INFORME FINAL

Ordenamiento de la Pesquería de Merluza en el Perú

Proyecto de Apoyo al Desarrollo del Sector Pesquero y Acuícola del Perú (PADESPA – PERÚ)

Realizado por Fernando González Costas

e-mail: fernando.gonzalez@vi.ieo.es

Instituto Español de Oceanografía Centro Oceanográfico de Vigo Apartado de Correos 1552 36200 Vigo (España)

Telf: 986 49 21 11 Fax: 986 49 23 51

ANTECEDENTES

Distribución geográfica y espacial del recurso.

Según Chirichigno y Vélez (1998) la *Merluccius gayi peruanus* se distribuye desde los 00°30'S (Ecuador) hasta los 13° 56'S (Perú). Esto es lo que podríamos llamar la distribución estándar, que variará de acuerdo a las estaciones del año en función de la extensión de la Corriente de Cromwell (ESCC); es decir, durante el invierno y primavera se podrá hallar hasta los 06° y 08°S, mientras que en verano y otoño se encuentra hasta los 12° y 14°S. Cuando se producen fenómenos El Niño es posible hallarla al sur de los 15°S. Este patrón de distribución se da en función al desplazamiento de la mínima de oxígeno, posición que a su vez estará determinada por la extensión de la Corriente de Cromwell (ESCC).

La pesquería de merluza en Perú

La pesquería de merluza, en el área de Paita, tuvo sus orígenes en el año 1959, la flota se caracterizaba por ser pequeña, costera y con tecnología simple. A este período se le conoce como fase de pesquería incipiente (1959-1966). Posteriormente, la flota y los sistemas de pesca evolucionaron y se desarrolló una pesquería de arrastre de mediana escala dirigida exclusivamente a la merluza de gran tamaño. A esta fase se le denomina de desarrollo inicial, entre 1967-1972.

Entre los años 1973-1977 (fase de plena explotación I) se inicia la gran pesquería de arrastre con la participación de barcos arrastreros-factoría extranjeros de alta tecnología en sus sistemas de extracción y con unos índices de capturas altos en comparación con la flota arrastrera de Paita.

En las demás fases (sobre-explotación y colapso en 1978-1981, recuperación entre 1982-1987 y plena explotación II en 1988-1998), participaron básicamente la flota arrastrera costera de Paita y algunos buques arrastreros factoría peruanos. Sin dejar de nombrar a la flota bolichera de Chimbote, que capturó grandes cantidades de juveniles en algunos años. En los períodos anormales de El Niño 92-93 y 97-98, el recurso se presentó poco accesible a la flota. Ante esta situación surgió una flota arrastrera de mediana escala que podía acceder a horizontes de pesca mayores e inaccesibles a la flota costera.

En la actualidad la estructura de la flota arrastrera de Paita se encuentra compuesta por 82 embarcaciones de las cuales 64 están operativas. Las capacidades de bodega varían entre 34,49 y 526,41 m³ con una capacidad total de 10.007,82 m³. Para el estudio de la pesquería, la flota se ha clasificado en tres categorías de acuerdo a su capacidad de bodega, tonelaje de registro bruto, potencia de maquinas y eslora.

OBJETIVOS DE LA MISIÓN:

Análisis de las evaluaciones biológicas y pesqueras y su relación con las medidas de ordenamiento de dicha pesquería.

Evaluación del recurso

La evaluación del stock se efectuó con el método de Análisis de Población Virtual (APV) en su versión conocida como análisis de cohortes de Pope, utilizando el ADAPT como método de calibración.

Para realizar la evaluación se han utilizado los siguientes datos elaborados por el IMARPE (Anexo 1):

- Matriz de capturas por edad (1971-2001)
- Matriz de pesos medios por edad (1971-2001)
- Capturas totales anuales (1971-2001)
- Matriz con las ojivas de madurez anuales (1971-2001)
- Mortalidad natural (0.38)
- Estimaciones absolutas de abundancias por edad de los cruceros (1995, 1997-2001).

La calidad de estos datos va influir de forma directa en los resultados obtenidos, dicha calidad no se ha podido contrastar con un análisis exploratorio en profundidad debido a la corta duración de la misión. Reseñar que estos datos no se corresponden con los totales del stock, ya que solo recogen los datos correspondientes a las aguas de jurisdicción peruana.

Procedimiento:

- Se ha utilizado la información de los cruceros para calibrar las mortalidades del último año (2001) de la edad 1 a la 6.
- La mortalidad por pesca de la edad 0 del último año (2001) se estimó como una media para esa edad del periodo 1996-2000.
- Se asumió que la mortalidad por pesca del grupo 7+ es igual al de la edad 6.
- Para minimizar la función objetivo del ADAPT (Abundancias esperadas del APV – Abundancias observadas en los cruceros) se trasladaron las abundancias del APV del 1 de enero al 1 de mayo (mes de realización de los cruceros) para que ambas abundancias fuesen comparables.

- Se ha decidido eliminar de la calibración la información de los cruceros del año 1996 porque presentaba unos residuos grandes para todas las edades, haciendo que la minimización dependiese mucho de la suma de cuadrados finales de ese año por lo que el modelo no convergía.
- Se calibró la mortalidad por pesca de la edad 6 del último año con la información de los cruceros y para el resto de los años de la serie, se estimó como una media de la mortalidad por pesca de las edades 4 y

Resultados:

Los resultados del APV (matrices de mortalidades por pesca y abundancias por año y edad) se muestran en la Tabla 1.

Biomasas.

Las biomasas calculadas por el modelo presentan grandes variaciones a lo largo de la serie, alcanzando máximos de 700.000 ton. a finales de los años 70. El modelo estima una biomasa total de 209.420 ton. a comienzos del año 2001, pero solo el 16% de ese valor corresponde a biomasa reproductora (SSB) (Fig. 1). Desde 1996 hasta la actualidad se aprecia una tendencia descendente de la biomasa total.

Los resultados de ambos métodos (APV - Cruceros) son similares si comparamos la biomasa 3+ (Fig. 2). Para realizar la comparación se ha elegido la edad 3+ para evitar los posibles problemas de la selectividad del arte en las estimaciones de los cruceros. Ambos métodos muestran una tendencia decreciente de la biomasa 3+ desde 1995 y en estos momentos nos encontramos a niveles de mínimos históricos. La biomasa 3+ es, en términos generales, una buena medida del SSB, ya que la talla media de primera madurez está sobre 35 cm, que coincide con la talla media de la edad 3. Resaltar la disminución de SSB en los últimos años, que ha pasado de 77.000 ton. en 1995 a 33.000 ton en el 2001. Desde 1997 hasta la actualidad, el nivel de SSB se ha estabilizado en valores muy bajos (35.000 - 40.000 ton).

