
Software for Ensemble-based Data Assimilation Systems

– Implementation Strategies and Scalability

Lars Nerger∗, Wolfgang Hiller

Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570

Bremerhaven, Germany

Abstract

Data assimilation algorithms combine a numerical model with observa-

tions in a quantitative way. For an optimal combination either variational

minimization algorithms or ensemble-based estimation methods are applied.

The computations of a data assimilation application are usually far more

costly than a pure model integration. To cope with the large computa-

tional costs, a good scalability of the assimilation program is required. The

ensemble-based methods have been shown to exhibit a particularly good scal-

ability due to the natural parallelism inherent in the integration of an ensem-

ble of model states. However, also the scalability of the estimation method

– commonly based on the Kalman filter – is important. This study discusses

implementation strategies for ensemble-based filter algorithms. Particularly

efficient is a strong coupling between the model and the assimilation algo-

rithm into a single executable program. The coupling can be performed with

minimal changes to the numerical model itself and leads to a model with

data assimilation extension. The scalability of the data assimilation system

∗Corresponding author.
Email address: lars.nerger@awi.de (Lars Nerger)

Manuscript accepted for publication in Computers & Geosciences March 30, 2012

is examined using the example of an implementation of an ocean circulation

model with the Parallel Data Assimilation Framework (PDAF) into which

synthetic sea surface height data are assimilated.

Keywords:

Data Assimilation, Kalman Filter, Parallelization

1. Introduction

Ensemble-based data assimilation algorithms are applied to combine nu-

merical models with observational data for various applications like in mete-

orology, oceanography, or in the problem of history matching in petroleum

research. The algorithms are typically variants of the Ensemble Kalman fil-

ter (EnKF, Evensen, 1994; Burgers et al., 1998). The computationally most

efficient methods are currently the so-called ensemble-square root Kalman

filters (EnSKF). Several of these methods have been developed and classified

over the recent years (Bishop et al., 2001; Anderson, 2001; Whitaker and

Hamill, 2002; Evensen, 2004; Tippett et al., 2003; Nerger et al., 2011). For

stongly nonlinear applications, particle filters are of growing interest (see van

Leeuwen, 2009).

All EnSKFs use an ensemble of model state realizations to estimate the

error of the model state. A prediction of the error at a future time is com-

puted by integrating each ensemble state independently by the model. The

integrations are typically performed until observations are available. At this

time, the information from the observations and the ensemble are combined

by performing an analysis step based on the Kalman Filter (Kalman, 1960).

The quantitative combination of both information sources is computed using

2

the estimated errors of the observations and the ensemble covariance matrix.

All ensemble members are updated in the analysis step resulting in an anal-

ysis ensemble that represents the new state estimate and the corresponding

errors.

Typical ensemble sizes in EnSKF applications are between the order of

10 and 100 states. Because each ensemble state is integrated by the model,

the application of an EnSKF is computationally extremely costly. To reduce

the execution time of a data assimilation program, the natural parallelism

in the ensemble integration can be utilized. As each ensemble state can be

integrated independently from the others, all states can be integrated at the

same time, if a sufficiently big computer is available. In the analysis step,

all ensemble members have to be combined to compute the ensemble error

covariance matrix. The analysis step can be parallelized to reduce its exe-

cution time. For the original EnKF, parallel implementations were reported

by Keppenne (2000); Keppenne and Rienecker (2002) and Houtekamer and

Mitchell (2001). The scalability of different ensemble-based Kalman filters

was discussed by Nerger et al. (2005b).

The filter algorithms only require a limited amount of information from

the model. In general, they can operate entirely on state vectors, rather

than individual fields. In the state vector, all relevant fields, or even param-

eters in the case of parameter-estimation applications, are stored. For the

implementation of observation operators, which compute the observed part

of a state vector, it is only required to know how a field is stored in the

state vector. These properties permit to implement the analysis step of the

filter algorithms in a generic way and to call the analysis routine through

3

a generic interface. A generic implementation should allow to use the same

filter implementation with different numerical models. Hence, model specific

re-coding can be avoided.

The implementation of the analysis step has to be coupled with the model

code. Many assimilation systems use today an offline coupling of the model

integrations and the analysis step. That is, two separate programs are used

to compute the ensemble forecast and the analysis step. While this scheme is

flexible, it has a limited efficiency, because the information transfer between

the numerical model and the assimilation program computing the analysis

is performed using files. In addition, there are start-up costs for each new

model integration. An alternative is a direct coupling of the model and the

assimilation routines into a single program. Here, one either has the choice to

structure the assimilation system such that the time stepping part of a model

is implemented as a subroutine or that the assimilation routines are called in

the model code without the requirement that the model itself is a subroutine.

In this work, the latter implementation strategy is discussed as implemented

in the Parallel Data Assimilation Framework (PDAF, Nerger et al., 2005b,

available online at http://pdaf.awi.de). This implementation strategy allows

to implement a single-program assimilation system with minimal changes to

an existing model code. In addition, efficient implementation and paralleliza-

tion strategies for the assimilation routines performing the analysis step are

discussed. PDAF has been used for data assimilation in different applications

(e.g., Nerger and Gregg, 2007; Skachko et al., 2008; Rollenhagen et al., 2009;

Janjić et al., 2011b).

The paper is structured as follows. In section 2, EnSKF algorithms are re-

4

viewed based on the example of the Singular Evolutive Interpolated Kalman

filter (SEIK, Pham et al., 1998b; Pham, 2001). The parallelization strategies

for the filter algorithm are then discussed in section 3. Section 4 discusses the

strategies for coupling the numerical model and the filter algorithm. Finally,

the parallel performance is examined using the example of data assimilation

into an ocean model in section 5 and conclusions are drawn in section 6.

