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Protoceratium reticulatum as a producer of yessotoxin (YTX) and its analogues is common in several
coastal environments. The YTX-producing strain of P. reticulatum, isolated from the German Bight (North
Sea), was analysed to study toxin production under various autecological conditions. Experiments were
carried out to investigate the influence of N/P ratio (2.44 (1/10 N), 24.36 (f/2) and 243.65 (1/10 P)),
temperature (15 and 20 °C), salinity (5, 10, 15, 20, 25 and 30) and growth phase on YTX formation, cell
size and chlorophyll a concentration.

P. reticulatum showed the highest growth at 15 °C and higher salinities (25 and 30). In particular,
higher temperature led to a reduced growth. The total YTX concentrations were higher at lower
temperature. However, a clear correlation between salinity and YTX production was not observed at
lower temperature. Furthermore, 1/10 P and f/2 cultures exhibited the highest cell quota of YTX at the
end of the stationary phase; a dramatic effect occurred at 15 °C in 1/10 P media, when the toxicity
increased to ten fold higher values. Slight variations of the composition of the YTX analogues under
nutrient limitation were observable. In addition, the results indicate that N-limitation cause a lower cell
size, whereas P-limitation leads to a higher cell size; an influence of the salinity on cell size was also
observable.
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1. Introduction Zealand, Japan, Norway, UK, Canada, USA, Chile, Spain, Italy, and

southern Africa Bay (Ciminiello et al., 2003; Finch et al., 2005; Krock

Yessotoxin (YTX), a disulphated polyether toxin was first isolated
by Murata et al. (1987) from digestive glands of Japanese scallops
(Patinopecten yessoensis). Three species of dinoflagellates were
identified as YTX producing organisms, these are Protoceratium
reticulatum (Claparéede & Lachmann) Biitschli (syn.: Gonyaulax
grindleyi) (Satake et al., 1997), Lingulodinium polyedrum (Stein)
Dodge (syn.: Gonyaulax polyedra) (Tubaro et al., 1998; Draisci et al.,
1999) and Gonyaulax spinifera (Claparéde & Lachmann) Diesing
(Rhodes et al., 2006; Riccardi et al., 2009). Meanwhile, the production
of YTX by the dinoflagellate P. reticulatum has been reported in New
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et al., 2006, 2009; Paz et al., 2004, 2006, 2007; Ramstad et al., 2001;
Samdal et al., 2004; Satake et al., 1997, 1999, 2006).

Different concentrations of YTX were found in cultures of
dinoflagellates around the world. The toxicity of P. reticulatum
reached from 0.9 to 79 pg YTX cell ! (Eiki et al., 2005; Howard
et al., 2008; MacKenzie et al., 1998; Mitrovic et al., 2005; Paz et al.,
2004, 2007; Samdal et al., 2004; Satake et al., 1996, 1999), and the
concentrations of YTX in L. polyedrum were up to 1.5 pg YTX cell !,
and in G. spinifera up to 200 pg YTX cell~! (Draisci et al., 1999;
Howard et al., 2008; Paz et al., 2004; Ramstad et al., 2001; Rhodes
et al., 2006; Tubaro et al., 1998). It seems that the principal toxin
formed by P. reticulatum is YTX, even though some strains
contained homoYTX as prominent analogue (Paz et al., 2008).
From about 100 known YTX analogues only 40% are characterized
concerning their exact chemical structure (Miles et al., 2004,
20054, 2005b, 20064, 2006b; Paz et al., 2008). Suzuki et al. (2007)
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reported on P. reticulatum strains isolated at different sites of
Japanese coasts (e.g. Mutsu Bay and Okirai Bay) which produced
45,46,47-trinoryessotoxin (trinorYTX), 1-homoyessotoxin (homo-
YTX), 45,46,47-trinor-1-homoyessotoxin besides YTX. In some
strains 42,43,44,45,46,47,55-heptanor-41-oxoyessotoxin (norox-
oYTX enone; ketoYTX) was also detected, and some of those strains
exhibited a percentage of YTX analogues near to 50% of the total
YTX concentration (Suzuki et al., 2007).

Environmental conditions are important for the production of
toxins by dinoflagellates. However, only few studies are published
how environmental factors might affect the YTX formation of P.
reticulatum. Gallardo Rodriguez et al. (2009) and Guerrini et al.
(2007) reported about the requirements of macronutrients; the
effect of micronutrients was investigated by Mitrovic et al. (2004)
and some data are available on the influence of temperature and
salinity on the YTX production (Guerrini et al., 2007).

Our investigations were directed on the elucidation of the effect
of various growth factors on formation of YTXs in a strain of P.
reticulatum from the North Sea (Helgoland Roads) for better
assessment of the risk for toxic dinoflagellate events in the North
Sea connected with climate change or eutrophication. Therefore,
the isolated strain of P. reticulatum was cultured at different
conditions concerning macronutrients, salinity and temperature.