En el año 2001, la composición por edades de la biomasa total, está formada principalmente por las edades 1 y 2, estando el resto de las edades muy poco representadas (Fig. 3), por lo que la biomasa total actual presenta una estructura poblacional muy débil.

Mortalidad por Pesca (F).

Se ha elegido como Fbar (mortalidad por pesca media de las edades más representativas en las capturas), la mortalidad por pesca de las edades 2 a la 6. La Fbar muestra grandes variaciones en la serie, observándose un gran incremento de la misma en los últimos años, alcanzándose en el

2001 valores de 1.36 (Fig. 4), si a esto sumamos la mortalidad natural considerada (0.38), nos encontramos que esta pesquería esta soportando niveles de mortalidad total muy elevados.

La mortalidad por edades (patrón de explotación) del último periodo muestra un preocupante y peligroso desplazamiento hacia las edades más jóvenes, lo que no permite que los individuos inmaduros lleguen a reproducirse. Todas las edades a partir de los dos años sufren elevados niveles de mortalidad por pesca (Fig. 5).

Reclutamientos.

Los niveles de reclutamiento son muy variables en toda la serie, en el periodo más reciente solo se observan dos buenos reclutamientos 1998 y 1999, que son de los que actualmente está capturando la flota ejerciendo unas altas mortalidades por pesca. Resaltar que los dos últimos reclutamientos estimados por el modelo son menores que la media, aunque estas estimaciones son las que poseen mayor incertidumbre en el análisis. Si las estimaciones de los reclutamientos son correctas, se espera que las capturas del presente año y del que viene sufran una disminución apreciable (Fig. 6).

Se ha graficado el reclutamiento (edad 0) contra la biomasa reproductora (SSB) para comprobar si con la nueva información habría cambiado el MBAL (Límite Mínimo de Biomasa Reproductora Biológicamente Aceptable) calculado en 1998 por Lassen, Fernández, Molina y Guevara. Los resultados muestran que se puede utilizar el mismo valor (20.000 - 30.000 ton) para al menos fijar un límite inferior de niveles de SSB (Fig. 7).

Medidas de ordenamiento de la pesquería de merluza en vigor.

Todas las medidas de ordenamiento incorporadas en el Reglamento de Ordenamiento Pesquero del Recurso Merluza (Decreto Supremo Nº 029-2001-PE) (Anexo 2) me parecen adecuadas, excepto las siguientes:

Articulo 4.4 – "La sustitución de igual volumen de capacidad de bodega debe hacerse teniendo especial cuidado en que las nuevas embarcaciones incorporen tecnología moderna de extracción y conservación, según sea el caso."

En mi opinión el poder de pesca actual esta sobredimensionado para el recurso existente por lo que el cambio de las embarcaciones por otras de igual capacidad de bodega pero mayor efectividad, aumentaría más el esfuerzo efectivo de pesca ejercido sobre el stock con lo que se elevaría peligrosamente el nivel de sobreexplotación del recurso. Si se quiere fomentar la modernización de la flota se tendría que pensar en no hacerlo

1:1 según la capacidad de bodega, intentando adecuar la potencia de pesca total a la productividad del recurso.

Articulo 4.14 – "El Ministerio de Pesquería establece una cuota de captura anual (CCA) de merluza en base a las recomendaciones del IMARPE. Dicha cuota puede ser actualizada de acuerdo a los resultados de los cruceros de evaluación del recurso."

Pienso que esta medida, en combinación con la falta de cumplimiento de otras medidas técnicas recogidas en este decreto (talla mínima de captura, tamaño de malla mínimo), han provocado que en los últimos 6 años las capturas hallan estado compuestas de juveniles (ilegales) en un alto porcentaje en número, lo que ha llevado al recurso a la situación actual. Los barcos salen todos a competir por la mayor parte posible del CCA sin tener en cuenta las tallas de las capturas, esto se agrava por el hecho que la industria paga por tonelada de recurso, independientemente de la calidad del mismo (Talla).

Este problema se podría evitar repartiendo anualmente la cuota acordada entre la flota, mediante acuerdos con el sector pesquero y transformador, con lo que se evitaría la competencia individual por la cuota total y se podría dedicar más tiempo y esfuerzo a conseguir mejores tallas y calidades en las capturas, que la industria podría pagar a mejor precio.

Hay que tener en cuenta que no existen medidas de ordenación si no existe control y vigilancia de las mismas, por lo que es más practico y útil tener pocas medidas controlables que muchas sin control.

Relación esfuerzo de pesca disponibilidad del recurso

Los niveles de mortalidad por pesca actuales son muy elevados (Fbar = 1.37) e insostenibles, esto se agrava por el hecho de que el patrón de explotación actual no es el adecuado, ya que las edades jóvenes (2 y 3) sufren las mayores mortalidades por pesca desde hace varios años. Pescando a los niveles actuales y con el mismo patrón de explotación es muy posible que a muy corto plazo se alcance el límite inferior de SSB estimado en 20.000-30.000 ton, por lo que se deberían tomar medidas urgentes para bajar el nivel de mortalidad y cambiar el patrón de explotación actual.

Se realizó un análisis de rendimiento por recluta (condiciones de equilibrio, patrón de explotación y reclutamiento constantes) con los datos de entrada de la tabla 2 y el valor hallado de los puntos de referencia biológicos son los siguientes:

- Fmax (mortalidad por pesca que produce el máximo rendimiento por recluta en peso) se estimó igual a 0.529, que es el 62% menor del que actualmente se está aplicando.
- F0.1 (mortalidad por pesca resultante del 10% de la pendiente en el origen) se estimó en 0.27, que es el 80% menor de la que actualmente se está ejerciendo.
- F35% (mortalidad por pesca que me asegura dejar el 35% del nivel de SSB que tendríamos si no hubiese habido pesca) es de 0.3, que es el 77% menor de la que actualmente se está aplicando.

Comparando estos valores con los que actualmente está soportando la pesquería F = 1.37, nos podemos hacer una idea de cual es el nivel de reducción de esfuerzo que se tendría que aplicar para alcanzar un rendimiento óptimo con el actual patrón de explotación (Fig. 8).

Por otro lado podemos observar que las producciones por recluta que se están obteniendo con el actual patrón de explotación son muy bajas, por lo que se debería intentar optimizar la producción por recluta cambiando el patrón de explotación, intentando disminuir la mortalidad por pesca de las edades jóvenes (2 y 3), esto se podría lograr con un control sobre las tallas mínimas legales de desembarco y el tamaño mínimo de malla.

Revisión de las condiciones actuales del recurso y posibles medidas a adoptar.