2. Ensemble Square-root Kalman Filters

EnSKFs estimate the state of the modeled system at some time tk by

the state vector xk of size n. The filters assume that the errors in the state

are Gaussian distributed. Accordingly, they describe the error of the state

by an error covariance matrix Pk. In ensemble-based filters, xk and Pk are

represented by an ensemble of N vectors x(α) (α = 1, . . . , N) of model state

realizations. The state estimate is then given by the ensemble mean

xk :=
1

N

N
∑

i=1

x
(i)
k . (1)

The ensemble covariance matrix

Pk :=
1

N − 1

(

Xk −Xk

) (

Xk − Xk

)T
(2)

is computed from the ensemble matrix

Xk :=
[

x
(1)
k , . . . ,x

(N)
k

]

(3)

and the matrix of ensemble means Xk = [xk, . . . ,xk].

A forecast is computed by integrating the state ensemble with the nu-

merical model until observations become available.

5

The observations are stored in form of the vector yk of size m. The model

state is related to the observations by

yk = Hk(x
f
k) + ǫk (4)

where Hk is termed the “observation operator”. The vector of observation

errors, ǫk, is assumed to be a white Gaussian distributed random process

with covariance matrix Rk.

The observations are used in the analysis step to compute a corrected

(“analyzed”) ensemble, which represents the analysis state estimate xa
k and

covariance matrix Pa
k. The analysis equations are based on the Kalman filter

and minimize the error variance for Gaussian error distributions of the state

and observations.

2.1. The SEIK Filter

While the ensemble integration is identical for all EnSKFs, the formula-

tions of their analysis step vary. Here, the analysis is exemplified using the

SEIK filter (Pham et al., 1998a; Pham, 2001). Comparisons with other filter

methods showed that the SEIK filter is computationally very efficient (see

Nerger et al., 2005a, 2006). The SEIK filter is very similar to the Ensemble

Transform Kalman Filter (ETKF, Bishop et al., 2001) and the results of the

numerical experiments would be very similar with the ETKF. We follow the

formulation of the SEIK filter used by Nerger et al. (2011), who classified the

SEIK filter as an EnSKF. As all operations are performed at the same time

tk, the time index k is omitted.

The analysis step corrects the state estimate and implicitly updates the

state covariance matrix from the forecast to the analysis matrix. Subse-

6

quently, the forecast ensemble is transformed such that it represents the

analysis state estimate and covariance matrix. The analysis covariance ma-

trix be can written as a transformation of the forecast ensemble as

Pa = LALT . (5)

Here, L is an n × (N − 1) matrix defined by

L := Xf T (6)

where T is a matrix of size N × (N − 1) with all entries being equal to

−N−1 except for those in the diagonal, which are equal to 1 − N−1. The

multiplication with T results in a subtraction of the ensemble mean from Xf

and the removal of the last column. The matrix A has size (N −1)× (N −1)

and is defined by

A−1 := ρ(N − 1)TTT + (HL)TR−1HL. (7)

The factor ρ with 0 < ρ ≤ 1 is denoted forgetting factor. It leads to an

inflation of the estimated forecast state covariance matrix and can stabilize

the filter algorithm. The forecast error covariance matrix Pf can be written

in terms of L and T as

Pf = (N − 1)−1L
(

TTT
)

−1
LT . (8)

The analysis update of the state estimate is given as a combination of the

columns of the matrix L by

xa = xf + Lw (9)

7

where the vector w of size N − 1 is given by

w := A (HL)T
R−1

(

y − Hxf
)

. (10)

After updating the state estimate according to Eq. (9), the forecast en-

semble Xf is transformed such that it represents xa and Pa. The transfor-

mation is performed according to

Xa = X
a
+
√

N − 1LCΩT . (11)

Here, C is a square root of A. It can be computed as the symmetric square

root Csym := US−1/2UT obtained from the singular value decomposition

USV = A−1. Ω is a matrix of size N × (N − 1) whose columns are or-

thonormal and orthogonal to the vector (1, . . . , 1)T . Ω can be a random

or deterministic matrix with these properties and can be generated using

Householder matrices (Pham, 2001; Hoteit et al., 2002).

2.2. Localization of the Analysis

Large-scale applications of EnSKFs commonly employ a localization of

the analysis step (see, e.g., Janjić et al., 2011a, for a discussion of different

localization methods). For the SEIK filter, typically a combination of domain

localization (DL) and observation localization (OL) is used. The DL of the

SEIK filter has been discussed by Nerger et al. (2006).

With DL, the analysis step is performed in disjoint analysis domains of

the model grid. For example, in a 3-dimensional ocean model an analysis

domain can be a single vertical column of grid points. The localization

is then performed by taking into account only observations that lie within

a pre-defined distance (the influence radius) from the analysis domain. To

8

apply DL, the operations of the analysis and the ensemble transformation are

organized in a loop over the disjoint local analysis domains. If all available

observations are assimilated for each local analysis domain, the reordered

operations result still in the same analysis ensemble as the global analysis

discussed in section 2.1.

To formulate the localized analysis equations, let the subscript σ denote

a local analysis domain. The domain of the corresponding observations is

denoted by the subscript δ. Now, the local SEIK analysis and ensemble

transformation can be written analogous to the global analysis (Eqns. 7 –

11) as

xa
σ = xf

σ + Lσwδ, (12)

wδ := Aδ (HδL)T
R−1

δ

(

yδ − Hδx
f
)

, (13)

A−1
δ := ρδ(N − 1)TTT + (HδL)TR−1

δ HδL , (14)

Xa
σ = Xa

σ +
√

N − 1LσCδΩ
T (15)

where C−1
δ (C−1

δ)T = A−1
δ . Hδ is the observation operator that projects a

global state vector onto the local observation domain. Thus, it combines

the operation of a global observation operator with the restriction of the

observation vector to the local observation domain. Rδ is the observation

error covariance matrix on the local observation domain. ρδ denotes the

local forgetting factor, which can vary for different local analysis domains.

The same matrix Ω has to be used for each local analysis domain to ensure

consistent transformations throughout all local domains.

