Polarforschung 60 (2): 143-151, 1990 (erschienen 1992)

21. Gravity Transect across the Transantarctic Mountains South of the Drygalski Ice Tongue

By Tim Redfield*, John Behrendt**, Detlef Damaske***, Georg Delisle***, Dieter Möller*** and Joachim Sievers*

Summary: During GANOVEX VI new gravity data were collected along an east-west profile in North Victoria Land south of the Drygalski lce Ton-gue, extending 150 km across the Transantarctic Mountains, and comprising 21 data points. Thirty five additional data points were collected over a small area near Brimstone Peak, near the western end of the regional profile. The survey south of the Drygalski has been connected to northern gra-vity data (GANOVEX V) by a survey line of 12 points. All data have been terrain corrected, and are further constrained by satellite elevation (GPS) and radar ice-thickness measurements.

and radar ice-inickness measurements. A pronounced regional Bouguer gravity gradient decreasing to the west by approximately 3 mgal/km is superimposed over a coast-parallel belt of granitoid basement rock. West of this belt the local gravity fields become more variable. Over Beta Peak (Ferrar dolerite) a 50 mgal spike is obser-ved. Within this area, the Ferrar sills are exposed at the surface. West of Brimstone Peak (Ferrar/Kirkpatrick sequences), a smooth regional gradient preserved record tiered.

ved. Within this area, the Ferrar sills are exposed at the surface. West of Brimstone Peak (Ferrar/Kirkpatrick sequences), a smooth regional gradient appears to reassert itself. We interpret the initial gradient east (oceanward) of the break-in-slope to be representative of the crust/mantle boundary within the study area. We interpret the initial break-in-slope and the apparent flattening of the regional gradient to be an effect of the N-S trending zone of dense Ferrar sills and associated deep crustal fractionate replacing less dense basement. We attribute the variability of the local field to be the product of sub-glacial density contrasts that cannot be removed. The regional gravity gradient of the profile is steeper than that observed to the north (Mt. Melbourne quadrangle) and shallower than that reported to the south (McMurdo Sound). The absolute values of the coastal points of origin south of the Drygalski and within the Mt. Melbourne quadrangle differ by 60 to 100 mgal. In addition, topographic relief within the regional transect area is subdued relative to the Transantarctic Mountains to the north and south. We speculate that the root structure of the Transantarctic Mountains undergoes a change somewhere between the Mt. Melbourne quadrangle and the region south of the Drygalski lee Tongue.

INTRODUCTION

During the 1990-1991 Antarctic field season, the sixth German Antarctic North Victoria-Land-Expedition (GA-NOVEX VI) and the United States Antarctic Program (USAP) conducted joint geophysical studies in the Transantarctic Mountains. Gravity surveys were performed in three different areas. The surveys north and west of Mt. Melbourne and in the Yule Bay / Rennick Glacier region are described in REITMAYR (this vol.); this paper reports on the southernmost area SW of Terra Nova Bay.

One goal was to measure the regional gravity gradient along a transect perpendicular to the Transantarctic Mountains range front, in an area lying between the steep South Victoria Land gradients observed by SMITHSON (1972), BEHRENDT et al. (1991), and ROBINSON (1964), and the shallower North Victoria Land slopes reported by REDFIELD et al. (in press) and DÜRBAUM et al. (1989). Additional data were collected along the coast, directly connecting the survey to existing gravity measurements within the Mt. Melbourne quadrangle.

The completed regional transect comprises 21 data points, spanning approximately 150 km. It extends from the coast to a point past Brimstone Peak on the Polar Plateau. Map coverage was provided by the Mt. Joyce and Relief Inlet Quadrangles of the United States Geological Survey 1: 250,000 Antarctic Reconnaissance Series (Fig. 1). The regional transect passes through an area measured in detail from a field camp, as part of a local survey conducted near Brimstone Peak. The Brimstone Peak survey consists of 36 data points, distributed within a 10 km by 36 km rectangular area. Twelve points were obtained along the North Victoria Land coast between the Gondwana Station at Terra Nova Bay and the start of the regional profile near the Nordenskjöld Ice Tongue. These last data provide a direct link with the data collected in 1988-1989 during GANOVEX V.

As described below, the gravity data have been reasonably well constrained by radar echosounding ice thickness measurements and have been terrain corrected. Though large uncertainties continue to exist, we believe their effects to be much less than the regional gradient we are seeking.

