considered in the light of the behavioural plasticity and

the life strategy of Antarctic krill.

Seasonal patterns of ice association. In summer, high

densities of Antarctic krill in the 0–2 m surface layer were

significantly associated with the under-ice habitat, rather than the

open surface layer (Figure 4 A; Table 1). Antarctic krill’s smaller,

but often equally abundant sibling species Thysanoessa macrura is

more omnivorous, and not associated with sea ice [1,3,48,49]. As

expected from a species not associated with sea ice, surface layer

densities of T. macrura were similar under ice and in open water

(Figure 6 A), supporting the notion that the observed patterns in

Antarctic krill are related to the species’ association with the

under-ice habitat, rather than to differences in the catch efficiency

of SUIT incurred by sea ice. In our model, increasing ice coverage

and a shallow mixed layer were positively related to Antarctic krill

density in the 0–2 m layer, suggesting that the density of Antarctic

krill was highest under melting pack-ice, where a meltwater lens

stabilized a shallow mixed layer (Figure 5 A, B; Table 3). These

conditions enhance ice algal and phytoplankton production and

thus characterise attractive foraging grounds. Accordingly, at low

ice coverage the model predicted high krill densities only when the

mixed layer was very shallow, concentrating phytoplankton near

the surface.

In ice-covered waters, average and geometric mean Antarctic

krill densities in the 0–2 m layer were considerably higher than

corresponding depth-integrated densities in the 100-fold deeper 0–

200 m depth layer (Figure 4 A, B). Many net-based abundance

estimates assume that oblique hauls with micronekton trawls, as

conducted in our study, sample Antarctic krill quantitatively from

the surface down to the maximum sampling depth (e.g. Atkinson

et al. 2009 [5]). This assumption, however, implies that depth-

integrated overall densities derived from the 0–200 m RMT

sampling should be equal or higher than SUIT-based estimates

from the 0–2 m surface layer. The much higher arithmetic and

geometric mean summer densities in the 0–2 m compared to the

0–200 m water layer in ice-covered waters thus indicate that the

ice-water interface layer was probably under-represented in RMT

catches. One very likely explanation for this discrepancy is that the

RMT sampled in the wake of the ship, where the ice was broken

and the upper 10–15 meter of the water column were stirred up by

the ship’s propellers, whereas the SUIT sampled sideways of the

ship’s wake under comparatively undisturbed ice (see supporting

information S1). The effect of this difference can be expected to be

less pronounced when animals are not concentrated at the surface.

Accordingly, in open water Antarctic krill were less abundant in

the 0–2 m surface layer than in the integrated 0–200 m depth

layer, indicating that krill were dispersed over a wider depth range

(Figure 4 A, B). In agreement with these considerations, the non-

ice-associated T. macrura was considerably more abundant in the

0–200 m depth layer compared to the 0–2 m surface layer,

irrespective of the presence of sea ice. The comparison of two

differently sampled depth layers indicates that a significant

proportion of the Antarctic krill population resided immediately

under the ice, where it was out of reach of conventional pelagic

trawls. Due to an under-representation of the ice-water interface

layer, patterns of ice-association evident in the surface layer were

not reflected by standardised 0–200 m sampling. Quantitative

comparisons between the two depth layers expressing densities as a

proportion of the total population, however, should be considered

with caution, because the extent to which the two nets sample

overlapping depth ranges, as well as differing effects of towing

speed, ice properties, and other factors on their catch efficiency are

not accurately known.

Even when this caveat is taken into account, our results indicate

that Antarctic krill were concentrated in the under-ice habitat both

in the horizontal and the vertical dimension during summer. The

concentration of Antarctic krill under sea ice observed in the

Lazarev Sea during summer suggests that they rely on sea ice biota

to a significant extent, as long as ice is present. This pattern,

however, may change as soon as rich phytoplankton blooms

develop. In more productive shelf-influenced systems, such as the

Scotia Sea, Antarctic krill can rely significantly on phytoplankton

blooms while sea ice is still present [50]. Phytoplankton is

considered the main food of Antarctic krill during summer, but

they can also utilise a wide range of other food sources, including

copepods, protozoa and detritus [51,52,53]. This dietary plasticity

is mirrored in their habitat use, which ranges from the open

surface and ice-underside down to the deep sea floor [6,17,52,54].