OL is a common addition to DL. With OL, weight factors are introduced

in each local observation error covariance matrix R−1
δ such that the influence

9

of observations is reduced with increasing distance from the corresponding

local analysis domain (Hunt et al., 2007; Nerger and Gregg, 2007). OL is

performed by an element-wise (i.e. Schur or Hadamard) product of R−1
δ with

a localization matrix D. Hence, equations (13) and (14) are rewritten as

wδ = Aδ (HδL)T (

Dδ ◦ R−1
δ

) (

yδ − Hδx
f
)

, (16)

A−1
δ = ρδ(N − 1)TTT + (HδL)T

(

Dδ ◦ R−1
δ

)

HδL . (17)

Here ◦ denotes the Schur product. Dδ is usually constructed using corre-

lation functions of compact support. Possible choices are, for example, an

exponential decrease or a 5th-order polynomial that mimics a Gaussian func-

tion, but has compact support (Gaspari and Cohn, 1999). If Rδ is diagonal,

Dδ can be a diagonal matrix with elements varying according to the distance

of an observation from the local analysis domain.

2.3. Numerical Implementation of the Local SEIK Filter

The analysis algorithm of the local SEIK filter is usually implemented in

the following steps.

1. Non-local preparations: The innovation vector y − Hxf and the

observed ensemble HL are computed on the full model grid. The oper-

ations involve the reading of observation data from files. The innova-

tion vector and the observed ensemble have to be computed before the

loop of local analysis updates is performed, because their values would

change inconsistently if they are reinitialized during the sequence of

local updates.

2. Sequence of local analysis updates: For each local analysis domain,

the following computations are performed.

10

• The local forecast state xf
σ and local matrix Lσ are initialized.

• A search through all observations is performed to find those that

lie within the observation influence radius. The available local

observations define the localization in the observation operator

Hδ. In addition, the local observation vector yδ is initialized.

• The local state update is computed according to Eq. (12). During

these computations, the OL is applied according to the distance

of each observation from the local analysis domain.

• The forecast ensemble is transformed according to Eq. (15) to

obtain the local analysis ensemble.

• The local analysis state xa
σ and ensemble Xa

σ are used to initialize

the corresponding entries in the global state vector and ensemble

array.

In the state update and the ensemble transformation several linear algebra

operations, like matrix-matrix or matrix-vector products, as well as singular

value decompositions are performed. For optimal performance, the functions

for matrix-matrix and matrix-vector products provided by the BLAS library

and the LAPACK library functions for singular value decompositions can be

used. Optimized variants of these libraries are available on most computers.

3. Parallelization Strategies for the Filter Algorithm

As discussed in the introduction, the analysis step of the filter algorithm

itself should be parallelized for optimal performance of the full assimilation

system of ensemble forecasts and analysis steps. For the parallelization, a

11

distributed memory paradigm is assumed as is utilized with the Message

Passing Interface (MPI, Gropp et al., 1994) standard. MPI is commonly

used in large-scale numerical models. With distributed memory, only data

belonging to a process itself is directly accessible. For data belonging to other

processes, an explicit communication of data between the processes has to

be performed.

Two parallelization strategies for the filter are possible (see Nerger et al.,

2005b). First, mode decomposition can be performed where sub-sets of the

ensemble of full states are distributed over all available processes of a paral-

lel program1. The alternative is domain decomposition. Here, full ensembles

of sub-states representing a physical sub-domain of the model grid are dis-

tributed over all processes. Mode decomposition appears to be optimal for

the ensemble forecast, as each ensemble member can be integrated indepen-

dently from the others. However, mode decomposition will lead to a larger

amount of data that needs to be exchanged between different processes in

the analysis step of the filter algorithm (see, Nerger et al., 2005b). With

domain decomposition, each process performs the sequence of local analy-

sis updates only for those local analysis domains that belong to the pro-

cess. Thus, the sequence of local analysis steps is distributed into shorter

sequences that are concurrently computed. In addition, domain decompo-

sition is a standard parallelization strategy in current large-scale numerical

models. Accordingly, if the model uses domain decomposition, one can use

the same distribution of the model domain in the filter analysis. For this

1A process is considered to be a single processing unit of the computer. It can be

related to a single processor core for multi-core processors

12

reason, only the domain-decomposition strategy for the local SEIK filter is

discussed here. Nonetheless, the mode decomposition strategy can be addi-

tionally applied in the ensemble forecast. The mode decomposition allows to

perform the integration of each ensemble state at the same time, while each

model instance can use domain decomposition.

With parallelization, the following modifications are performed to the

steps in the local SEIK filter:

1. Non-local preparations: The observations can be initialized in a

distributed way, if each process reads a file that holds only observations

that belong to the sub-domain of the process. In the sequence of local

analysis updates observations from other processes will be required.

This is due to the fact that the extent of local observation domains will

reach into sub-domains of other processes. Thus, one has to assemble an

observation vector that reaches beyond the sub-domain of the process.

A simple way might be to let each process read the global observation

vector. However, at least in the application of the observation operator

in Hxf and HL an information exchange between different processes

is required.

2. Sequence of local analysis updates: For each local analysis do-

main, a local analysis is performed according to in section 2.3. If the

observation preparation has been performed as described above, all re-

quired data is available in the memory of the process. Thus, the local

analysis can be performed without any communication of data. This

also implies that no changes in the implementation are required when

switching from a serial to a domain-decomposed filter implementation.

13

The sequence of local analysis updates could be further parallelized using

shared-memory parallelization with OpenMP. In this case, the sequence of

each MPI process would be split into several short sequences that can be

executed concurrently.

4. Coupling Model and Filter Algorithm

In ensemble data assimilation, the numerical model is used to compute

the ensemble forecast. The model grid defines at which locations the model

fields are available. This information is required to implement the observa-

tion operator H in Eq. (4). In addition, the state vector used in the filter

algorithm needs to be initialized from model fields and vice versa. These

operations require an information transfer between the model and the filter

analysis step. The aim for coupling the model with the filter algorithm into

an assimilation system should be to obtain a generic data assimilation en-

vironment that can be used with different models. This strategy will allow

to optimize the assimilation environment and filter algorithms once and to

reuse them for different data assimilation applications.

There are two common approaches to connect the implementation of the

analysis step to the model:

• Offline: Separate programs are used for the model and the analysis

step. Files are used to transfer the information on the ensemble states

between the model and the analysis step.

• Online: The routines for the analysis step and those for the numerical

model are compiled into a single program. The information about the

14

ensemble states is transferred between the model and the analysis step

by explicit subroutine calls.