 ^{*} Tim Redfield, Department. of Geology, Arizona State University, Tempe, Arizona, 85287, USA.
 ** Dr. John Behrendt, United States Geological Survey, Denver Federal Center, MS 964, Box 25046, Denver, Colorado 80225. USA
 ** Dr. Detlef Damaske, Georg Delisle, Dieter Möller and Joachim Sievers, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-W-3000 Hannover, FRG.

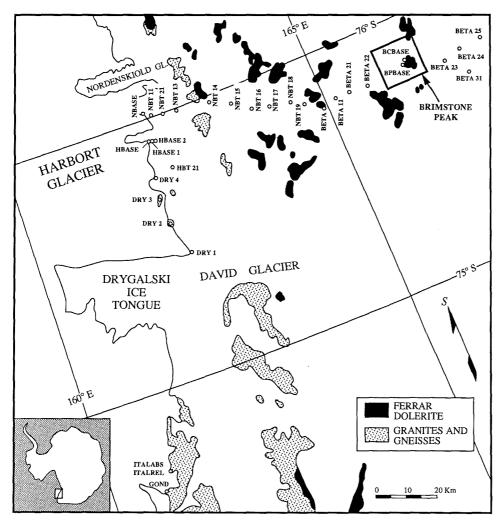


Fig. 1: Location map showing data points of the regional profile, coastal profile, and the area of the Brimstone Peak gravimetric survey. Abb. 1: Lagekarte mit dem regionalen gravimetrischen Profil, dem Küstenprofil und dem Meßgebiet im Inland am Brimstone Peak.

REGIONAL GEOLOGY

Within the Mt. Joyce and Relief Inlet quadrangles the dominant rock types exposed through the glacial cover are the mafic Ferrar Dolerite intrusions or Kirkpatrick Basalt extrusive equivalents, and the felsic Granite Harbour Intrusives suite. The contact between the two rock types is obscured, but in an overall sense runs north-south, parallel to the coastline, between longitudes 161° and 162° E.

Granitoid outcrops occur in nunataks along a coast-parallel belt approximately 40 km wide. Where exposed, the basement complex appears to be massive and relatively homogenous. KLEINSCHMIDT & MATZER (pers. comm. 1991) observed no major shear zones within the area; structural complexities appear to be limited to events of local importance.

Inboard of the felsic belt, exposures are primarily volcanic sills and lavas of the Ferrar group with minor occur-