El recurso a 1 de enero del 2001 se encontraba en un estado preocupante y toda la información recogida durante el 2001 y el 2002 nos hace pensar que la situación del mismo incluso ha empeorado.

Desde el punto de vista biológico, la mejor medida sería cerrar la pesquería, para permitir una recuperación del recurso lo más rápido posible, pero sí desde la óptica socioeconómica se quiere mantener la pesquería abierta, esta tendría que soportar niveles de mortalidad mucho más bajos y cambiar el patrón de explotación radicalmente, para permitir que los nuevos reclutas puedan ingresar en cantidades suficientes al SSB y optimizar la potencialidad productiva del stock.

La recuperación progresiva del recurso se podría lograr, indirectamente, con cuotas de captura permitidas muy pequeñas y con medidas de tallas y mallas mínimas legales acordes con la mejora del patrón de explotación que se quiera implantar. Estas medidas se tendrían que cumplir escrupulosamente, intentando que el nivel de SSB se incremente sustancialmente cada año.

Uno de los objetivos de la ordenación para alcanzar el objetivo anterior, podría ser que cada año aumentase el SSB en un porcentaje establecido

con respecto al año anterior. Hay que resaltar que el riesgo y el tiempo de recuperación del stock aumenta a medida que aumenta el nivel de mortalidad por pesca que se quiera asumir.

Se han realizado unas proyecciones a tres años (corto plazo), con la estructura de población obtenida del APV para el año 2001, asumiendo un reclutamiento constante, que se ha decidido sea la media geométrica de los reclutamientos obtenidos entre 1997-2000, se ha elegido este periodo por considerar que el nivel de SSB es similar al actual (1 de enero del 2001). Se ha tomado como patrón de explotación el del 2001 proyectándose como constante hasta el 2003. En la Tabla 3 se presentan todas las entradas para este ejercicio.

Los resultados muestran que a principios del 2002 había una biomasa total de 111.370 ton, de las cuales 57.986 ton eran de SSB y se calcula para ese año unas capturas de 49.442 ton. Este resultado nos hace pensar que el modelo empleado tiene una aceptable capacidad de predicción, ya que nos encontramos en diciembre del 2002 y se llevan pescado alrededor de 42.000 ton.

A comienzos del año 2003 se tendría una biomasa total de 108.794 ton de las cuales tan solo 29.403 son de SSB, hay que recordar que el nivel mínimo aceptable de SSB se estimaba entre 20.000 - 30.000 ton, por lo que nos encontraríamos en una zona de máximo riesgo para el stock.

Lo que pasaría dependiendo del nivel de pesca que se quiera asumir durante el 2003, con sus capturas correspondientes y las biomasas que nos quedarían a comienzos del 2004 se muestra en la Figura 9 y la Tabla 4. Resaltar que estas cifras no se deben tomar como absolutas porque no recogen la incertidumbre inherente al modelo y a la propia información utilizada.

En la Figura 10 y la Tabla 5, se muestran la contribución en peso (%) en las proyecciones, de las clases anuales más recientes en las capturas y SSB, bajo un escenario de Statu quo, es decir, que pasaría en el 2002, 2003 y 2004 si se pescara igual que el 2001 (mismo patrón de explotación y mismo nivel de F). Los resultados nos muestran que las capturas del 2003 estarán compuestas en un 75% por solo dos clases anuales (2002 y 2001), con lo que el nivel de las capturas va a depender mucho de los niveles de reclutamiento reales que se produzcan esos años (el modelo asume un reclutamiento medio para el año 2002). Si observamos la composición del SSB a principios del 2004 la situación es peor, ya que como se observa, más del 65% del mismo dependerá de la fuerza de la clase anual del 2002, estando las otras clases anuales muy poco representadas. Esta composición nos indica que los niveles de incertidumbre en las proyecciones realizadas son muy altos, ya que los valores obtenidos dependen en gran medida de la asunción del reclutamiento medio realizada, por lo que los valores reales dependerán en gran medida de los verdaderos reclutamientos del año 2001 y 2002.

A medio plazo, se debería intentar gestionar el recurso de acuerdo con el Enfoque Precautorio (FAO 1996). Uno de los métodos para implementar el Enfoque Precautorio es el acordado por el Advisory Committee on Fisheries Management del ICES en 1998, cuya filosofía es la siguiente:

"En orden a mantener la explotación de stocks dentro de los límites biológicos seguros, debería haber una alta probabilidad de que:

- El SSB esté por encima de un nivel al cual el reclutamiento se vea afectado (Blim).
- La mortalidad por pesca debe estar por debajo del valor que lleve al SSB a alcanzar el nivel donde el reclutamiento se vea afectado (Flim).

Para tener una alta probabilidad de no llegar a estos valores, se deberían tomar medidas de gestión antes de que estos niveles sean alcanzados. La precisión con la que se determinen estos niveles y se conozca la situación actual del stock, así como el riesgo aceptable, son factores muy importantes para determinar la distancia entre los valores límite y el momento de tomar medidas de gestión. Una mayor precisión en la evaluación tendría como consecuencia una menor distancia entre los valores límite y los puntos de referencia precautorios. Si la evaluación fuese menos precisa la distancia debería ser mayor. ICES ha definido Bpa como el valor de SSB por debajo del cual se deberían tomar medidas de gestión y Fpa como la mortalidad pesquera por encima de la cual se deberían tomar medidas para llevar al stock dentro de los valores precautorios. "

Para realizar una gestión de este stock acorde con el Enfoque Precautorio se debería, a corto plazo, determinar los puntos de referencia límite y precautorios para el stock de merluza (Blim, Flim, Bpa, Fpa) con el fin de realizar proyecciones a medio plazo bajo distintos escenarios, con el objetivo de establecer un plan de recuperación del stock acorde con el Enfoque Precautorio, teniendo en cuenta la incertidumbre de las evaluaciones y el riesgo que se quiera asumir.

Para disminuir la incertidumbre en la evaluación del stock se podría intentar obtener los índices de abundancia por edad de la serie de Cruceros (CPUE por edad) e intentar realizar un APV calibrado con diferentes métodos (ADAPT, XSA) con estos índices, así como un análisis exploratorio profundo de los datos de entrada al APV y de los resultados de los cruceros.

Fernando González Costas

Vigo 14 de Enero del 2003

Bibliografía

Chirichigno, N. Y J. Vélez. 1998. Clave para Identificar los Peces Marinos del Perú. (Segunda Edición). Publicación Especial Inst. Mar Perú-Callao, 500 p.

Raúl Castillo, Manuel Samamé, Flor Fernández. 2001. Distribución y Estructura Poblacional de la Merluza Peruana (Merluccius gayi peruanus). Forum de la merluza peruana.