2. Materials and methods
2.1. Isolation and identification of P. reticulatum

Net samples from surface water at Helgoland Roads, German
Bight, North Sea, Germany, were collected during a taxonomic
phytoplankton re-investigation project (Hoppenrath, 2004; Hop-
penrath et al., 2009). P. reticulatum cells were isolated by
micropipetting from a mixed net-sample in April 2003, washed
in sterile fine-filtered seawater and maintained in f/2 medium
(Guillard, 1975) in plastic Petri dishes. After culture establishment
tissue flasks were used. The original culture is available at the
German Centre of Marine Biodiversity Research, Wilhelmshaven,
from M. Hoppenrath. The species was identified under the light
microscope by its characteristic cell shape, size, and thecal
ornamentation (Fig. 1a—c). The species identification was verified
by scanning electron microscopy (Fig. 1d-j).

2.2. Media preparation, culture conditions and determination of the
cell growth

The P. reticulatum strain was maintained in borosilicate flasks in
500 ml f/2 medium without silicate (Guillard, 1975) at 70-
90 wmol s~' m~2, 14 °C and 12:12 h light/dark regime in natural
seawater with a salinity of 30.

Theinfluence of the salinity on the YTX production was estimated
at six salt concentrations. Therefore, the natural seawater of the
North Sea, which had the original salinity of 30, was diluted with
fresh water (drinking water) to the following concentrations: 5, 10,
15, 20 and 25. These five dilutions and the natural seawater were
prepared as f/2 media without silicate, described by Guillard (1975).
For nutrient limitation f/2 media were prepared containing three
compositions of nutrients. First nutrient sufficient f/2 medium
(referred as f/2) containing the original concentration of nutrients,
second f/2 medium with ten times less phosphorus (1/10 P) and
third f/2 medium with ten times less nitrogen (1/10 N) (Table 1). The
pH-value was adjusted to 7.6 + 0.02 using HCI and the media were
incubated in thermo stated rooms at 15 °C and 20 °C, respectively. The
light/dark regime and the light intensity were retained unchanged. The
strain was not pre-adapted to the changed conditions.

Three replicates of each were incubated in Erlenmeyer flasks
(11) which were inoculated with 1 ml of a late exponential stock

culture of P. reticulatum and contained 11 cells ml~'on day of
inoculation. In addition, we took 10 ml of the inoculum for toxin
determination (n=3). Therefore, the subsamples were filtered
through GF/C filters (Carl Roth GmbH & Co., Germany) under slight
vacuum pressure.

The growth curves were determined by measurement of the in
vivo fluorescence followed by successive cell counting of P.
reticulatum in 3-day intervals (n=3). 1 ml of the culture was
immediately measured by a fluorescence spectrophotometer (Cary
Eclipse, Varian Inc., USA) using an excitation wavelength of 485 nm
and an emission wavelength of 685 nm. In addition, cells were
counted using a Sedgewick-Rafter cell with a light microscope
(10x objective), a minimum of 400 cells were counted. Specific
growth rate (pum [day~']) was calculated using the equation by
Guillard (1973):

- lnN1 — ll‘lNo
T -t

N is cell density at a given time (t).
2.3. Sampling in the exponential and the stationary growth phase

For further analyses additional samples were taken in the
exponential and stationary growth phase. Chlorophyll a concen-
tration was determined using subsamples of 25 ml which were
analysed as triplicate in vivo by the multialgal fluorimeter (BBE
Moldaenke, Germany). This fluorometer allows determination of
different algae classes: green (chlorophyceae), blue-green (cya-
nophyceae), brown (diatoms and dinophyceae) and cryptophy-
ceae. The emission of the pigments after excitation at characteristic
wavelengths was measured. Thus, the chlorophyll a concentration
and other pigments (g 1=!) were determined for all living cells.

For determination of cell size and morphology, subsamples of
50 ml were analysed using the Flow CAM (Fluid Imaging
Technologies, USA, further details see Sieracki et al., 1998). For
most of the samples, depending on cell density, a minimum of
400 cells were measured. Particles from 5 to 100 wm were
measured using a 20x objective and a flow cell of 100 wm in
depth. Consequently, information about the cell diameter, volume,
length and width of each measured cell were obtained.

The YTX concentration was determined by LC-MS/MS (see
below).

2.4. Extraction of yessotoxins and measurement by LC-MS/MS

Cultures were filtered on GF/C filter (Whatman, GB) under
slight vacuum, 100 ml in the exponential growth phase and 300 ml
in the stationary phase, respectively. Filters were extracted with
methanol (MeOH) using an ultrasonic probe for 30 s and an ice-
cooled ultrasonic bath for 30 min, afterwards they were centri-
fuged at 14,000 x g for 10 min. The supernatant was stored and the
filters were extracted again with MeOH using the ultrasonic bath
(30 min), followed by centrifugation at 14,000 x g for 10 min.
Supernatants were combined evaporated to dryness using a
heating block (40 °C) under nitrogen stream. Dried samples were
dissolved in 1 ml MeOH, admitted to 2 ml single-use syringes and
filtered through 0.45 wm nylon filters (Carl Roth GmbH & Co.,
Germany).