144

Station	South Decimal Latitude	East Decimal Longitude	Station Elevation m a.s.l.	Ice Thickness m	Ice Thickness Corr.	Terrain Corr. 2.67g/cm ³	Complete Bouguer Anomaly
NBASE NBT11 NBT12 NBT13 NBT14 NBT15 NBT16 NBT17 NBT17 NBT19 BETA11 BETA21 BETA22 BETA22 BETA23 BETA31 BETA23 BETA23 BETA23 BETA23 BETA23 BETA23 BETA23 BETA23 BETA23 BETA23 BETA24 BETA25 BETA5 BE	76.031 76.006 75.990 75.957 75.936 75.894 75.877 75.859 75.841 75.823 75.810 75.786 75.786 75.786 75.786 75.787 75.727 75.833 75.729 75.805 75.821	$\begin{array}{c} 162.710\\ 162.636\\ 162.411\\ 162.198\\ 161.777\\ 161.428\\ 161.121\\ 160.817\\ 160.817\\ 160.817\\ 160.817\\ 160.310\\ 160.128\\ 159.639\\ 159.639\\ 159.271\\ 158.078\\ 157.796\\ 157.778\\ 157.423\\ 162.583\\ 158.624\\ 158.576\end{array}$	$\begin{array}{c} 112\\ 218\\ 382\\ 439\\ 767\\ 1089\\ 1208\\ 1334\\ 1374\\ 1410\\ 1569\\ 1383\\ 1397\\ 1434\\ 1728\\ 1709\\ 1777\\ 1706\\ 485\\ 1556\\ 1522\\ \end{array}$	$\begin{array}{c} 0\\ 260\\ 270\\ 150\\ 215\\ 145\\ 205\\ 210\\ 270\\ 225\\ 0\\ 225\\ 0\\ 235\\ 190\\ 460\\ 185\\ 500\\ 240\\ 260\\ 0\\ 0\\ 137\\ \end{array}$	$\begin{array}{c} 0 \\ 19 \\ 20 \\ 11 \\ 16 \\ 11 \\ 15 \\ 16 \\ 20 \\ 17 \\ 14 \\ 34 \\ 14 \\ 37 \\ 18 \\ 19 \\ 0 \\ 10 \\ 10 \\ \end{array}$	$ \begin{array}{c} 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	- 48 - 57 - 81 - 110 - 164 - 164 - 169 - 181 - 134 - 119 - 170 - 170 - 170 - 130 - 182 - 182 - 184 - 183 - 207 - 86 - 129 - 135
Coastal Transect Data GOND ITALYABS ITALYABS ITALYKEL HBT11 DRY1 DRY2 DRY3 DRY4 HBASE HBASE1 HBASE2 NBASE	74.634 74.693 74.694 75.000 75.434 75.563 75.683 75.774 75.948 75.948 75.948 75.948 75.948	164.224 164.099 162.000 162.586 162.971 162.833 162.682 162.961 162.960 162.959 162.710	22 114 86 1007 165 93 114 189 47 96 109 112	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 6 0 0 0 0 0 0 4 6 0	2 2 5 5 25 10 10 5 5 5 5 10	21 30 30 - 44 - 13 - 57 - 58 - 59 - 59 - 48
Brimstone Peak Data BCBASE BCT11 BCT12 BCT13 BCT14 BCT15 BCT16 BCT16 BCT17 BCT17 BCT18 BCT21 BCT21 BCT22 BCT31 BCT32 BCT32 BCT33 BCT34 BCT34 BCT35 BCT36 BCT41 BCT42 BCT51 BCT55 BCT56 BCT56 BCT58 BCT59 BCT510 BCT512 BCT513 BCT514 BCT515 BCT52 BCT52 BCT52 BCT52 BCT53 BCT54 BCT55 BCT54 BCT55 BCT54 BCT55 BCT54 BCT55 BCT54 BCT55 BCT54 BCT55 BCT54 BCT55 BCT54 BCT55 BCT56 BCT54 BCT55 BCT56 BCT51 BCT56 BCT51 BCT56 BCT51 BCT56 BCT51 BCT57 BCT56 BCT51 BCT57 BCT56 BCT51 BCT57 BCT57 BCT57 BCT56 BCT51 BCT56 BCT51 BCT51 BCT57 BCT56 BCT51 BCT56 BCT51 B	75.821 75.794 75.797 75.800 75.803 75.808 75.812 75.815 75.815 75.815 75.791 75.767 75.767 75.766 75.766 75.766 75.780 75.776 75.767	$\begin{array}{c} 158.576\\ 158.920\\ 158.900\\ 158.800\\ 158.760\\ 158.760\\ 158.760\\ 158.760\\ 158.760\\ 158.620\\ 158.620\\ 158.638\\ 158.741\\ 158.561\\ 158.570\\ 158.5$	1522 1595 1591 1578 1574 1571 1567 1568 1544 1535 1526 1587 1580 1565 1667 1711 1725 1777 1539 1601 1558 1614 1558 1614 1552 1512 1651 1656 1615 1512 1656 1655 1553 1533 1533 1518	$\begin{array}{c} 137\\ 507\\ 530\\ 835\\ 770\\ 820\\ 608\\ 373\\ 195\\ 190\\ 200\\ 200\\ 200\\ 200\\ 347\\ 150\\ 515\\ 800\\ 549\\ 323\\ 150\\ 515\\ 800\\ 549\\ 323\\ 150\\ 507\\ 150\\ 90\\ 150\\ 160\\ 130\\ 120\\ 160\\ 130\\ 120\\ 160\\ 120\\ 125\\ 135\\ 250\\ \end{array}$	$\begin{array}{c} 10\\ 38\\ 39\\ 62\\ 57\\ 61\\ 45\\ 28\\ 14\\ 14\\ 14\\ 15\\ 15\\ 26\\ 11\\ 38\\ 59\\ 41\\ 24\\ 11\\ 38\\ 11\\ 7\\ 11\\ 12\\ 10\\ 9\\ 13\\ 17\\ 19\\ 22\\ 9\\ 10\\ 10\\ 19 \end{array}$	$ \begin{array}{c} 10\\ 0\\ 0\\ 0\\ 1\\ 1\\ 3\\ 5\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	- 135 - 153 - 142 - 121 - 126 - 120 - 130 - 136 - 140 - 138 - 140 - 138 - 157 - 155 - 149 - 136 - 128 - 141 - 137 - 143 - 141 - 137 - 133 - 133 - 133 - 133 - 133 - 134 - 133 - 132 - 134 - 132 - 132 - 134 - 132 - 132 - 134 - 132 - 138 - 132 - 132 - 132 - 138 - 132 - 138 - 132 - 138 - 132 - 138 - 132 - 138 - 138 - 132 - 138 -