Apart from these possibilities, one might also couple the model and the

analysis step by message passing (MPI) communication (see Nerger, 2003,

section 8.4) or even by sockets or named pipes.

The offline implementation strategy has the obvious advantage that no

changes to the model source code are required to perform the ensemble fore-

casts. For the integration of each ensemble member, the model program is

started with a unique initial state. The program holding the analysis step is

executed when the ensemble integration is completed. A clear computational

disadvantage of this implementation is that all information transfer between

the model and the analysis programs is conducted through files. In addition,

for each ensemble member the model is fully restarted. Thus, the model

initialization phase is executed for each ensemble state. The required time

for the information transfer through files and the repeated model start up

can be significant, in particular for large-scale applications that are executed

using a large number of processes.

The online implementation is computationally more efficient. Because

both the numerical model and the analysis step are compiled into a single

program and connected through subroutine calls, the transfer of the ensemble

information using files can be avoided. In addition, the repeated model start-

up can be avoided, by executing the start-up phase only once and keeping

the model field arrays allocated in memory during the analysis step. For an

ensemble forecast, it is then sufficient to only re-initialize the model fields

and directly start the integration. While the online implementation is more

15

efficient, it involves the explicit combination of the model and the analysis

step in the source code. A possible strategy is to implement an assimilation

environment that calls the model as a subroutine. This strategy, however,

requires to prepare the model code such that it can be called as a subroutine

with an interface that is compatible with the assimilation environment. If the

model is not yet implemented using a subroutine, e.g. for the time stepping

part, it can be complicated to modify the model source code accordingly.

An alternative online implementation strategy is to implement the data

assimilation system without requiring that the model is available as a sub-

routine. Instead, the model code is extended by subroutine calls to the data

assimilation framework. This strategy leads to a numerical model with ex-

tension for ensemble data assimilation. This implies that the assimilation

system can also be executed like the numerical model without extension, but

with additional parameter definitions for the assimilation system. An initial

form of this implementation strategy was discussed by Nerger et al. (2005b),

but it was further refined with the development of the PDAF system.

To exemplify the implementation strategy, a typical structure of a nu-

merical model is assumed as is shown on the left of Figure 1. In the typical

structure, the model grid and initial fields are prepared in the initializa-

tion phase of the model. Subsequently, the integration is computed in the

time stepping phase. After the integration, some post-processing might be

performed before the program stops. In case of a parallel model, the paral-

lelization is initialized directly after the start of the program and finalized

directly before the program terminates. The different parts of the model

might be implemented in the form of subroutines, but this is not required

16

here. The data assimilation program obtained by extending the model code

by calls to routines of the data assimilation framework is shown on the right

of Fig. 1. The assimilation program with support for ensemble integrations

and analysis step can be obtained by inserting four calls to subroutines (indi-

cated in the figure by the prefix “DA ”). In addition, a loop can be inserted

around the time stepping part of the model. This “ensemble loop” increases

the flexibility when the execution of the assimilation system is configured

with parallelization. In general, there can be one or several “model tasks”,

each of which is computing forecasts of ensemble states. If there is only a

single model task, it has to compute the forecast of all states in the ensemble.

Thus, when the forecast is computed from time ta to tb, the model task has to

jump back to time ta for each new ensemble member that it has to integrate.

The implementation has to ensure that the integrations are independent and

consistent. For example, if the model uses forcing data, like surface wind

stress in an ocean model, it has to be correctly re-initialized. If the pro-

gram utilizes the parallelism of the ensemble integration, one can configure

the execution of the program such that the ensemble size equals the number

of model tasks. In this case, all model tasks will only compute forward in

time. The consistency of the integration might be easier to achieve with this

configuration as, e.g., the forcing never needs to be restored to an earlier

time. If the number of model tasks is always equal to the ensemble size, one

could also structure the additional subroutine calls in a way that avoids the

ensemble loop. The possibilities, however, will depend on the number of pro-

cesses that are available for the execution of the program. For efficiency, it is

important to ensure that all ensemble members can be uniformly distributed

17

over the model tasks.

The inserted subroutine calls initialize the assimilation application, con-

trol the ensemble forecasts, and perform the filter analysis step. They can

be implemented with the following functionality:

• DA init parallel: This routine redefines the parallelization of the pro-

gram, namely the communicators in case of MPI-parallelization. While

for the original (forward) model all processes participate in the inte-

gration of a single model state, the assimilation system might compute

several integrations at the same time. These are performed by the

“model tasks”, each with a separate set of processes. Next to these

process sets, a set of processes that compute the analysis step has to

be defined.

• DA init: Following the initialization phase of the model, this routine

initializes the assimilation system. Necessary parameters for the as-

similation system are defined, like the size of the state vector or the

number of ensemble members. In addition, the initial ensemble is read

from files. The ensemble is stored in an array that might be distributed

over several processes.

• DA get state: Preceding the integration phase of the model, this rou-

tine initializes model fields from a state vector. In addition, it defines

the number of time steps (“nsteps” in Fig. 1) over which the forecast

is computed. During the forecast phase, it will also define if more en-

semble forecasts should be computed, or if the assimilation sequence is

completed.

18

• DA put state: This routine is called after the integration phase of

the model. First, the routine writes the model fields back into the

array holding the ensemble of model states. Subsequently, it checks

whether the ensemble forecast is completed for the model task to which

the calling process belongs. If there are further ensemble states to be

integrated by the model task, the routine is exited and the program

will jump back to the beginning of the ensemble loop. If the ensemble

forecast is completed, the routine for the filter analysis step will be

executed. After the analysis step, the program will jump back to the

beginning of the ensemble loop.

The routines DA get state as well as DA put state require the informa-

tion how the state vectors are related to actual model fields. These routines

also utilize information about the available observations. In particular, the

temporal availability of observations will define the length of the forecast

phase. In addition, the analysis step requires an implementation of the ob-

servation operator Hk as well as the initialization of the vector of observations

yk. The implementation of these functionalities should follow two criteria:

First, the assimilation routines listed above should be independent of the

definition of the state vector and of the observations. Second, to minimize

the changes to the model code, one should avoid to perform the operations

directly in the model code. An efficient implementation strategy that fulfills

these criteria is the use of call-back routines. These are routines that are

called by the assimilation routines in order to perform a specified operation,

like the initialization of the observation vector. It is useful to implement the

call-back routines in the context of the model. For example, if a model uses

19

Fortran modules, these modules can be utilized in the call-back routines if

they provide, e.g. information about the coordinates of grid points.