100 ml of the culture filtrates were stored in 100 ml flasks
(Kautex, Germany) for measuring of released YTX in the culture
media. The flasks were stored at —20 °C until further purification.
Subsequently, the filtrates were loaded on prepared Chromabond
Cl18ec cartridges (Macherey-Nagel GmbH & Co. KG, Germany).
Those were equilibrated with 3 ml MeOH and 3 ml of deionised
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Fig. 1. Light (a-c) and scanning electron (d-j) micrographs of Protoceratium reticulatum from the used culture. (a) Left lateral view showing the thecal ornamentation. (b)
Ventral surface view showing the cingulum displacement. (c) Ventral view in deeper focus showing the general cell shape. (d) Right lateral to ventral view. (e) Left lateral to
ventral view, note the ventral pore (arrow). (f) Left lateral view. (g) Right lateral view. (h) Apical to dorsal view of the epitheca. (i) Antapical to ventral view of the hypotheca. (j)

Antapical to left lateral view of the hypotheca. Scale bars = 10 pm.

water (Synergy Water Purification System, Millipore). Afterwards
the culture filtrates (100 ml) were loaded on the cartridge, washed
with 3 ml of deionised water and then eluted with 3 ml MeOH. The
MeOH was evaporated to dryness under nitrogen stream and
samples were dissolved in 1 ml MeOH and filtered through
0.45 pm nylon filters. All samples were stored at —20 °C in brown
autosampler vials until measuring by LC-MS/MS.

Table 1
Molar concentration and proportion of macronutrients in the final media.

Component Molar concentration in final media

Control 1/10N 1/10 P
NOs;~ 8.82x107*M 0.882x107*M 8.82x107*M
PO4> 3.62x10°°M 3.62x10°°M 0.362x107°M
N/P 24.36 2.44 243.65

Certified YTX standard solution, dissolved in MeOH, was
obtained from the National Research Council (NRC) Canada
(Halifax, Canada). The LC-MS/MS measurements were carried
out as described earlier (Roder et al., 2011). Liquid chromatography
was performed using Hyperclone C8 Column (3 wm, 130 A,
50 x 2.0 mm) with security guard (Phenomenex, Germany) by
gradient elution at a flow of 0.3 ml min—'. Mobile phase consists of
eluent A: 5 mM ammonium formate in acetonitrile/water (10:90)
and of eluent B: 5 mM ammonium formate in acetronitrile/water
(90:10). The gradient elution was done with 100% A for 1.5 min,
followed by linear gradient to 40% A over 3.5 min, held over
5.0 min, and within 1.0 min to 100% B, held for 9.0 min and at least
within 1.0 min back to 100% A, held for 24 min.

MS/MS analyses were performed using a Triple Quadrupole API
365 LC-MS/MS (Applied Biosystems GmbH, Germany) with
electrospray ionization by ESI Turbo Ion spray Interface (SCIEX,
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Canada). Analyses were carried out in multi reaction monitoring
(MRM) mode with negative ionization; selected transitions
(IM=H]™ > [M-H-S03]: YTX m/z 1141.5 > 1061.5, homoYTX
m/z 1155.5 > 1075.5, 45-OH-YXT m/z 1157.5 > 1077.5, carbox-
yYTX m/z 1173.5 > 1093.5, the putative 45-OH-carboxyYTX m/z
1189.8 > 1109.5, m/z 1047.5 > 967.5 (probably ketoYTX) and m/z
1191.5 > 1111.5). YIX concentrations were determined by a three
point calibration curve using dilutions of a certified YTX standard
solution (NRC, Halifax, Canada). Concentrations of the YTX
analogues were expressed as YTX equivalents.

Statistical analyses were performed using GraphPad Prism
5.01 (GraphPad Software, Inc., San Diego, CA). 1-way ANOVA was
applied for analysis of variances of cell size, chlorophyll a
concentration, and YTX cell quota between media with a salinity
of 15,20, 25,and 30, as well as between f/2,1/10 N media,and 1/10
P media. 2-Way ANOVA was applied to compare variances of
chlorophyll a concentration and YTX cell quota at the different
salinities in the exponential versus stationary growth phase. Both,
1-way and 2-way ANOVA included Bonferroni’s multiple com-
parison test as post test. P values < 0.05 were considered as
significant.

3. Results
3.1. Identification of P. reticulatum

Chloroplasts color the cells golden-brown. The cingulum is
nearly median and descending about one cingular width without
overlap (Fig. 1b and c). Cells are slightly laterally compressed. P.
reticulatum is photosynthetic, has a strongly ornamented theca
(Fig. 1d-j) and this characteristic reticulation with one or two
pores inside each reticulation subunit can hide the sutures so
that it can be difficult to recognize the plate borders. The plate
pattern was discerned as Po 4 6” 6" 1p 17" as has been
described before (Fig. 1d-j; Woloszynska, 1928; Hansen et al.,
1997). Some cells had a different epithecal plate pattern with 3’
and 1a, this variability is also known from the literature (Von
Stosch, 1969; Hansen et al.,, 1997). The first apical plate has
a ventral pore at its right margin (Fig. 1e). The pore plate is
narrow and elongated (Fig. 1f-h). For further information see
Section 2.