Table 1: Station data for the entire survey, including coordinates and description of BPBASE. Site Description of BPBASE for re-occupation: The NE flank of Brimstone Peak is fringed by a talus bench, underlain by glacial ice. From the mar-gins of the bench, dividing the East Face neatly in two, extends an arm displaying bedrack, some 20-50 m above the surrounding glacier. Just west of the summit of this arm, along its ridgecrest, is a boulder of notable, though certainly not outstanding size, capped by a half a meter caim and a ring of stones surrounding the fossil location of the base plate. It is believed that the ridge and boulder crest are geologically stable, for at least the near futu-re - say some twenty years or so.

Tabelle 1: Meßpunkt-Daten für das gesamte Untersuchungsgebiet einschließlich Koordinaten und Beschreibung des Basispunkts (BP Base) am Brim-stone Peak. Beschreibung des BP-Basispunkts für mögliche weitere Messungen: Die NE Flanke von Brimstone Peak ist an der Basis von einem auf dem Glet-schereis liegenden Schuttmantel umgeben. Von den Rändern dieses Schuttmantels springt etwa in der Mitte der Ostflanke des Berges eine Rippe an-stehenden Gesteins nach Westen vor, die das Eis um etwa 20-50 m überragt. Direkt westlich vom höchten Punkt dieser Rippe befindet sich ein großer Block, auf dem ein Steinmal von 50 cm Höhe errichet wurde. Die Basis des Blocks enthält eine Fossil Lokalität, um die ein Steinring ausgelegt wur-de. Es wird davon ausgegangen, daß die Rippe und der Block für eine gewisse Zeit, in der Größenordnung von ca. 20 Jahren, stabil genug sind, um als Basispunkt zu dienen.

rences of the Beacon Supergroup clastic rocks. Outcrops occur at widely scattered nunataks and mountains. The constituent flows and intrusions have suffered very little tilting and faulting (WÖRNER pers. comm. 1991).

The topography of the study area as a whole is relatively subdued. A series of ice-covered benches rise from the coast to the Polar Plateau, which begins west of Brimstone Peak. Existing ice-thickness measurements imply that the benches are capped by relatively thin neves, except where cut by the deep drainage glaciers (DELISLE & SIEVERS pers. comm.). Extreme relief is not generally present, except at the base of the larger nunataks and mountains. These conditions make the Mt. Joyce quadrangle a good field area for Transantarctic Mountain gravity measurements.

METHODS

Previous gravity studies in the Transantarctic Mountains include ROBINSON (1964), SMITHON et al. (1971), BEHRENDT et al. (1991), DÜRBAUM et al. (1989), and REDFIELD et al. (in press). The problems posed by vast glaciers and poor topographic control are well recognized, and in response different solutions have been applied (DÜRBAUM et al. 1989, REDFIELD et al., in press). Our general approach is described below.

During the first half of GANOVEX VI ground traverses were conducted out of the Brimstone Peak field camp. Gravity sites were generally approached by skidoo and Nansen sledge. In the second half of the expedition, a regional profile was measured with helicopter support, to a point approximately 150 km inland on the polar plateau. The two surveys were tied together by common secondary base stations, and coupled to the absolute gravity measurement made by Italian colleagues during the 1990-1991 season. Lastly, a north-south coastal profile was measured, connecting the data of the Mt. Melbourne quadrangle (REDFIELD et al. in press, DÜRBAUM et al. 1989, REITMAYR this vol.) to the regional profile south of the Drygalski Ice Tongue.

Gravity measurements of the 1991 Mt. Joyce quadrangle survey were made under three general sets of conditions: (i) During the local survey at Brimstone Peak, comprehensive radar ice-measurement coverage was available. Terrain and ice corrections could be made with fewer uncertainties than elsewhere. (ii) During the regional survey flown from the coast, data points were sited on flat ice fields, free of local terrain effects. Ice thickness measurements were made at each landing site. The soundings obtained enabled the construction of a simple infinite slab ice model, which represents the greatest component affecting the gravimeter. (iii) Selected rock outcroppings characterized by subdued, limited topographics were measured for use as base stations. Additional nunataks were measured as part of the coastal profile. Using the correction methods described in REDFIELD et al. (in press), they were incorporated into the regional profile.