Carlos M. Salazar Céspedes y Raúl Flores Romaní. 2001. Flota Merlucera, Sistema de Pesca y Plantas de Procesamiento. Forum de la merluza peruana.

Pope, J.G. 1972. An investigation of the accuracy of virtual populations analysis using cohort analysis. Res.Bull.ICNAF, (9):65-74.

GARVARIS, S. 1988. An adaptive framework for the estimation of population size. Canadian. Atlantic Fisheries Scientific Advisory Committee. CAFSAC Research Document 88/29.

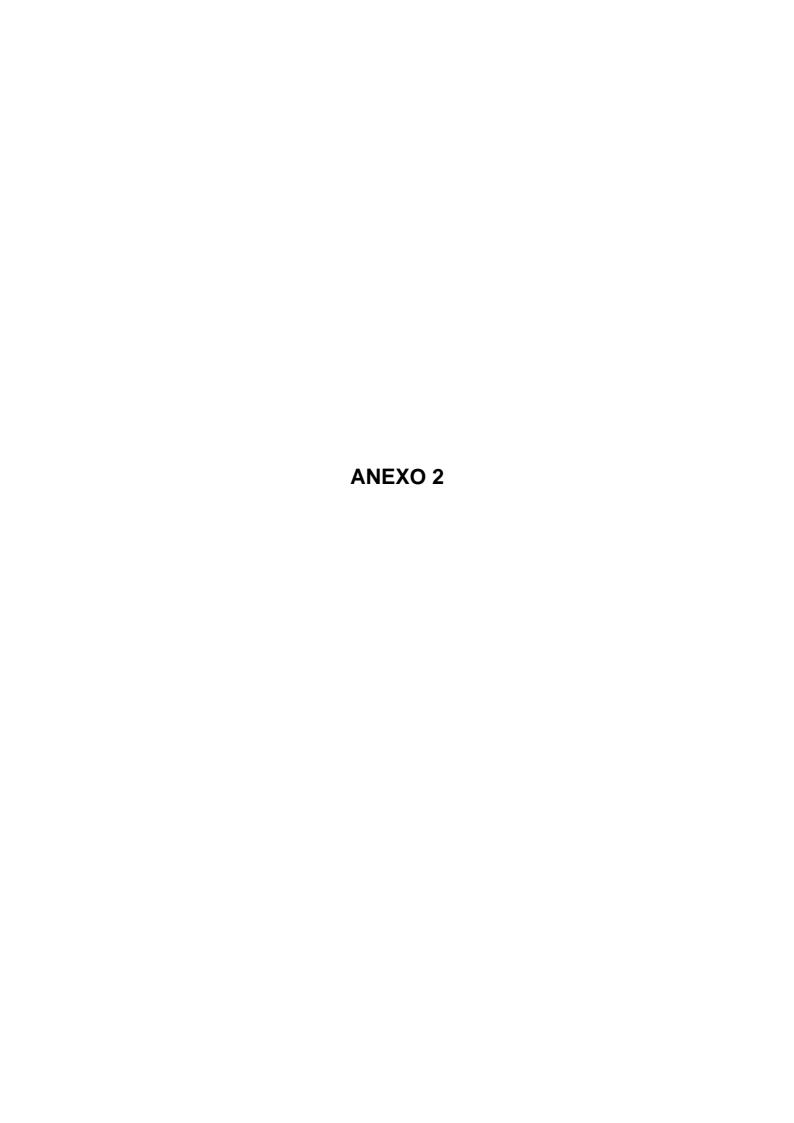
Hans Lassen, Flor Fernández, Patricia Molina y Renato Guevara. 1998. Taller Regional de Evaluación de Recursos Demersales y ordenamiento Pesquero. Evaluación del stock de Merluza (*Merluccius gayi peruanus*) entre 1971 y 1997.

FAO.1996. Precautionary approach to capture fisheries and species introductions. Elaborated by the technical consultation on the Precautionary Approach to Capture Fisheries (Including Species Introductions). Lysekil, Sweden, 6-13 June 1995. FAO Technical Guidelines for Responsible Fisheries. No 2. Rome, 54p.

ICES. 1998. Report of the ICES Advisory Committee on Fishery Managemment. ICES Coop. Res. Report 229.

DARBY, C.D. & S. FLATMAN. 1994. Virtual population analysis: version 3.1 (Windows/DOS) user guide. Information Technology Series No. 1. Ministry of Agriculture, Fisheries and Food. Directorate of Fisheries Research, Lowestoft, UK.

Los programas utilizados para realizar los rendimientos por recluta y las proyecciones a corto plazo así como sus manuales, están disponibles en la pagina oficial del ICES (www.ices.dk) y han sido desarrollados por Smith y Kell en el laboratorio de Lowestoft de CEFAS.



	(Capturas en	Número de	individuo	s (miles) po	or edad y a	año	
	0	1	2	3	4	5	6	7+
1971	0.000	0.000	0.000	2292.959	21286.175	10769.388	3973.481	1900.622
1972	0.000	0.000	3.487	194.149	9490.847	5297.952	1910.578	1118.733
1973	0.000	0.000	16643.290	77722.799	132786.984	29065.762	9127.109	3677.131
1974	0.000	0.000	3945.210	74012.792	107914.945	26642.959	8914.035	3942.679
1975	0.000	0.000	2570.642	63711.122	108565.879	8869.642	1766.098	2701.104
1976	0.000	0.000	185.166	22138.561	123137.944	25944.576	2930.770	1609.856
1977	0.000	0.000	8981.907	140649.487	103871.970	9087.539	1894.533	1358.228
1978	0.000	0.000	4448.494	398596.531	357290.422	10248.906	2472.758	1712.806
1979	0.000	0.000	1468.978	86511.702	108223.397	9263.349	975.069	905.825
1980	0.000	0.000	5439.975	145477.587	179605.523	17242.247	2449.173	2657.181
1981	0.000	535.549	17384.528	58701.204	71147.298	9988.305	2814.248	1622.113
1982	0.000	0.000	1325.939	20559.356	29980.063	3502.300	879.863	436.522
1983	0.000	0.175	76.034	3879.906	7403.911	1257.092	35.212	16.580
1984	0.000	38.024	1765.794	9418.634	7692.107	2253.122	781.662	560.805
1985	0.000	0.342	2315.815	23422.993	14135.784	6099.280	1595.076	895.240
1986	0.000	6.956	3394.865	42489.785	18039.467	6445.393	2419.642	1956.119
1987	0.000	1.129	120.510	36182.645	24905.849	2270.994	1168.906	2067.165
1988	0.000	6.251	427.320	98488.565	61561.872	5458.723	3003.153	1670.859
1989	0.000	0.000	231.285	57159.948	104670.616	17838.039	2837.706	4221.128
1990	21.842	165.542	2885.053	39551.348	186929.411	32055.604	2063.557	2228.096
1991	0.000	977.990	13771.147	37642.702	94504.140	16294.736	1455.035	1357.802
1992	0.000	192.681	60027.940	54978.041	8909.538	2631.895	483.295	145.867
1993	0.000	59362.896	170365.531	101766.021	6579.939	2067.982	1346.090	735.173
1994	0.000	16088.440	399487.182	289469.323	33189.714	3703.615	2680.528	2204.352
1995	1372.541	940844.390	191868.622	172526.081	49147.349	5808.457	2183.167	2879.445
1996	0.000	34.487	260764.459	436828.331	67911.023	11054.307	7662.644	2380.084
1997	0.003	247.177	40772.396	354531.534	52136.522	6022.134	2917.188	2626.836
1998	0.000	4612.077	70396.283	268252.446	17040.315	2241.344	1087.759	950.457
1999	205.802	22413.646	93653.479	22694.738	15084.019	3032.828	977.936	435.073
2000	2689.206	78825.551	409681.500	85170.267	12556.621	5394.171	1753.286	91.796
2001	781.203	77742.028	775593.690	84253.169	12493.674	5894.485	2270.078	73.067