3.2. Growth of P. reticulatum

P. reticulatum cells cultured at a salinity of 5 and 10 died in all
cases short time after inoculation. Highest cell concentration was
observed in the f/2 media at 15°C at salinities of 25 and 30
Culturing at a salinity of 20 or below decreased the growth strongly
(Fig. 2a). Furthermore, 1/10 N cells cultivated at 15 °C reached the
stationary phase faster than those cultured in f/2 media and the
absolute cell number was also lower. The influence of the salinity
on growth in 1/10 N media was not so high; cells cultured at
salinities of 20, 25 and 30 had almost the same maximum of cells
(Fig. 2c). P. reticulatum cultivated in 1/10 P media reached the
stationary phase faster than cells cultivated in the f/2 media and in
the 1/10 P media, with low growth at salinities of 20, 25 and 30 and
lowest growth at a salinity of 15 (Fig. 2e).

The same influence of the salinity on growth of P. reticulatum
was observed in f/2 media at both temperatures of 15 and 20 °C,
but the maximum cell counts were higher at 15 °C (Fig. 2a and b).
Higher temperature caused no differences in growth between 1/
10 N cultures at 15 and 20 °C, except for cells cultured at a
salinity of 15 showed a higher growth rate at 15 °C. Also the
growth of 1/10 P cultures was low at 15 and 20 °C (Fig. 2c and f).
Growth rates in the exponential growth phase ranged from 0.21
to 0.35 day .

3.3. Variation of cell size and morphology

The influence of nutrient limitation, salinity and temperature
on cell size and morphology was investigated; therefore char-
acteristics of P. reticulatum during exponential and stationary
phase were compared. No changes of cell size or morphology were
found in f/2 media at a salinity of 30. Thus, this culture acts as
reference to compare the influence of nutrient limitation and
salinity. The strongest changes of the cell size depending on
nutrient limitation and salinity were observed in the stationary
phase, but a trend was already visible in the exponential growth
phase (data not shown). In general an increase of cell size during
culturing was observed in the f/2 media at salinities of 15, 20, and
25 and in 1/10 P media (all salinities), whereas the cell size was
highest in low salinity cultures in the stationary phase; compared
to cells cultured in f/2 media at a salinity of 30 significant
differences were observed (P < 0.001). The influence of salinity on
the cell size was highest in the f/2 media. The lowest cell sizes were
observed in cultures with 1/10 N media, whereas the difference to
cells cultured in f/2 medium at a salinity of 30 was significant for 1/
10 N media at salinities of 20, 25, and 30 (P < 0.001) and not
significant at a salinity of 15 (P > 0.05). But comparing 1/10 N cells
of different salinities with each other no statistic significance was
observed for salinities of 20, 25, and 30 suggesting that the
influence of salinity is less important. Fig. 3 shows the volume (f1)
of P. reticulatum (15 °C) cultured at different salinities in the
stationary phase, P values in between the salinities were plotted.
Statistic differences to cells cultured in f/2 at a salinity of 30 were
only plotted for 1/10 N at a salinity of 15. A similar pattern was also
observed at 20 °C, even if the differences in between limitations or
within one limitation between the salinities were not that clear.
Statistic analyses of variances of cells cultured at 20 °C in the
stationary growth period revealed that there were significant
differences comparing cells cultured in f/2 media at a salinity of 30
salinity and almost all other samples (P < 0.001); only ells cultured
at a salinity of 25 were not statistically different. It was evident that
cells cultured at higher temperature showed strong changes of
morphology in the stationary phase. Those cells were deformed
and showed excrescences.

3.4. Chlorophyll a concentration

Differences of chlorophyll a cell quota were observed in P.
reticulatum. Influence of the salinity: Generally, the concentrations
of chlorophyll a cell ! increased with lower salinity in f/2 and 1/10
P cultures. This effect was strongest at 15 °C in the exponential
growth phase. Significant differences were observed comparing f/2
cells cultured at a salinity of 30 to 25 (P < 0.01), and to 15
(P < 0.001). No statistic differences were observed comparing f/2
cells at a certain salinity to the next higher salinity (e.g. salinity of
15 vs. salinity of 20). Furthermore, differences between f/2
cultured cells of the exponential to the stationary growth phase
were not statistically significant (Fig. 4a). The influence of the
salinity on the chlorophyll a concentration of 1/10 P cultured P.
reticulatum was less obvious. Significant differences only exist
between 1/10 P cells cultured at a salinity of 30 to 15. Comparing
cells of a certain salinity to the next higher salinity (salinity of 15
and 20) were statistically different (P < 0.001, Fig. 4c). In the
stationary phase differences exist between f/2 cells cultured at a
salinity of 15 to salinity of 20 and to salinity of 30 (P < 0.01, Fig. 4c),
respectively. No significant difference exists between 1/10 P
cultured P. reticulatum cells. No correlation between salinity and
chlorophyll a concentration was observed in 1/10 P cultured cells
(P> 0.05).