GEODECTIC AND ELEVATION CONTROL

The commercial development of the <u>G</u>lobal <u>Positioning Satellite System</u> (GPS) has solved some (though not all) of the difficulties associated with geodetic work in the Antarctic. We were convinced that the GPS two receiver long baseline method has improved elevation control beyond that that could be expected by traditional altimetry, and therefore employed the GPS system throughout this survey.

All secondary gravity base station were anchored to the WGS-84 reference ellipsoid by GPS, and subsequently corrected to sea level. Field data were collected for one half hour, and compared to simultaneous base station measurements made by either Italian colleagues at the Stazione Baia Terra Nova or by one of us at the Gondwana Station (both stations host known geodetic reference points). Most gravity station elevations were determined directly, by half hour GPS measurements. Twenty seven stations were measured by Thommen precision altimeter, barometrically corrected and tied to a nearby GPS point. Twenty one of these sites were within the Brimstone Peak survey area (Fig. 2a). These altimeter measurements were made during skidoo traverses across relatively flat ice; thus the altimeter hysteresis has not been exaggerated by extreme pressure elevation changes. The remaining six sites occur at low elevation, very close to the coast, where barometric control could be established (Figs. 3 and 4).

146

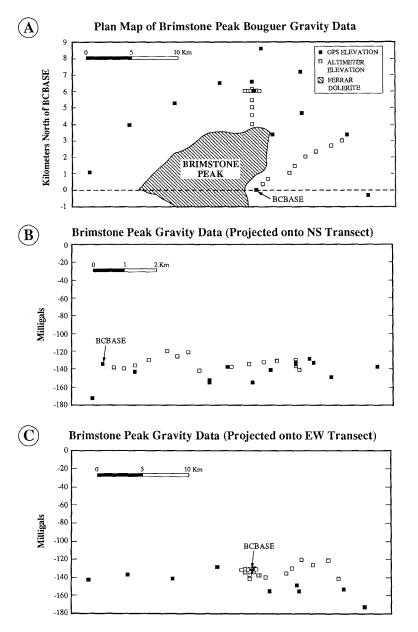
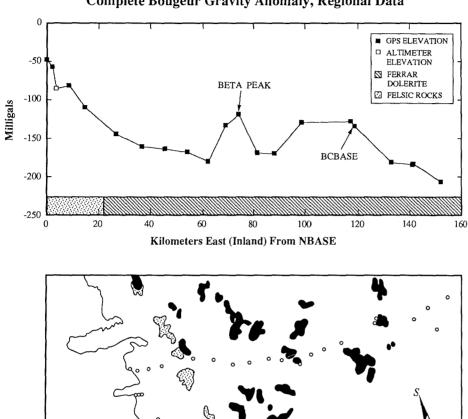



Fig. 2: Map showing Brimstone Peak local gravity survey (A) and gravity profiles of the gravity data projected onto NS and EW lines (B) and (C). Open symbols denote altimeter sites.

Abb. 2: Meßgebiete am Brimstone Peak mit lokalem Meßgebiet (A) sowie den gravimetrischen Profilen (B) und (C) auf N-S und E-W Linien projeziert. Offene Symbole kennzeichnen Altimeter-Meßpunkte.

Complete Bougeur Gravity Anomaly, Regional Data

Fig. 3: Regional gravity data profile and map view. Open symbols denote altimeter sites.

Abb. 3: Regionales gravimetrisches Profil und zugehöriger Kartenausschnitt. Offene Symbole kennzeichnen Altimeter-Meßpunkte.

20 Km

RESULTS

Brimstone Peak Data

For the 1990-1991 Mt. Joyce quadrangle survey, field logistics were shared with a radar echo-sounding geophysical group that mapped sub-ice topography near Brimstone Peak. Radar penetration of both the blue ice fields and the non-ablating glaciers was excellent (DELISLE & SIEVERS pers. comm.). The group found that sub-ice topographies surrounding Brimstone Peak tend to be rugged, a factor reflected in the sharp fluctuations of the observed gravity field.