Peso	s Medio	os (kg.)	por ed	ad y ar̂ Stock	io en la	s Capt	uras y	en el	Captura Total (ton)
	0	1	2	3	4	5	6	7+	
1971	0.026	0.083	0.218	0.341	0.535	0.745	0.941	1.191	27413
1972	0.025	0.083	0.218	0.379	0.570	0.737	0.961	1.208	12581
1973	0.025	0.083	0.210	0.311	0.516	0.720	1.136	1.471	132856
1974	0.025	0.083	0.199	0.309	0.509	0.673	0.975	1.055	109317
1975	0.025	0.083	0.205	0.323	0.477	0.661	1.176	1.506	84898
1976	0.025	0.083	0.204	0.342	0.500	0.704	1.004	1.484	92802
1977	0.025	0.083	0.233	0.311	0.488	0.699	1.068	1.397	106799
1978	0.025	0.083	0.234	0.325	0.448	0.734	1.209	1.446	303495
1979	0.025	0.083	0.239	0.361	0.484	0.710	1.162	1.421	92954
1980	0.025	0.083	0.239	0.353	0.488	0.720	1.190	1.408	159376
1981	0.024	0.057	0.180	0.359	0.472	0.648	1.091	1.203	69293
1982	0.024	0.091	0.238	0.392	0.481	0.633	1.115	1.189	26498
1983	0.030	0.094	0.163	0.374	0.477	0.614	1.237	1.238	2910
1984	0.017	0.072	0.194	0.393	0.535	0.863	1.430	1.575	9410
1985	0.032	0.101	0.266	0.416	0.553	0.808	1.162	1.367	16855
1986	0.023	0.085	0.264	0.397	0.519	0.861	1.344	1.533	38576
1987	0.016	0.070	0.198	0.385	0.494	0.807	1.073	1.286	28000
1988	0.020	0.069	0.192	0.399	0.484	0.755	1.118	1.334	73488
1989	0.018	0.063	0.186	0.381	0.457	0.590	0.943	1.221	80536
1990	0.021	0.064	0.189	0.368	0.481	0.558	0.883	1.186	127396
1991	0.014	0.061	0.122	0.340	0.481	0.615	0.892	1.229	74400
1992	0.015	0.062	0.123	0.335	0.470	0.597	0.860	1.176	32400
1993	0.018	0.074	0.137	0.316	0.460	0.709	0.863	1.104	66341
1994	0.016	0.068	0.142	0.295	0.431	0.667	0.814	1.045	164226
1995	0.022	0.060	0.139	0.345	0.447	0.648	0.835	1.009	173299
1996	0.027	0.099	0.219	0.296	0.453	0.723	0.970	1.012	234913
1997	0.025	0.089	0.201	0.293	0.414	0.661	0.929	1.078	143352
1998	0.024	0.071	0.135	0.237	0.336	0.540	0.702	0.895	82022
1999	0.025	0.083	0.133	0.319	0.434	0.600	0.868	0.980	31193
2000	0.029	0.079	0.129	0.235	0.411	0.515	0.630	0.748	88091
2001	0.029	0.086	0.122	0.239	0.409	0.527	0.640	0.743	131381

	Oji	va de n	nadure	ez por	edad	y año			Mortalidad natural
	0	1	2	3	4	5	6	7+	
1971	0.00	0.00	0.02	0.56	0.96	1.00	1.00	1.00	0.38
1972	0.00	0.00	0.02	0.56	0.96	1.00	1.00	1.00	0.38
1973	0.00	0.00	0.02	0.56	0.96	1.00	1.00	1.00	0.38
1974	0.00	0.00	0.02	0.56	0.96	1.00	1.00	1.00	0.38
1975	0.00	0.00	0.02	0.56	0.96	1.00	1.00	1.00	0.38
1976	0.00	0.00	0.02	0.56	0.96	1.00	1.00	1.00	0.38
1977	0.00	0.00	0.02	0.56	0.96	1.00	1.00	1.00	0.38
1978	0.00	0.00	0.02	0.56	0.96	1.00	1.00	1.00	0.38
1979	0.00	0.00	0.02	0.56	0.96	1.00	1.00	1.00	0.38
1980	0.00	0.00	0.00	0.55	0.96	0.99	0.99	0.99	0.38
1981	0.00	0.00	0.00	0.56	0.97	1.00	1.00	1.00	0.38
1982	0.00	0.00	0.00	0.56	0.98	1.00	1.00	1.00	0.38
1983	0.00	0.00	0.03	0.56	0.95	0.99	1.00	1.00	0.38
1984	0.00	0.00	0.06	0.56	0.92	0.99	1.00	1.00	0.38
1985	0.00	0.00	0.04	0.50	0.89	0.98	0.99	0.99	0.38
1986	0.00	0.00	0.03	0.48	0.84	0.97	0.99	0.99	0.38
1987	0.00	0.00	0.00	0.29	0.74	0.93	0.99	0.99	0.38
1988	0.00	0.00	0.01	0.58	0.95	1.00	1.00	1.00	0.38
1989	0.00	0.00	0.00	0.41	0.93	0.99	1.00	1.00	0.38
1990	0.00	0.00	0.05	0.46	0.92	0.99	1.00	1.00	0.38
1991	0.00	0.00	0.08	0.54	0.95	1.00	1.00	1.00	0.38
1992	0.00	0.01	0.28	0.64	0.93	0.99	1.00	1.00	0.38
1993	0.00	0.01	0.47	0.95	1.00	1.00	1.00	1.00	0.38
1994	0.00	0.00	0.09	0.81	1.00	1.00	1.00	1.00	0.38
1995	0.00	0.00	0.13	0.82	1.00	1.00	1.00	1.00	0.38
1996	0.00	0.00	0.22	0.83	0.98	1.00	1.00	1.00	0.38
1997	0.00	0.00	0.15	0.71	0.96	0.99	1.00	1.00	0.38
1998	0.00	0.05	0.52	0.85	0.98	1.00	1.00	1.00	0.38
1999	0.00	0.09	0.70	0.93	1.00	1.00	1.00	1.00	0.38
2000	0.00	0.07	0.77	0.96	1.00	1.00	1.00	1.00	0.38
2001	0.00	0.06	0.71	0.96	1.00	1.00	1.00	1.00	0.38