Influence of nutrients: No statistic significant difference exists
between P. reticulatum cells cultured at 15 °C in f/2 and 1/10 P



K. Rader et al. /Harmful Algae 15 (2012) 59-70 63

15°C
16000 +

14000 1 . 1/ sampling
12000 Sahmtsy of

100001, o
80001 = 15
60001 ° 20
4000 - 25

30
2000 |

Fo
HO——
o
ro-+e—
—e—i
Y

FoH KA

.

<«

-
H

A i exponential growth, /2

12

H—-—
et
11 FA
oHA

0 oo 0@ E
16000 1
14000 -
12000 H
10000 H

8000 -
6000 -
4000
2000 -
04 © © °. ¢ 8

concentration (cells/ml)

- ) &
B oo 0008
. ; .

c oo ¢ 8

coco o ¥

1600 +
1400 4
1200 4
1000 -
800 4
600 A
w0 ] % § § %
200 A o] §

o
0-098!!$aaa

%
|

V10P | F

0 10 20 30 40

500 10 20 30 40 50

time (day)

Fig. 2. Growth curves of P. reticulatum cultured at different salinities in f/2-media: (a) 15 °C, f/2 media, (b) 20 °C, f/2 media, (c) 15 °C, 1/10 N media, (d) 20 °C, 1/10 N media, (e)
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counting chamber.

media (P > 0.05). But the differences of f/2 and 1/10 P to 1/10 N
cultures were evident, especially in the stationary phase in which f/
2 and 1/10 P cultured cells differ from 1/10 N cultured cells at:
salinity of 15 (f/2: P < 0.001, 1/10 P: P < 0.001), salinity of 20 (f/2:
P < 0.05,1/10P: P < 0.001), and salinity of 25 (f/2: P < 0.001). Only
differences between 1/10 P and 1/10 N at a salinity of 25, and
between f/2 as well as 1/10 Pand 1/10 N at a salinity of 30 were not
significant (P > 0.05).

Influence of growth phase was most evident in 1/10 N limited
cultures at 15 °C (Fig. 4b). There were no significant differences
in the exponential growth phase at 20 °C, neither regarding the
different salinities nor nutrients. In the stationary phase P.
reticulatum cultured at a salinity of 20 contained significant more
chlorophyll a when cultured in f/2 medium than in 1/10 P
medium (P < 0.01). Furthermore cells cultured in 1/10 N
medium at a salinity of 15 contained significant more chloro-
phyll a in comparison to salinities of 20, 25, and 30 (P < 0.001,
respectively).

To exclude the potential influence of cell size on the
chlorophyll a concentration, the ratio of diameter to chlorophyll
a concentration was also calculated and the pattern did not
change.

3.5. YTX concentration in P. reticulatum cells

YTX was the main analogue with a relative amount of more than
94% of all YTXs and a total concentration of 7.22 +0.20 pg
YTX cell! in the late exponential stock culture of P. reticulatum. In
addition, low amounts of the putative carboxyYTX (0.22 + 0.05 pg
YTX eq.cell’!) and the putative ketoYTX (0.19 +0.05pg YTX
eq. cell™!') were detected in the inoculum.

The YTX cell quotas of P. reticulatum cultured at 15 °C (in f/2
media at different salinities) were not homogenous in the
exponential growth phase. The concentrations of YTX in cells
cultured in f/2 media at lower salinities increased slightly from
7.22 £+ 0.20 pg YTX cell! (inoculum) to 10.28 + 3.45 pg YTX cell™!
(salinity of 15) and to 8.41 + 2.09 pg YTX cell ! (salinity of 20). On the
other hand, the concentrations of YTX, cultured in the same medium
at higher salinities, decreased during the exponential growth phase
from 7.22+020pg YTXcell'! (inoculum) to 3.90+0.32pg
YTX cell~! (salinity of 25) and to 4.02 + 0.68 pg YTX cell! (salinity
of 30). Compared to the inoculum differences of the YTX cell quota
were not statistically significant (P > 0.05) (Fig. 5a).

A decrease of the YTX cell quota in the exponential growth
phase with increasing salinity was also observed in 1/10 N media.
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The concentrations of YTX in respective cells were generally lower
compared to the YTX concentration in cells of the late exponential
inoculum. Only cells cultured at a salinity of 15 contained a higher
YTX cell quota (13.51 + 2.01 pg YTX cell~'). With higher salinity the
YTX concentrations decreased subsequently to 6.98 + 0.94 pg
YTX cell™! (salinity of 20), 6.43 & 1.21 pg YTX cell™! (salinity of 25)
and 4.14 +1.28 pg YTX cell™! (salinity of 30). Compared to the
inoculum differences of the YTX cell quota were not statistically
significant (P > 0.05) (Fig. 5a).