To facilitate the implementation of call-back routines for PDAF, they are

designed to include only very elementary operations. One example is the

initialization of the observation vector. An array in which the observations

are stored is allocated within PDAF. Then a call-back routine is called to fill

the observation array with the values of the observations. A similar strategy

is followed for the observation operator. In this case, a call-back routine is

called with a state vector x and and array for the observed state vector Hx in

its arguments. The task of the call-back routine is then to compute Hx from

X. Finally, also the product (HδL)TR−1
δ , which is required in Eqns. (13)

and (14), is computed in a call-back routine. This routine is provided with

(HδL)T and has to perform the multiplication by R−1
δ . This implementation

strategy allows that both the observation operator and the multiplication

by R−1
δ can be implemented in their most efficient way. For example, if R

is diagonal, one can easily use this fact to simplify the multiplication with

(HδL)T . If R is not diagonal, one can implement the product for example

by solving of the equation R−1
δ E = (HδL)T for E, which can be performed

by calling a suitable function of the LAPACK library.

Another call-back routine is provided with the full ensemble array. This

routine is a pre/poststep routine that is executed directly before and after

the analysis step. It allows to analyze the ensemble, e.g. by computing the

ensemble-estimated variances. Another possibility is to check if the ensemble

members are physically realistic after the analysis step and to apply neces-

sary corrections if this is not the case. As the data assimilation changes

20

the state based in statistics, one might need to adjust the states to ensure

that a stable model integration can be performed. An example is the as-

similation of chlorophyll concentrations into a biogeochemical model. As the

concentrations are required to be positive, one might need to correct nega-

tive concentrations that might result from the analysis step (see, e.g. Ciavatta

et al., 2011).

5. Parallel Performance of the Assimilation System

In this section, an oceanographic application is used to examine the par-

allel performance of an assimilation system that is implemented with the

strategy discussed above. The assimilation system is built by combining

the Finite Element Ocean Model (FEOM, Danilov et al., 2004; Wang et al.,

2008) with the PDAF assimilation framework. The model is configured for

the North Atlantic, with a varying resolution of about 20km in the Gulf

Stream region and 100km elsewhere, similarly to that used by Danilov and

Schröter (2010). Synthetic observations of the sea level elevation are as-

similated, which are available at each grid point of the ocean surface. The

observation error are assumed to be uncorrelated with a standard deviation

of 5cm. The optimal observation influence depends on the ensemble size as

well as the model configuration. Typically, it is determined by experimen-

tation with varying radii. As the focus of the experiments is on the parallel

performance of the assimilation application, the radius is set to 500km, which

should be not too far from the optimal value (see, e.g., Nerger et al., 2006).

A particular property of FEOM is its use of unstructured triangular

meshes. Due to this, there are no direct grid point neighbors in longitu-

21

dinal or meridional directions like in a rectangular grid. In addition, the do-

main decomposition of the unstructured mesh is obtained by a partitioning

software (METIS, Karypis and Kumar, 1999). This partitioning computes

sub-domains of approximately equal size and minimum interfaces to neigh-

boring sub-domains. However, the procedure will result in sub-domains of

irregular shape. These properties of the model have a direct influence on

the implementation of the observation operator. In particular, the distance

between two grid points is not directly related to the grid point indices, but

one has to use the indices of the grid points to look up their coordinates

in coordinate arrays and to compute the distance from these coordinates.

Accordingly, one has to search through all observations, when a local ob-

servation domain is defined in the LSEIK filter as explained in section 2.3.

This search would be easier in a model with a regular grid, as the grid point

indices would indicate the distance between the grid points.

The parallel performance will be studied using the quantity denoted

“speedup”. It is defined by

Sap :=
Ta

Tap
(18)

where Ta and Tap are the execution time using a processes and ap processes,

respectively. An ideal speedup is the factor by which the number of processes

is increased. In addition, the discussion will refer to the “parallel efficiency“

defined by

Eap :=
Sap

p
. (19)

A program with ideal speedup will show a parallel efficiency of 1.

22

5.1. Assimilation with Time-dominant Ensemble Integrations

A typical situation in ensemble data assimilation is that the forecast phase

requires most of the computing time. The parallel performance in this situa-

tion is assessed here for the case of forecast phases of 10 days length. In this

situation, the computing time for the ensemble forecasts is about 94 – 99%

of the overall computing time of an assimilation experiment. The program is

configured such that the number of model tasks is identical to the ensemble

size. Because the ensemble integrations are intrinsically parallel, the time

overhead to integrate the ensemble instead of a single state should be negli-

gible. In this experiment, the analysis step is computed by the processes of a

single model task. In the analysis step, the same domain decomposition as in

the model forecasts is used. Using only a subset of processes for the analysis

requires to collect the forecast states from all model tasks on the processes

of the single model task used for the analysis. After the analysis step, the

states are redistributed to the model tasks. Using the same domain decom-

position for the forecasts and the analysis is motivated by the complexity of

the communications with an unstructured grid model. If different decompo-

sitions were used, it would require a multiple application of the partitioning

algorithm. In addition, the complexity of the communication pattern would

significantly increase. However, the experiment shows that the additional

time required to collect the ensemble states on the processes a single task is

very small.

The left panel of Fig. 2 shows the speedup in the case of the assimilation

with FEOM. Two cases are shown in which the ensembles consisted of 8 and

64 state vectors. The number of processes per model task was varied between

23

8 and 64. Thus, the experiments utilized between 64 and 4096 processes2.

For both ensemble sizes the speedup is almost identical. As expected, the

speedup is nearly identical to that of a single integration using the model

without data assimilation extension (not shown). The achieved speedup of

the assimilation system is about 5.5 for the case of N = 64 and 5.9 for N = 8.