	Abundancias totales estimadas por los cruceros por edad y año											
	0	1	2	3	4	5	6	7+				
1995		429681338	600106175	301950062	46061012	6228641	2948534					
1996												
1997		234882800	357138650	348053879	58291055	14377277	10518678					
1998		121467118	771047160	344429690	37506627	8600800	3193443					
1999		48300215	76906599	39637435	16013584	2812243	807613					
2000		254677791	385150736	65959066	23713937	3527734	788322					
2001		143181145	920414489	91641878	9949850	6490723	2715000					

Abunda	ancias (m	iles indiv	iduos) es	stimadas	por el Al	PV por e	edad y a	ño
	0	1	2	3	4	5	6	7+
1971	1159591	683283	458000	131255	66728	31455	11749	5620
1972	1035131	792999	467271	313208	87864	28030	12605	7381
1973	762314	707886	542302	319545	214030	52238	14788	5958
1974	2613728	521317	484096	357096	154251	36558	11688	5169
1975	2302035	1787428	356509	327792	182999	16245	2968	4539
1976	1422948	1574273	1222353	241677	171478	35366	3775	2073
1977	976701	973099	1076584	835767	146966	15437	2730	1957
1978	440116	667928	665465	728807	455237	14606	3042	2107
1979	218121	300978	456770	451407	168780	15855	1513	1406
1980	156394	149165	205827	311153	237158	25926	3182	3452
1981	195189	106952	102008	136259	92481	13657	3471	2001
1982	268336	133482	72697	55383	44639	4409	1080	536
1983	389321	183505	91283	48619	20873	5734	119	56
1984	655120	266242	125492	62362	30040	8151	2882	2068
1985	1229014	448012	182041	84359	34858	14182	3711	2083
1986	1400051	840475	306378	122576	38320	12149	4655	3763
1987	753724	957441	574763	206712	48687	11288	2978	5266
1988	282066	515443	654756	392958	111441	12699	5841	3250
1989	358115	192894	352486	447409	187283	25301	4170	6204
1990	883535	244901	131913	240860	258697	41517	2551	2755
1991	1937699	604197	167342	87824	132008	22330	1883	1758
1992	2238517	1325118	412379	103050	28931	12124	1795	542
1993	2507353	1530835	906037	232369	25008	12417	6115	3340
1994	3835845	1714682	997789	478719	74752	11660	6781	5577
1995	1283007	2623186	1159300	351989	87998	23673	4911	6478
1996	412839	876264	1015856	634133	98040	19536	11386	3537
1997	657376	282324	599214	479063	72420	10886	4218	3798
1998	1505244	449554	192866	376063	34430	6411	2465	2153
1999	2474172	1029378	303619	73679	35341	9454	2530	1126
2000	310058	1691821	685417	130186	31619	11694	3957	207
2001	441534	209813	1091785	129940	18597	11239	3537	114

Tabla 1.- Abundancias resultantes del APV

Morta	alidades _l	por Pes	ca (F) es	stimada	s por al	APV po	r edad y	año
	0	1	2	3	4	5	6	7+
1971	0.000	0.000	0.000	0.021	0.487	0.534	0.511	0.511
1972	0.000	0.000	0.000	0.001	0.140	0.259	0.200	0.200
1973	0.000	0.000	0.038	0.348	1.387	1.117	1.252	1.252
1974	0.000	0.000	0.010	0.289	1.871	2.131	2.001	2.001
1975	0.000	0.000	0.009	0.268	1.264	1.079	1.172	1.172
1976	0.000	0.000	0.000	0.117	2.028	2.181	2.104	2.104
1977	0.000	0.000	0.010	0.228	1.929	1.244	1.587	1.587
1978	0.000	0.000	0.008	1.083	2.977	1.887	2.432	2.432
1979	0.000	0.000	0.004	0.264	1.493	1.226	1.360	1.360
1980	0.000	0.000	0.032	0.833	2.474	1.631	2.053	2.053
1981	0.000	0.006	0.231	0.736	2.663	2.158	2.411	2.411
1982	0.000	0.000	0.022	0.596	1.672	3.236	2.454	2.454
1983	0.000	0.000	0.001	0.101	0.560	0.308	0.434	0.434
1984	0.000	0.000	0.017	0.202	0.371	0.407	0.389	0.389
1985	0.000	0.000	0.016	0.409	0.674	0.734	0.704	0.704
1986	0.000	0.000	0.013	0.543	0.842	1.026	0.934	0.934
1987	0.000	0.000	0.000	0.238	0.964	0.279	0.621	0.621
1988	0.000	0.000	0.001	0.361	1.103	0.734	0.918	0.918
1989	0.000	0.000	0.001	0.168	1.127	1.914	1.520	1.520
1990	0.000	0.001	0.027	0.221	2.070	2.713	2.391	2.391
1991	0.000	0.002	0.105	0.730	2.008	2.141	2.074	2.074
1992	0.000	0.000	0.194	1.036	0.466	0.304	0.385	0.385
1993	0.000	0.048	0.258	0.754	0.383	0.225	0.304	0.304
1994	0.000	0.011	0.662	1.314	0.770	0.485	0.627	0.627
1995	0.001	0.569	0.223	0.898	1.125	0.352	0.739	0.739
1996	0.000	0.000	0.372	1.790	1.818	1.153	1.485	1.485
1997	0.000	0.001	0.086	2.253	2.045	1.105	1.575	1.575
1998	0.000	0.012	0.582	1.985	0.913	0.550	0.731	0.731
1999	0.000	0.027	0.467	0.466	0.726	0.491	0.608	0.608
2000	0.011	0.058	1.283	1.566	0.654	0.816	0.735	0.735
2001	0.002	0.575	1.673	1.377	1.480	0.947	1.350	1.350