However, the highest YTX concentrations cell™! in the
exponential growth phase were observed in cultures in 1/10 P
media. The YTX concentrations tended to decrease by higher
salinity also in those cultures. The YTX concentrations in the 1/10 P
cultivated cells were: 24.13 + 4.08 pg YTX cell! (salinity of 15),
25.29 + 6.63 pg YTX cell ! (salinity of 20), 19.38 + 3.15 pg YTX cell !
(salinity of 25) and 17.13 +1.28 pg YTXcell™' (salinity of 30).
Compared to the inoculum differences of YTX cell quota were
statistically significant for 1/10 P cultured P. reticulatum at a salinity of
15 (P > 0.01) and a salinity of 20 (P > 0.001). Differences between the
YTX cell quota of the inoculum to salinities of 25 and 30 were not
significant (P > 0.05) (Fig. 5a).

The influence of the salinity on the YTX cell quota which was
mentioned above was not significant in all media (P > 0.05).

50

In contrast to the YTX concentrations during the exponential
growth phase, a different pattern was observed during the
stationary phase. The YTX concentration in P. reticulatum cultured
in f/2 media in the stationary phase was higher than the YTX
concentration during the exponential growth phase, with signifi-
cant differences comparing salinities of 20 (P < 0.05), 25 (P < 0.01),
and 30 (P < 0.01). P. reticulatum cells cultured at salinities of 15 and
20 had almost the same YTX concentration 14.23 4+ 1.51 pg
YTX cell™! (salinity of 15), 15.39 +2.71 pg YTX cell™' (salinity of
20) and at salinities of 25 and 30 with YTX concentrations
11.28 £0.77 pg YTXcell™' (salinity of 25) and 11.53 +1.81 pg
YTX cell~! (salinity of 30). Cells cultured in 1/10 N media contained
less YTX cell™! compared to the inoculum of late exponential P.
reticulatum; 6.27 + 3.71 pg YTX cell ! (salinity of 15), 4.56 + 1.33 pg
YTX cell~! (salinity of 20), 5.89 + 0.42 pg YTX cell™! (salinity of 25),
and 5.12 + 1.15 pg YTX cell™! (salinity of 30). Differences between
the inoculum and f/2 and 1/10 N media were not significant (P > 0.05)
(Fig. 5b).

Otherwise, 1/10 P media cultures contained extremely high
YTX concentrations: 50.66 + 3.27 pg YTX cell™! (salinity of 15),
50.06 +19.49 pg YTXcell™' (salinity of 20), 56.53 + 19.40 pg
YTX cell~! (salinity of 25) and 46.42 + 3.97 pg YTX cell™! (salinity
of 30) (Fig. 5b). All of them were significant different compared to the
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YTX cell quota of the inoculum at salinities of 15 (P > 0.01), 20
(P>0.01), 25 (P> 0.001) and 30 (P > 0.01) (Fig. 5b).

Cultivation at higher temperature (20 °C) led to an increase of
YTX concentrations cell”! when grown at higher salinities.
However, the YTX concentrations were low when cultures were
grown at salinities of 15 and 20 at 20 °C. This was obvious for most
of the samples during the exponential and stationary phase (Fig. 6a
and b). Generally, 1/10 N cultures contained the lowest and 1/10 P
cultures the highest YTX concentration cell™!. Significant differ-
ences of YTX cell quota were observed in the stationary growth
phase comparing the inoculum and P. reticulatum cells cultured at a
salinity of 30 in f/2 medium (P < 0.05), as well as at salinities of 25
and 30 in 1/10 P medium (P < 0.001). Comparing exponential to
stationary growth phase significant differences were observed
between 1/10 N media at a salinity of 15 (P < 0.05), 1/10 P media at
salinities of 20 (P < 0.05), 25 (P < 0.001), and 30 (P < 0.05).

The concentrations of both YTX and the YTX analogues
(carboxyYTX and ketoYTX) were enhanced under P-limited
conditions. Compared to the inoculum the concentrations of the
YTX analogues decreased in the f/2 media, except that the
concentration of YTX analogues increased in f/2 medium at a
salinity of 15. Due to the lower concentration of YTXs and partly
lower amount of cells resulting in an YTX cell quota below LOQ, it
was not possible to interpret detected amount of YTXs in the cells
cultured at 20 °C. In addition, we detected differences in the
pattern of YTXs under different limitations independent of the
salinity (Fig. 7).
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Fig. 6. Concentration of YTX (m/z 1141.4 > 1061.5) in P. reticulatum (20 °C) in (a) the
exponential and (b) the stationary phase; the error bars represent standard error
(n=3). Significant results were labelled with asterisks: *P < 0.05, **P < 0.01,
***P < 0.001.