The Brimstone data are shown in Figures 2a, 2b, and 2c. The field is complex, and does not permit easy interpretation. Examination of the projected cross sections (Figure 2b, 2c) shows spikes up to 50 milligals. The sources of these anomalies lie under broad expanses of ice and cannot easily be determined. Two dimensional models

148

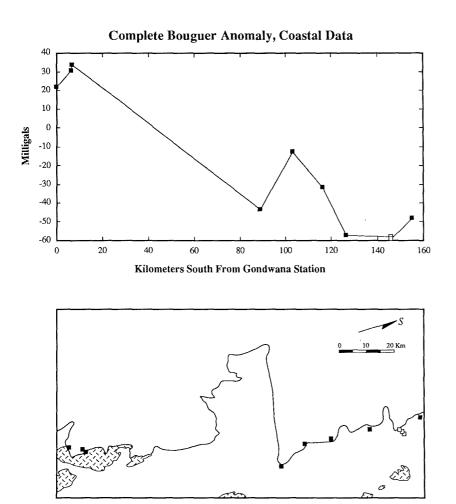


Fig. 4: Coastal gravity data profile map view. Open symbols denote altimeter sites.

Abb. 4: Gravimetrisches Küstenprofil. Offene Symbole kennzeichnen Altimeter-Meßpunkte.

suggest that much of the erratic nature might be accounted for by lateral variability in the ice thickness itself. Sufficiently sophisticated three dimensional modeling programs might resolve this, but are not available to us at this time.

The base station for each loop, BCBASE, is underlain by active glacier ice and cannot be expected to provide a repeatable value for future surveys. To that purpose a bedrock station, BPBASE, was established two kilometers to the north. Coordinates and a site description for BPBASE are included in Table 1.

Regional Data

Radar penetration and reception along the regional profile was variable, and difficult measuring conditions were often encountered. However, when viewed in context of the magnitude of the gravity gradient, the resultant errors in the ice corrections are probably quite small. A simple slab difference caused by 100 m of ice (0.90 gm/ cm³) instead of rock (2.67 gm/cm³) results in a "missing" 7.4 mgals. Under a regional gradient of 3 mgal/km, a

station spacing of greater than 2.5 km would lie outside this error. Most stations of the regional profile (Fig. 3) are between 5 and 10 km, implying that a great ice thickness error would be necessary to completely "hide" the plunging regional gradient.

The regional profile shows a pronounced break-in-slope between kilometers 35 and 40 (longitudes 161° 00' and 162° 00' E). Seaward of this break the gradient is approximated by 3 mgal/km. Landward, local complexities impart variability up to 50 mgal. No consistent slope is noted. The three westernmost data points suggest the possibility that the landward gradient is re-established beneath the Polar Plateau, and that the gravity anomalies continue to decrease in value.

Coastal Transect

Due in part to the total attenuation of radar at an ice/water interface, all measurement points along the coastal transect were sited on rock outcroppings. Additionally, long wavelength tidal oscillations render the Nansen Ice Sheet unsuitable for measuring. The station spacings are therefore dependent upon natural features, and are correspondingly uneven.

A rising trend towards the north comprises the dominant feature of the profile (Fig. 4). Low Bouguer gravity values (-30 mgal to -60 mgal) characterize the coast of the southern portion of the Relief Inlet quadrangle. As the Drygalski Ice Tongue is approached from the south, gravity values dip into a poorly defined trough, and then climb sharply to positive values at Inexpressible Island and the Gondwana Station. Though the absolute shape and amplitude of the anomaly cannot be constrained, it seems fairly clear that it stems from a deep seated origin located at some point between the David Glacier (Drygalski) and Priestley Glacier drainages. The coastal transect suggests that a substantial mass difference exists between the coastal areas of the Mt. Melbourne quadrangle and those south of the Drygalski Ice Tongue.

DISCUSSION

The observed break-in-slope of the regional profile is coincidental with the inferred sub-ice lithologic boundary between the granitoid basement complex and the supracrustal mafic rocks. The sharp change \therefore f the regional gradient might be due to considerable thicknesses of dense mafic rock capping the crustal sequences, "pulling" the regional gradient upwards. This is the simplest explanation, and is our favoured one.

Well to the south of the Drygalski Ice Tongue, near McMurdo Sound, SMITHSON (1972) measured gravity gradients between 4 mgal/km and 7 mgal/km. To the north, near the Gondwana Station, REDFIELD et al. (in press) described a much shallower gradient, less than 2 mgal/km. The 3 mgal/km gradient observed in the Mt. Joyce quadrangle profile is intermediate in slope between these data, fitting a transitional pattern along the Transantarctic Mountains rangefront.