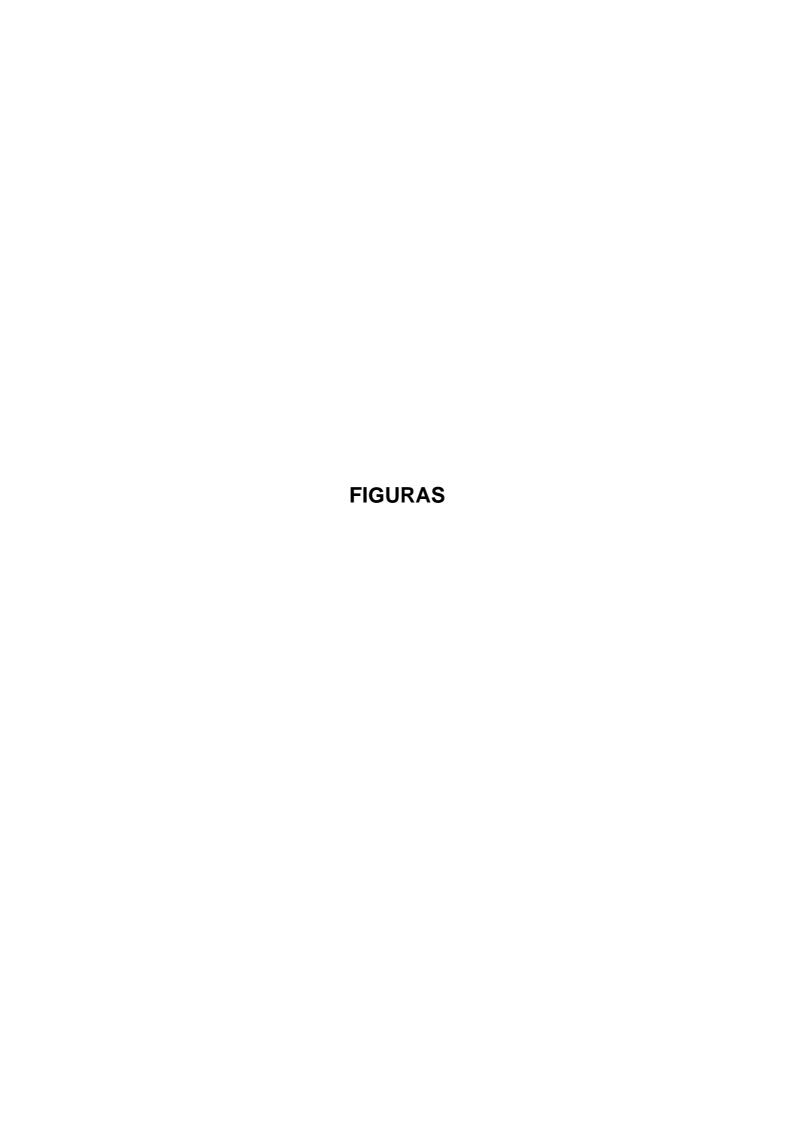
Tabla1 Conti.- Mortalidades por pesca resultantes del APV.

Edad	M	Madurez	PF	PM	Peso Stock	F	Peso Captura (Kg.)
0	0.38	0	0	0	0.027	0.002	0.027
1	0.38	0.06	0	0	0.083	0.575	0.083
2	0.38	0.71	0	0	0.128	1.673	0.128
3	0.38	0.96	0	0	0.264	1.377	0.264
4	0.38	1	0	0	0.418	1.480	0.418
5	0.38	1	0	0	0.547	0.947	0.547
6	0.38	1	0	0	0.713	1.350	0.713
7	0.38	1	0	0	0.824	1.350	0.824

Tabla 2.- Datos de entrada del Rendimiento por recluta

2002								
Edad	Abundancias	М	Madurez	PF	PM	Peso Stock	F	Peso Captura
0	933412.233	0.38	0	0	0	0.027	0.002	0.027
1	301306.233	0.38	0.06	0	0	0.083	0.575	0.083
2	80717.240	0.38	0.71	0	0	0.128	1.673	0.128
3	140070.341	0.38	0.96	0	0	0.264	1.377	0.264
4	22430.605	0.38	1	0	0	0.418	1.480	0.418
5	2894.988	0.38	1	0	0	0.547	0.947	0.547
6	2980.184	0.38	1	0	0	0.713	1.350	0.713
7	627.283	0.38	1	0	0	0.824	1.350	0.824
2003								
Edad	Abundancias	М	Madurez	PF	PM	Peso Stock	F	Peso Captura
0	933412.233	0.38	0	0	0	0.027	0.002	0.027
1		0.38	0.06	0	0	0.083	0.575	0.083
2		0.38	0.71	0	0	0.128	1.673	0.128
3		0.38	0.96	0	0	0.264	1.377	0.264
4		0.38	1	0	0	0.418	1.480	0.418
5		0.38	1	0	0	0.547	0.947	0.547
6		0.38	1	0	0	0.713	1.350	0.713
7		0.38	1	0	0	0.824	1.350	0.824
2004			1					
Edad	Abundancias	М	Madurez	PF	PM	Peso Stock	F	Peso Captura
0	933412.233	0.38	0	0	0	0.027	0.002	0.027
1		0.38	0.06	0	0	0.083	0.575	0.083
2		0.38	0.71	0	0	0.128	1.673	0.128
3		0.38	0.96	0	0	0.264	1.377	0.264
4		0.38	1	0	0	0.418	1.480	0.418
5		0.38	1	0	0	0.547	0.947	0.547
6		0.38	1	0	0	0.713	1.350	0.713
7		0.38	1	0	0	0.824	1.350	0.824
Unidade	s: Abundancias ı	miles y p	esos Kg.					

Tabla 3.- Datos de entrada para realizar las proyecciones a corto plazo.


2002				
Biomasa	SSB	FMult	Fbar (2-6)	Capturas
111370	57986	1	1.365	49442

2003					2004	
Biomasa	SSB	FMult	FBar	Capturas	Biomasa	SSB
108794	29403	0	0	0	169427	77351
	29403	0.1	0.136	6079	161193	70160
	29403	0.2	0.273	11543	153878	63816
	29403	0.3	0.409	16468	147363	58208
	29403	0.4	0.546	20917	141544	53237
	29403	0.5	0.682	24948	136334	48820
	29403	0.6	0.819	28609	131657	44886
	29403	0.7	0.955	31942	127447	41373
	29403	0.8	1.092	34985	123649	38228
	29403	0.9	1.228	37769	120212	35405
	29403	1	1.365	40323	117095	32865
	29403	1.1	1.501	42671	114262	30574
	29403	1.2	1.638	44834	111680	28502
	29403	1.3	1.775	46831	109321	26623
	29403	1.4	1.911	48679	107162	24916
	29403	1.5	2.048	50392	105181	23361
	29403	1.6	2.184	51983	103360	21941
	29403	1.7	2.321	53463	101683	20643
	29403	1.8	2.457	54843	100135	19452
	29403	1.9	2.594	56131	98704	18358
	29403	2	2.730	57335	97379	17351
Unidades e	n Toneladas	S.				