3.6. Extracellular YTX concentration

The YTX concentrations were calculated as YTX ml~'filtrate.
The results were normalized to the cell concentrations for
comparison of intracellular and extracellular quota of YTX, which
was found in the filtrate of all cultures. Generally, the concentra-
tion of YTX (normalized to the cell counts) in the filtrate was lower
with lower cell concentrations, especially during the exponential
growth phase. However, during the stationary phase the YTX
concentration cell™! in the filtrate increased in all samples. In
addition, a slight decrease of the YTX cell quota was observed with
increasing salinity. Higher temperature during cultivation resulted
also in a partly different excretion of YTX (Fig. 8 and Table 2).

4. Discussion

P. reticulatum is common in different geographical areas all over
the world and many reports exist about accumulation of YTX in
several molluscan shellfish species (e.g. Aasen et al., 2005;
Ciminiello et al., 1997, 2003; Finch et al., 2005; Krock et al.,
2006; MacKenzie et al., 1998; Paz et al., 2004, 2006, 2007, 2008;
Ramstad et al., 2001; Samdal et al., 2004; Satake et al., 1997, 1999,
2006; Suzuki et al., 2007; Yasumoto and Takizawa, 1997). The P.
reticulatum strain used in this study was isolated in the North Sea
and identified as YTX producer (Hoppenrath, 2004). Up to now no
serious accumulation of YTXs in shellfish species was reported in
the German Bight. However, the presence of P. reticulatum in the
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Table 2

Percentage of YTX (%) in cells of P. reticulatum and in the media filtrate in the exponential and the stationary phase.

Temperature (°C) Salinity Percentage (%) of YTX cell quota in the filtrate and YTX cell quota in cells of P. reticulatum
C 1/10 N 1/10 P
Filtrate Cells Filtrate Cells Filtrate Cells

15 Exponential phase

15 8 92

20 7 93

25 4 96

30 7 93 4 96 3 97

Stationary phase

15 25 75

20 24 76

25 19 81

30 13 87 43 57 4 96
20 Exponential phase

15 10 90

20 10 90

25 2 98

30 3 97 3 97 3 97

Stationary phase

15 24 76

20 33 67

25 20 80

30 7 93 12 88 16 84

North Sea plankton necessitates investigations with focus on the
potential risk of blooms of this dinoflagellate.

P. reticulatum, isolated from the North Sea displays a growth
optimum at 15 °C in f/2 medium (Fig. 2a). In contrast, at higher
temperature (in this case 20 °C) growth decreased considerably
(Fig. 2b). Hence, a P. reticulatum bloom with high cell densities is
more likely to occur during the spring or early summer months. Up
to now only low amounts of P. reticulatum were found in the
German bight.

Dinoflagellates are capable of storing N and P in intracellular
pools for use during times of deficiency (Cembella et al., 1984;
Dortch et al., 1984). The low chlorophyll a concentration (Fig. 4),
which was detectable in all N-deficient cultures, indicated that
those cells were indeed N deficient (Boyer et al., 1987). Beside
temperature and nutrient-availability salinity is a factor influ-
encing the growth of P. reticulatum, which is known to grow in a
wide range of salinities (Guerrini et al., 2007; Koike et al., 2006). In
our experiments the growth of P. reticulatum decreased with
lower salinity and is close to zero at salinities underneath a
salinity of 15.

Eutrophication adherent with alteration of the composition of
nutrients could enhance the chances for accelerated growth of
harmful algal bloom (HAB) species (Anderson et al., 2002). In this
context, rising anthropogenic effects together with simultaneous
climate change have been reported worldwide and also in the
North Sea (Edwards et al., 2006; Wiltshire et al., 2008). N and P are
important nutrients for the growth of microalgae, where upon
microalgae are known to require N in a higher quantity compared
to P. N is mostly limiting factor with regard to phytoplankton
growth in marine and estuary waters albeit P can also be the
limiting factor under large N input (Anderson et al., 2002).
Therefore, changes of nutrient composition or temperature of the
North Sea during the seasons lead to characteristic differences in
growth of the phytoplankton species within HABs. However,
increasing temperature of the water of the North Sea caused by
climate change would not lead to a higher risk for a bloom of P.
reticulatum. In the North Sea phosphorous (P) seems to be the first
limiting nutrient in spring and nitrogen (N) in summertime
(Peeters et al., 1991). A higher input of nutrients during the spring
caused by eutrophication could result in increased phytoplankton
growth and a possible P-limitation at the end of the bloom

stopping cell division can cause very high YTX concentrations
cell™ 1.

4.1. YTX concentration in P. reticulatum cells

From our experiments it is evident that for P. reticulatum a clear
correlation between the total concentration of YTXs and nutrient
limitation can be observed (Fig. 5). Whereas the cell quota of YTX
generally increased in the following order: 1/10 N < f/2 < 1/10 P
media. Unfavourable growth conditions can induce changes of cell
size, morphology and earlier entrance into the stationary growth
phase. This effect can correlate with the formation of temporary
resting stages (hypnocygotes) and such cells were found in the f/2
media (at lower salinities) and in 1/10 P media, whereby the
occurrence was partly correlated with an increased production of
YTXs. A deformation of cells was noticeable at higher tempera-
tures, especially in the f/2 media at higher salinities.