This corresponds to parallel efficiencies between 68% and 74%.

Next to the speedup of the data assimilation system for fixed ensemble

sizes, the dependence of the computing time on the ensemble size is impor-

tant. If the number of processes per model task is kept fixed, the speedup

properties of the model will not influence the result. Instead, the parallel

properties of the full assimilation system including the communication of

model fields between all model tasks and the single task that computes the

filter analysis determine the performance. The execution time for different

ensemble sizes but fixed number of processes per model task is shown in the

right panel of Fig. 2. The time is normalized by the time required to com-

pute the assimilation experiment for an ensemble of 8 states. If 8 processes

are used per model task, the total computing time increases by only about

5% if the ensemble size is increased from 8 to 64. For the larger case using

64 processes per model task, the computing time increases on average by

2The choice of the minimum number of processes is motivated by the computers used

for the experiments. The experiments have been performed on the computers of the North-

German Supercomputing Alliance (HLRN). Each compute node contains two 4-core Intel

Xeon Gainestown (Nehalem EP) processors. The nodes are connected by an Infiniband

network. Only entire compute nodes have be used, because the processor frequency might

be reduced if nodes are incompletely used, which would lead to inconsistent timings.

24

about 12%. However, due to the large number of processes, the computa-

tion times in this larger case varied significantly if the same experiment was

repeated. The resulting uncertainty is shown in the right panel of Fig. 2 as

error bars. Within one standard deviation, the time increase for N = 64 can

vary between about 6% and 16%. The fluctuations in the computing time

result mainly from the time required to read input data from files and the

time spend for parallel communication. Overall, the experiments show that

the computing time increases only by a small amount even in the case of

an increase from 512 to 4096 processor cores (each executing one process of

the parallel program). The increase in computing time is mainly due to the

increased amount of data that is transferred between the single model task

that computes the analysis step and all other model tasks, but also the read-

ing of input files will influence the computation time. This computing time

increase is, of course, specific to the computer that is used to conduct the

experiments. In particular, the performances of its network and disk storage

system will influence the execution times.

While the experiments used an assimilation system with online-coupling,

a similar speedup can also be expected offline coupling. However, if the

experiments of this section would be performed with a data assimilation

system using offline coupling of model and analysis step, a moderate time

overhead can be expected. Based on the model start-up time and the time to

read and write ensemble states, a minimal time overhead of about 1.5% can

be estimated for the smallest ensemble of 8 members and using 8 processes

per model task. The maximal time overhead is reached for the large ensemble

of 64 members and 64 processes per model task. It can be estimated to reach

25

about 15%. In both cases, the additional required time is dominated by the

start-up time of the model.

5.2. Speedup of the Analysis Step

While the computing time for the ensemble forecasts will dominate for

many applications, there can be cases where the analysis step requires a sig-

nificant amount of time. For example, this situation can occur if observations

are very frequently assimilated. To examine the parallel performance of the

analysis step, data assimilation experiments are conducted where the analysis

step is performed after each time step. A single model task is used to inte-

grate all ensemble members. The analysis step requires now up to 50% of the

overall computing time. Using an offline-coupled assimilation system for this

configuration would result strongly increased time requirements. The time

overhead caused by multiple model restarts as well as writing and reading

files holding ensemble states, would amount to about 60% for the smallest

case of 8 processes. For the largest case using 320 processes, the required

time can be estimated to be about 14 times larger than for the online-coupled

assimilation system.

The left panel of Fig. 3 shows the speedup of the forecast phase and the

analysis step between 8 and 320 processes. The speedup of the ensemble

forecasts is again governed by the speedup of the model itself. For 320

processes the speedup reaches about the half of the ideal speedup, namely

a parallel efficiency of 48%, but the efficiency is higher for smaller numbers

of processors as was mentioned before. The speedup for the filter analysis is

closer to the ideal speedup reaching a value of about 32 for the 40-fold increase

from 8 to 320 processes. Overall, the parallel efficiency of the analysis step is

26

close to 90% for up to 224 processes. For 320 processes a parallel efficiency

of 80% is obtained. The efficiency is irregularly low for 256 processes. This

effect will be explained below.

To assess the reasons for the somewhat irregular speedup behavior of

the analysis step, the speedup of different parts of the analysis algorithm

has to be examined. The speedup of the parts of the analysis step that

were discussed in section 2.3 is shown in the right panel of Fig. 3. An ideal

speedup is visible for most parts of the filter algorithm. These parts are the

search for the observations that define a local observation domain, the local

analysis update of the state estimate, and the local ensemble transformation.

Also the initialization of the local state and ensemble and the reinitialization

of the global quantities exhibit an ideal speedup. They are omitted from

the figure for compactness as they require negligible time. In contrast, the

non-local preparations of the analysis step do not exhibit any speedup. This

part of the analysis step computes the innovation term term y − Hxf and

the observed ensemble HL on the full model grid3. It involves that each

process reads the observations for its sub-domain from a file. Then, the global

innovation and observed ensemble are gathered for each process. Because

3Using y − Hxf and HL on the full model grid is actually a simplification of the

implementation. Due to the localization, only the part of these quantities is required

that resides within each individual observation sub-domain δ. As this data is distributed

over several processes, their collection would require a very complicated communication

structure, in particular for a model using an unstructured grid like FEOM. However, at

least a moderate speedup of these operations could be expected with an implementation

that only collects the necessary data.

27

of this, the amount of work performed by each process does not decrease

with an increasing number of processes. Thus, no speedup can be expected.

However, the non-local preparation part requires only a very small amount

of the computing time. For 8 processes, it is about 0.6% of the overall time

of the analysis step. As all other parts of the filter analysis show an ideal

speedup, the relative time for the non-local preparations increases with the

number of processes to about 21% for 320 processes. Accordingly, the non-

local preparation part reduces the overall speedup. The execution time varies

by a factor of two for different processor numbers. However, it does not show

a systematic dependence on the number of processes. The variability in the

execution time is caused by the file operations, which dominate the non-local

preparations. This time was particularly high in case of 256 processes, which

caused the particularly low speedup for the full filter analysis step visible in

the left panel of Fig. 3. The observed speedup behavior is specific for the

SEIK filter. However, the communication of information on y−Hxf and HL

between all processes is also required in other EnSKFs. Thus, the limitation

of the speedup by these operations is a general property of EnSKFs.