Tabla 4.- Resultado de las proyecciones a corto plazo.

				T		1_
Clase anual	1999	2000	2001	2002	2003	Otros
Reclutas (0)	2474171.92	310058.227	472360.893	933412.233	933412.233	
Fuente	APV	APV	APV	Media Geométrica (1997-2000)	Media Geométrica (1997-2000)	
F Status quo						
% Capturas						Resto Cohortes
2002	48.6	14.8	18.6	0.1		17.8
2003	16.8	4.4	26.1	48.3	0.1	4.2
% SSB						
2002	61.3	12.6	2.6	0.0		23.5
2003	34.4	8.9	35.8	10.7	0.0	10.2
2004	6.3	2.3	11.5	67.7	9.6	2.6

Tabla 5 .-Número de reclutas y su fuente para las clases anuales más recientes usadas en las predicciones y su contribución en peso (%) a las capturas y al SSB bajo Status Quo.

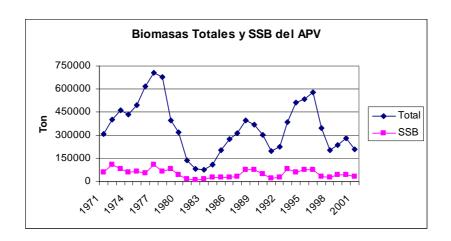


Figura 1.- Biomasas Totales y SSB resultado del APV.

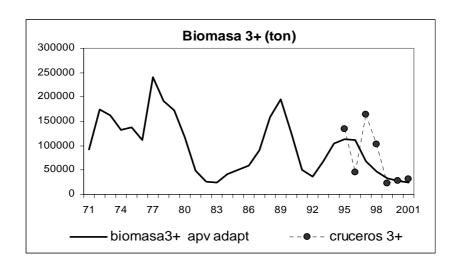


Figura 2 .- Comparación de las biomasas 3+ resultado del APV y de los cruceros.

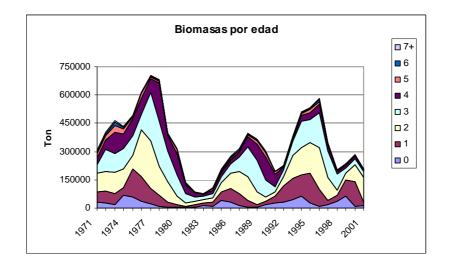


Figura 3 .- Biomasas por edad resultado del APV

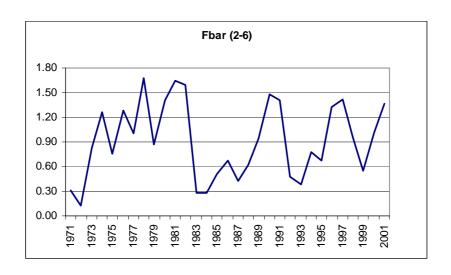


Figura 4 .- F media de la edad 2 a la 6 resultado del APV

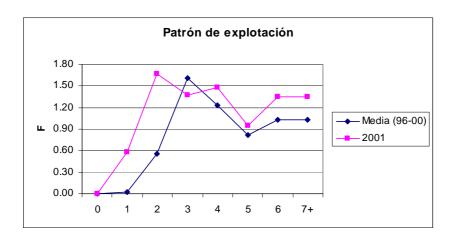


Figura 5 .-Comparación del patrón de explotación del año 2001 con la media del año 1996-2000.

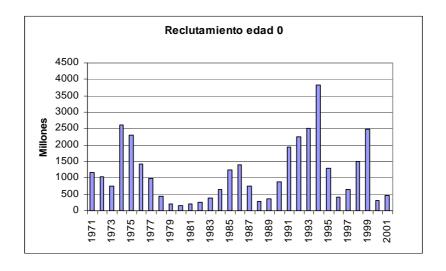


Figura 6 .- Reclutamientos a la edad 0 resultado del APV.

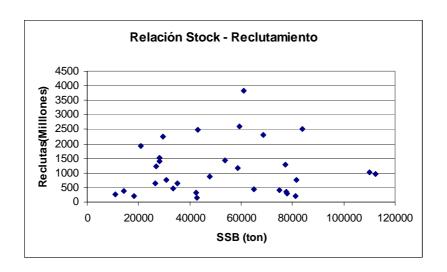


Figura 7 .- Relación stock reclutamiento (edad 0) resultado del APV.

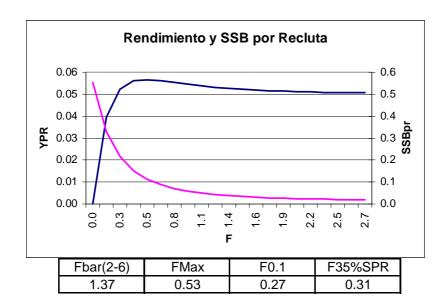


Figura 8 .- Rendimiento, SSB por recluta y puntos de referencia.

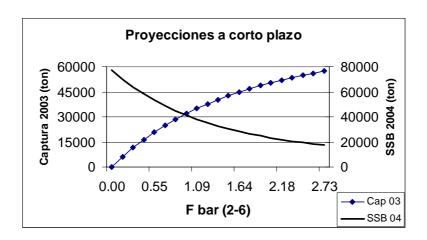


Figura 9 .- Capturas para el 2003 y SSB a comienzos del 2004, resultado de las proyecciones a corto plazo.

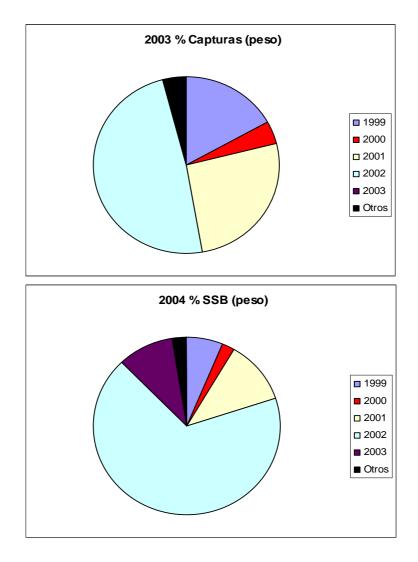


Figura 10 .- Contribución en peso de las distintas clases anuales en las capturas del 2003 y el SSB 2004 bajo régimen de Status Quo.