In autumn, postlarval Antarctic krill in the 0–2 m surface layer

were more abundant in open water than under ice (Table 1). In

this season, the sea ice at the three stations sampled in the ice-

covered part of the survey area was young and unlikely to host a

sufficiently attractive microbial community for postlarval krill. The

low attractiveness of the young sea ice as a foraging ground was

Figure 6. Under-ice versus open water comparison of geomet-
ric mean densities of postlarval Thysanoessa macrura in summer
(2007/2008). (A) Thysanoessa macrura from the 0–2 m layer, and (B)
from the 0–200 m layer. Error bars denote value ranges. Bold red bars
indicate 25% to 75% percentile ranges. ice = under-ice SUIT hauls;
ow = open water SUIT hauls.
doi:10.1371/journal.pone.0031775.g006

Table 4. Thysanoessa macrura.

Summer Autumn Winter

ow ice total total total (ice)

n 7 11 18 16 19

Average 0.18 0.28 0.24 0 0

Geometric mean 0.02 0.04 0.03 0 0

Min 0 0 0 0 0

Max 1.14 1.35 1.35 0 0

Density of postlarval krill [ind. m22] at the open surface and under ice (0–2) m in
summer (2007/2008), autumn (2004) and winter (2006). Mean values
significantly different from each other (ANOVA p,0.05) were printed in bold.
ice = under-ice SUIT hauls; ow = open water SUIT hauls; n = number of samples.
doi:10.1371/journal.pone.0031775.t004
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reflected in a dispersal of postlarval Antarctic krill over a wider

depth range, apparent from the almost consistently higher

densities in the 0–200 m stratum (Figure 4 C, D). In the virtual

absence of sufficiently attractive pack-ice, the distribution of

postlarval Antarctic krill in the 0–2 m surface layer reflected

broad-scale hydrographical patterns in autumn (Figure 5 C,

Table 3). In contrast, larval Antarctic krill were significantly more

abundant under the young autumn sea ice than in open water.

Larval Antarctic krill are unable to actively move into more

productive waters, and cannot survive starvation during periods of

low food availability [28]. Hence, even in young autumn ice, they

apparently foraged on sea ice biota, supporting the hypothesis that

the distribution patterns of adult and larval Antarctic krill differ

most when food availability is low [31].

In winter, by far the highest local densities of Antarctic krill were

encountered under the sea ice (Table 1, Figure 1). A comparison

between the ice-covered and the open water surface layer was not

possible in winter 2006, because the entire survey area was

covered by dense pack-ice. Probably due to low variability in the

sea ice parameters measured, hydrographical parameters rather

than sea ice properties were found to be related to krill density

(Figure 5 D; Table 3). The repeated encounter of extra-ordinary

high densities with values far above maxima found integrated over

the 0–200 m depth layer, indicated that Antarctic krill were

associated with the under-ice habitat at least at certain times. The

mere absence of Antarctic krill from the ice-water interface layer at

day versus high densities at night indicated that the association

with the underside of sea ice may be limited to the dark hours in

winter (Figure 3 B). During summer, almost the opposite

observation was made, independently of the presence of sea ice

(Figure 3 A). This demonstrated that the observed diel patterns

were not related to differences in the catchability of the SUIT

incurred by the presence of daylight and/or sea ice. Such a

seasonally divergent diel pattern partly reflects the seasonal shift

between low amplitudes close to the surface in summer and high

diel vertical migration amplitudes in winter proposed by Siegel

(2005) [4], and was corroborated by time series measurements of

acoustic zooplankton backscatter in the Lazarev Sea [55].

Although the present study was not designed to allow a sound

investigation of diel vertical migration patterns, our results from

the surface layer demonstrate that the vertical distribution of

Antarctic krill includes the surface layer at all seasons, rather than

being largely limited to deeper layers in autumn and winter.

Sea ice has been proposed repeatedly to play a crucial role for

the overwintering of Antarctic krill [8,15,16]. Our study supports

this notion with the first large-scale quantitative evidence of

postlarval Antarctic krill dwelling under ice in winter. In a

bathymetrically similar area off east Antarctica, Antarctic krill

were found feeding on sea ice biota during winter, and being in

better condition than animals from open water areas [56].