Recently, it was reported that the YTX concentration increased
with increasing salinity (Guerrini et al., 2007). After normalization
of the YTX cell quota to the cell size, this YTX profile was not
observed during the exponential growth phase but it was found
during the stationary phase (Fig. 9a and b). Generally, cell quotas of
YTXs cultured at 20 °C were lower compared to 15 °C. At 20 °C the
cell quotas of YTXs increased with increasing salinity during the
stationary phase, whereby the influence of limitations was not
obvious (Fig. 9c and d). Possibly higher temperatures inhibited the
toxin production which is not in agreement with observations by
Guerrini et al. (2007) and Paz et al. (2006). But the conditions of the
cultures were not optimal at 20 °C and therefore, we suppose that
YTX production is associated to a functioning metabolism.
Especially in 1/10 P medium cells at 15 °C a longer cultivation
time caused higher YTX cell quota, which was also observed when
the size was included. Because P-limitation is known to stop the
cell division in other dinoflagellates without die back of the cells,
an accumulation of YTX under ongoing metabolism is likely, since
it is established for other species that P-limitation can cause
accumulation of several fatty acids and those are known to have a
similar precursor as polyketides.

Specific environmental conditions as changes of the salinity or
nutrient limitation can lead to an altered toxin production or
altered toxin patterns in dinoflagellates (Anderson et al., 1990;
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Beani et al., 2000; Boyer et al., 1987; Grzebyk et al., 2003; Maier
Brown et al., 2006; Roeder et al., 2010). Hence, the formation of
Brevetoxins (PbTx) was investigated under various salinities and
the data revealed that the influence of such parameters is very
complex and it was evident that PbTx concentrations were always
higher in the stationary phase (Maier Brown et al., 2006). The
production of paralytic shellfish poisoning (PSP) toxins (e.g. by
Alexandrium spp.) is higher at low phosphorus concentrations
(Anderson et al., 1990; Beani et al., 2000; Boyer et al., 1987;
Grzebyk et al., 2003) and low salinity values (Hwang and Lu, 2000)
whereas N-limitation can cause a decrease of toxin concentration
(Boyer et al., 1987). The same effect on toxicity caused by lower
salinity was reported in a work about toxin production of the
raphidophycean flagellate Heterosigma akashiwo (Haque and
Onoue, 2002). Those examples are in large part consistent with
our experiment and illustrate the need for the elucidation of a
potential risk for toxic dinoflagellate events in the North Sea and
other marine environments.

It is still unknown why polyether toxins are produced by
several dinoflagellate species and the question remains why in
one strain nutrient limitation leads to an increased toxin quota
per cell but not in the other. Hence, other strains from different
locations should be studied concerning the influence of
nutrients on the toxin formation. In addition more investiga-
tions are needed to discover the dynamics and mechanisms
concerning toxin formation in marine dinoflagellates during
HABs.

4.2. Extracellular YTX concentration

In several studies it was found that YTX was released into the
medium and several reasons have been suggested (Mitrovic et al.,
2005; Paz et al., 2004, 2006, 2007). Data published by Paz et al.
(2004, 2006, 2007) showed that the total toxin amount of YTX in
some culture filtrates reaches a considerable amount up to 38% of
total YTX concentrations. During our experiments YTX was

detected in the filtrate in low concentrations during the
exponential growth period. It was evident, that the measured
YTX found in the culture media increased significantly during the
stationary phase. Obviously, the release of YTX in the media
depends on the salinity and on nutrient availability. Guerrini et al.
(2007) found that the release of YTX into the culture media seems
to be higher under N-limitation, which was observable in our 1/10
N cultures at 15 °C.

We suppose that the detected YTX in the filtrate is caused by
leakage from disintegrated cells. This hypothesis is supported by
increasing YTX concentrations in the stationary phase and by the
higher concentrations in cultures with unfavourable conditions.
The percentage of intracellular to extracellular YTX in 1/10 P
cultures did not change during culturing. Therefore, it is evident
that less YTX was released into the medium in 1/10 P cultures.
Furthermore, 1/10 P cells cultured at 15 °C contained a high cell
quota of YTX in the late stationary phase caused by the putative
entrance into a “temporary resting stage”. In addition the
assumption that lower YTX concentrations in the filtrates are
caused by less disintegrated cells, supports the theory that resting
stages were formed and high YTX cell quotas could be a product of
ongoing metabolism in those P-limited cells of P. reticulatum (see
Figs. 5 and 9 and Table 2).

5. Conclusion

The strain of P. reticulatum under investigation during this study
showed a good growth at salinities in the range of salinity of 20-30,
with strong influence of water temperature and of nutrient
limitation on the formation of YTXs. Generally, N-limited cultures
displayed the lowest and P-limited cultures the highest YTX cell
quota. Lower salinities caused a higher volume of the cell
accompanied by an increase of YTX concentration. Summarizing
it can be stated that the higher risk for toxic P. reticulatum blooms
in the North Sea exists during a bloom in spring with P-limitation
at the end of the bloom.
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