The influence of the non-local preparation part of the analysis shows that

it has to be implemented with care. As the operations are specific for the

model and observations used, this part cannot be implemented in a generic

and at the same time highly efficient way. Instead, one has to consider the

specific properties of the observations as well as the model grid to obtain an

efficient implementation. The easiest strategy could be to ensure that the

execution time for this part is as low as possible as this will limit its influence

on the total computing of the analysis step.

28

The speedup of the assimilation system depends on the load balancing.

In the case discussed here observations were available at each grid surface

point. Further, the mesh is partitioned such that the number of surface grid

points is approximately equal for each process. Due to this configuration,

the nearly optimal speedup was achieved. With other types of observations,

like precipitation in an atmospheric model or hydrographic data from ARGO

floats (see, e.g. Deng et al., 2010), the availability of the observations could be

non-uniform. If the distribution of the observations is strongly non-uniform

and the computing time of the analysis step is significant, it might be worth

for optimal load balancing to use in the analysis step a distribution of the

model grid in which the available observations are uniformly distributed. In

this case, the grid distribution will be distinct in the forecast phase and

the analysis step and the model fields have to be redistributed by parallel

communication.

6. Conclusions

This study discussed implementation strategies for ensemble-based data

assimilation algorithms with large-scale numerical models. In particular, the

aspect of the parallelization of the full assimilation system consisting of the

ensemble forecast and the analysis step was discussed. The analysis step of

the filter algorithms can be efficiently implemented using a decomposition

of the state domain. For the ensemble forecast, a domain decomposition for

each single model instance can be combined with the possibility to let several

models as model tasks compute the forecast of a different states at the same

time.

29

For the implementation of the assimilation system the choice of offline

and online implementations exists. In the offline implementation separate

programs are used for the ensemble forecast and the analysis step. The in-

formation transfer between both programs is performed using files. Compu-

tationally more efficient is the online implementation where both the model

and the analysis step are combined into a single program. In this case, the

information transfer between the different parts is conduction using subrou-

tine calls and direct memory access. It was shown that the combination of

the model with the data assimilation environment that controls the ensem-

ble forecasts and the analysis step can be performed by extending the model

source code with a four subroutine calls plus an ensemble loop that encloses

the time stepping part of the model. In particular, this implementation

strategy does not require that the model itself is available as a subroutine.

Numerical experiments using an implementation of the finite element

ocean model (FEOM) with the parallel data assimilation framework (PDAF)

showed that the resulting data assimilation system provides a very good par-

allel performance. Even with a rather small configuration of the model,

the program was able to efficiently use about 4000 processors. The overall

scalability of the assimilation program thus allows to compute large-scale

assimilation applications within a limited time span.

The PDAF software used here provides a generic implementation of the

data assimilation environment following the implementation strategy dis-

cussed in this study. In addition, PDAF includes implementations of differ-

ent parallelized ensemble-based Kalman filters. In the future it is planned

to apply the framework for a wider range of applications and to use it as a

30

general toolset for the development and study new filter algorithms.

In the light of new processor architectures, like GPU-based accelerators,

and increasing numbers of processor cores and multiple levels of memory

hierarchy, new parallelization options become of interest. Future work will

examine the adaption of the analysis step in PDAF to hybrid parallelization

using a combination of OpenMP and MPI as well as the use of GPUs.

Acknowledgements

The computations have been performed on the compute systems of the

North-German Supercomputing Alliance (HLRN). The authors thank Dr.

Ashwanth Srinivasan and a second anonymous reviewer for their helpful com-

ments.

References

Anderson, J. L., 2001. An Ensemble Adjustment Kalman Filter for data

assimilation. Monthly Weather Review 129, 2884–2903.

Bishop, C. H., Etherton, B. J., Majumdar, S. J., 2001. Adaptive sampling

with the Ensemble Transform Kalman Filter. Part I: Theoretical aspects.

Monthly Weather Review 129, 420–436.

Burgers, G., van Leeuwen, P. J., Evensen, G., 1998. On the analysis scheme

in the Ensemble Kalman Filter. Monthly Weather Review 126, 1719–1724.

Ciavatta, S., Torres, R., Suax-Picart, S., Allen, J. I., 2011. Can ocean color

assimilation improve biogeochemical hindcasts in shelf seas? Journal of

Geophysical Research 116, C12043.

31

Danilov, S., Kivman, G., Schröter, J., 2004. A finite-element ocean model:

Principles and evaluation. Ocean Modeling 6, 125–150.

Danilov, S., Schröter, J., 2010. Unstructured meshes in large-scale ocean

modeling. In: Freeden, W., Zuhair, Z. M. (Eds.), Handbook of Geomath-

ematics. Springer, pp. 371–398.

Deng, Z., Tang, Y., Wang, G., 2010. Assimilation of Argo temperature and

salinity profiles using a bias-aware localized EnKF system for the Pacific

Ocean. Ocean Modeding 35, 187–205.

Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-

geostrophic model using Monte Carlo methods to forecast error statistics.

Journal of Geophysical Research 99 (C5), 10143–10162.

Evensen, G., 2004. Sampling strategies and square root analysis schemes for

the EnKF. Ocean Dynamics 54, 539–560.

Gaspari, G., Cohn, S. E., 1999. Construction of correlation functions in two

and three dimensions. Quarterly Journal of the Royal Meteorological So-

ciety 125, 723–757.

Gropp, W., Lusk, E., Skjellum, A., 1994. Using MPI - Portable Parallel

Programming with the Message-Passing Interface. The MIT Press, Cam-

bridge.

Hoteit, I., Pham, D.-T., Blum, J., 2002. A simplified reduced order Kalman

filtering and application to altimetric data assimilation in Tropical Pacific.

Journal of Marine Systems 36, 101–127.

32

Houtekamer, P. L., Mitchell, H. L., 2001. A sequential ensemble Kalman filter

for atmospheric data assimilation. Monthly Weather Review 129, 123–137.