However, other winter investigations could not find any indication

of krill aggregations under ice [24,57]. These investigations, as well

as the high variability of under-ice densities observed in our study

during winter, support the increasingly accepted perception that

krill combine various strategies to survive the winter, such as

reduced metabolism, shrinkage and benthic feeding

[34,35,58,59,60]. The role of sea ice biota in winter feeding may

be taken by other food sources, where they are available. In

productive shelf areas for example, seabed detritus may be a

readily accessible food source [52,58], resulting in an overall

deeper distribution of krill during winter [24,57,61]. Using a

physiological approach to investigate the overwintering strategy of

Antarctic krill in the Lazarev Sea, Meyer et al. (2010) [35]

demonstrated that adult krill reduce metabolism and rely on lipid

deposits during winter, but at the same time need to feed at low

rates to meet their energetic demand. Juvenile Antarctic krill may

particularly depend on winter feeding, because they have less

storage capacity and metabolic plasticity than older animals

[60,62]. With a maximum size mode at 38 mm resulting from

distribution mixture analysis using the CMIX software [63], most

Antarctic krill in our dataset were not older than 2 years according

to the length-at-age data by Siegel (1987) [64] (Figure 2). Based on

the dimensions of the net, the towing speed, and the similarity in

euphausiid species composition and size distribution, it can be

assumed that the size selectivity of the SUIT did not differ

significantly from the well-established RMT (Table 2, supporting

information S1). Our results thus indicate that feeding under ice

may be important at least for larval and 1–2 year-old postlarval

krill in the Lazarev Sea during winter. Populations dominated by

older animals, however, may show a different behaviour.

2. Implications for Antarctic sea ice ecosystems
In the Lazarev Sea, Antarctic krill seem to concentrate in the

ice-water interface layer whenever sea ice is present and

biologically mature enough to sustain sufficient resources for

grazing. This emphasises the high ecological relevance of the sea

ice habitat for Antarctic oceanic ecosystems. Information on the

seasonality, spatial distribution and quantitative importance of the

association of Antarctic krill with the sea ice habitat has so far been

very limited. Investigations using pelagic nets reported both a

positive and a negative association of Antarctic krill with ice-

covered waters [3,7,22,25]. The ecological importance of the ice-

water interface layer, however, may have been considerably

underestimated in the past due to limitations to sample this habitat

appropriately by pelagic nets and echosounders [37]. An under-

estimate by pelagic sampling in the past may have caused ice-

covered areas to appear poorer in biological resources than they

are in reality. Food demand of the top predator community has

been shown to persist or even increase hundreds of kilometres

deep into the pack ice, although pelagic primary production there

indicated low availability of resources [65]. This pattern was also

observed during the present study, supporting the hypothesis that

the surface layer, and especially the ice-water interface, might play

a crucial role in sustaining the top predator populations of the

Antarctic seasonal sea ice zone [65,66,67]. The pronounced

presence of Antarctic krill under the ice highlights its potential as

an energy transmitter between the production of ice algae and the

pelagic food web. The trophic relationships among ice algae,

Antarctic krill and higher predators, however, are complex. To

date, it is unclear to which extent other species are involved in the

energy transmission from the ice to the top predators

[68,69,70,71]. Clearly, the role of Antarctic krill is shared with a

wide spectrum of other species, including fishes, squids, ice-

associated copepods, pteropods, chaetognaths and amphipods

[37,72,73,74,75]. In this context, the concentration of Antarctic

krill under sea ice should be considered more as an indicator of the

ecological potential of the sea ice system than as the sole pathway

of energy transmission.

Recently, concern has been expressed that climate change-

induced sea ice decline may endanger the sustainability of

Antarctic krill populations and associated ecosystems, particularly

in the light of an expanding krill fishery [16,76,77]. Our results

support this notion by demonstrating that the underside of sea ice

is a key habitat of Antarctic krill almost year-round in a typical

Antarctic oceanic ecosystem. Furthermore, the significance of the

ice-water interface layer may have been under-estimated in the

past by the pelagic nets and sonars used to estimate the population

size of Antarctic krill for management purposes. The present study
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emphasises the urgent need of a profound understanding of the

habitat use of Antarctic krill in the context of its ecological

plasticity. Such knowledge is crucial for predictions of the

development of krill populations under scenarios of decadal

climate oscillations or long-term climate change [46], and an

important prerequisite of the ecosystem-based management

approach of the Convention on Conversation of Antarctic Marine

Living Resources (CCAMLR) [46,78,79,80].

Supporting Information

Supporting Information S1 Jan Andries van Franeker,

Hauke Flores, Michiel van Dorssen: The Surface and Under-

Ice Trawl (SUIT). Detailed description of the novel sampling device used

in this study.

(PDF)
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