The enormous difference in Bouguer gravity revealed by the coastal data represents a substantial mass contrast that cannot be explained by the simple juxtaposition of rocks of the upper crust. (A sample density contrast calculation requires over 500 m of nonexistent, 3.2 gm/cm³ mafic rock replacing the existent 2.67 gm/cm³ granitoids). A possible interpretation is that the depth to the Moho might be less in the north than to the south, thus emplacing denser rock at higher levels under the Mt. Melbourne quadrangle. This is mildly supported by the work of O'CONNELL & STEPP (in press), who described a shallow, west dipping reflector underneath the Northern Foothills. A difference in depth to mantle between the two areas might imply that a different state of isostatic equilibrium (or disequilibrium) exists, in turn implying a difference in the uplift histories.

As a final and independent observation, it is worth noting that the topographic crest of the Transantarctic Mountains also displays a remarkable contrast. Within the Mt. Joyce quadrangle the crest is low, rarely rising above 2000 m, and is located well inland. Considerable thickness of Ferrar Dolerite and even the Kirkpatrick lavas (WÖRNER pers. comm. 1991) imply a much later uplift history. Within the Mt. Melbourne quadrangle the rangecrest approaches 3000 m and is considerably closer to the coast. Also, the Ferrar caps the highest reaches of the Eisenhower Range, and represents the basal section above the Kukri Peneplain. Coupled with the different natures of the Bouguer gravity fields, it seems plausible that the two areas have had different uplift histories.

CONCLUSIONS

Regional Bouguer data collected in a traverse across the Transantarctic Mountains south of the Drygalski Ice Tongue has quantified the gradient, which is observed to be intermediate between those of North Victoria Land and South Victoria Land. A coastal transect connecting the Drygalski area survey with the Mt. Melbourne area shows a 60 mgal to 100 mgal jump over a short distance. The jump occurs over the David Głacier (Drygalski Ice Tongue) and Priestley Glacier drainages, both major physiographic features.

No geologic evidence exists for large, supra-crustal density contrasts that could explain the mass differences. We suggest that the gravity field variations stem from deep features at the crust/mantle boundary, on in the lower crust. We infer that the Drygalski area and the Mt. Melbourne area are characterized by different root structures. And we speculate that the uplift histories of the the two areas may well be significantly different.

ACKNOWLEDGMENTS

Thanks are due to the Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, and the "GANO-VEN" for the field logistics, instrumentation, and invitation to participate. Thanks are due to Dr. H. Zimmermann and the National Science Foundation Division of Polar Programs, for salary support. Thanks are due to colleagues in the Italian Antarctic Program for making available to us their GPS base station data. Thanks to Sue Selkirk of ASU for invaluable help with the graphics. And many thanks to Werner Hölzl, who fixed the skidoos and all sorts of things during the Brimstone Peak survey..

References

Behrendt, J. C., Le Masurier, W. E., Cooper, A. K., Tessensohn, F., Trehu, A. & Damaske, D. (1991): Geophysical Studies of the West Antarctic rift system.- Tectonics 10: 1257-1273.

D ü r b a u m, H. J., D r u i v e n g a, G., G e i p e l, H. & M e r k e l, G. (1989): Gravity measurements along a traverse from Mt. Melbourne to the polar plateau in North Victoria Land, Antarctica. Geol. Jb. E38: 231-243, Hannover.

O'Connell, D. R. H. & Stepp, T. M. (in press): Structure and evolution of the crust at the Transantarctic Mountains - Ross Sea crustal transition: results from the Tourmeline Plateau seismic array of GANOVEX V ship-to-shore seismic refraction experiment.- Geol. Jb. E47, Hannover.

R e d f i e l d, T. F., K i e n l e, J., H e i m b e r g, F. (in press): Complete Bouguer gravity map of the Mount Melbourne Quadrangle, North Victoria Land,- Geol, Jb. E47, Hannover.

R o b i n s o n, E. S. (1964): Geological structure of the Trans-Antarctic Mountains and adjacent ice covered areas, Antarctica. Ph.D. Thesis, University of Wisconsin, Madison.

S m i t h o n . S. B. (1972): Gravity Interpretation in the Trans-Antarctic Mountains near McMurdo Sound, Antarctica.- Geol. Soc. Am. Bull. 83: 3437-3442.