Hunt, B. R., Kostelich, E. J., Szunyogh, I., 2007. Efficient data assimila-

tion for spatiotemporal chaos: A local ensemble transform Kalman filter.

Physica D 230, 112–126.

Janjić, T., Nerger, L., Albertella, A., Schröter, J., Skachko, S., 2011a. On

domain localization in ensemble based Kalman filter algorithms. Monthly

Weather Review 139, 2046–2060.

Janjić, T., Schröter, J., Albertella, A., Bosch, W., Rummel, R., Schwabe,

J., Scheinert, M., 2011b. Assimilation of geodetic dynamic ocean topogra-

phy using ensemble based Kalman filter. Journal of Geodynamics in press,

doi:10.1016/j.jog.2011.07.001.

Kalman, R. E., 1960. A new approach to linear filtering and prediction prob-

lems. Transactions of the ASME, Journal of Basic Engineering 82, 35–45.

Karypis, G., Kumar, V., 1999. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on Scientific Computing 20,

359–392.

Keppenne, C. L., 2000. Data assimilation into a primitive-equation model

with a parallel ensemble Kalman filter. Monthly Weather Review 128,

1971–1981.

Keppenne, C. L., Rienecker, M. M., 2002. Initial testing of a massively par-

allel ensemble Kalman filter with the Poseidon isopycnal ocean circulation

model. Monthly Weather Review 130, 2951–2965.

33

Nerger, L., 2003. Parallel filter algorithms for data assimilation in oceanog-

raphy. Ph.D. thesis, University of Bremen, Germany.

Nerger, L., Danilov, S., Hiller, W., Schröter, J., 2006. Using sea level data

to constrain a finite-element primitive-equation ocean model with a local

SEIK filter. Ocean Dynamics 56, 634–649.

Nerger, L., Gregg, W. W., 2007. Assimilation of SeaWiFS data into a global

ocean-biogeochemical model using a local SEIK filter. Journal of Marine

Systems 68, 237–254.

Nerger, L., Hiller, W., Schröter, J., 2005a. A comparison of error subspace

Kalman filters. Tellus 57A, 715–735.

Nerger, L., Hiller, W., Schröter, J., 2005b. PDAF - the Parallel Data As-

similation Framework: Experiences with Kalman filtering. In: Zwieflhofer,

W., Mozdzynski, G. (Eds.), Use of High Performance Computing in Mete-

orology - Proceedings of the 11. ECMWF Workshop. World Scientific, pp.

63–83.

Nerger, L., Janjić, T., Schröter, J., Hiller, W., 2011. A unification of ensemble

square-root filters. Monthly Weather Review, in press, doi:10.1175/MWR–

D–11–00102.1.

Pham, D. T., 2001. Stochastic methods for sequential data assimilation in

strongly nonlinear systems. Monthly Weather Review 129, 1194–1207.

Pham, D. T., Verron, J., Gourdeau, L., 1998a. Singular evolutive Kalman fil-

ters for data assimilation in oceanography. Comptes Rendus de l’Académie

die Science Paris, Series II 326 (4), 255–260.

34

Pham, D. T., Verron, J., Roubaud, M. C., 1998b. A singular evolutive ex-

tended Kalman filter for data assimilation in oceanography. Journal of

Marine Systems 16, 323–340.

Rollenhagen, K., Timmermann, R., Janjić, T., Schröter, J., Danilov, S., 2009.

Assimilation of sea ice motion in a finite-element sea-ice model. Journal of

Geophysical Research 114, C05007.

Skachko, S., Danilov, S., Janjić, T., Schröter, J., Sidorenko, D., Savcenko,

R., Bosch, W., 2008. Sequential assimilation of multi-mission dynamical

topography into a global finite-element ocean model. Ocean Science 4,

307–318.

Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., Whitaker,

J. S., 2003. Ensemble square root filters. Monthly Weather Review 131,

1485–1490.

van Leeuwen, P. J., 2009. Particle filtering in geophysical systems. Monthly

Weather Review 137, 4089–4114.

Wang, Q., Danilov, S., Schröter, J., 2008. Finite element ocean circulation

model based on triangular prismatic elements with application in studying

the effect of topography representation. Journal of Geophysical Research

113, C05015.

Whitaker, J. S., Hamill, T. M., 2002. Ensemble data assimilation without

perturbed observations. Monthly Weather Review 130, 1913–1927.

35

List of Figures

1 Left: Flow diagram of a typical numerical model; Right: Flow

diagram of the model extended to an assimilation system by

calls to routines of the assimilation framework. (Based on

Nerger et al. (2005b)) . 37

2 Parallel performance for an application in which the ensemble

forecasts dominate the computing time. Left: Speedup of the

ensemble data assimilation program for two fixed ensemble

sizes. Right: Time increase for the case that the ensemble

size is increased with a fixed size of each model task and each

task integrating a single ensemble member. Error bars of one

standard deviation of the execution time are shown for the

case of 8 processes per model task. 38

3 Parallel performance for an application in which the filter anal-

ysis step takes up to 50% of the total computing time. A single

model task is used. Left: Speedup of the principal parts of the

assimilation system. Right: Speedup of the components of the

filter analysis step. The nonlocal data preparations limit the

overall speedup. 38

36

Figure 1: Left: Flow diagram of a typical numerical model; Right: Flow diagram of

the model extended to an assimilation system by calls to routines of the assimilation

framework. (Based on Nerger et al. (2005b))

37

Figure 2: Parallel performance for an application in which the ensemble forecasts dominate

the computing time. Left: Speedup of the ensemble data assimilation program for two

fixed ensemble sizes. Right: Time increase for the case that the ensemble size is increased

with a fixed size of each model task and each task integrating a single ensemble member.

Error bars of one standard deviation of the execution time are shown for the case of 8

processes per model task.

Figure 3: Parallel performance for an application in which the filter analysis step takes

up to 50% of the total computing time. A single model task is used. Left: Speedup of the

principal parts of the assimilation system. Right: Speedup of the components of the filter

analysis step. The nonlocal data preparations limit the overall speedup.

38

