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in-situ ice core data versus true atmospheric signals
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During the last glacial/interglacial transition the Earth's climate underwent abrupt chan-
ges around 14.6 kyr ago. Temperature proxies from ice cores revealed the onset of the
Bglling/Allergd (B/A) warm period in the north and the start of the Antarctic Cold
Reversal in the south. Furthermore, the B/A is accompanied by a rapid sea level rise
of about 20 m during meltwater pulse (MWP) 1A, whose exact timing is a matter of
current debate. In-situ measured CO; in the EPICA Dome C (EDC) ice core also revealed
a remarkable jump of 1041 ppmv in 230 yr at the same time. Allowing for the modelled
age distribution of CO3 in firn we show, that atmospheric CO, could have jumped by
20-35ppmv in less than 200yr, which is a factor of 2-3.5 larger than the CO, signal
recorded in-situ in EDC. This rate of change in atmospheric CO, corresponds to 29-50%
of the anthropogenic signal during the last 50 yr and is connected with a radiative for-
cing of 0.59-0.75 W m~2. Using a model-based airborne fraction of 0.17 of atmospheric
CO> we infer that 125 Pg of carbon need to be released to the atmosphere to produce
such a peak. If the abrupt rise in CO, at the onset of the B/A is unique with respect
to other Dansgaard/Oeschger (D/O) events of the last 60kyr (which seems plausible if
not unequivocal based on current observations), then the mechanism responsible for it
may also have been unique. Available 6'3CO, data are neutral whether the source of
the carbon is of marine or terrestrial origin. We therefore hypothesise that most of the
carbon might have been activated as consequence of continental shelf flooding during
MWP-1A. This potential impact of rapid sea level rise on atmospheric CO> might define
the point of no return during the last deglaciation.
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Climate records during MIS 3 and Termination |. From top to bottom: relative sea le-
vel, CO,, CH,4 and isotopic temperature proxies (6D or §%0) from Antarctica (black)
and Greenland (red). (A) MIS 3 data (Ahn & Brook 2008) from the Byrd and GISP2 ice
cores. (B) Termination | data from the EDC and NGRIP ice cores (Monnin et al. 2001;
Spahni et al. 2005; Stenni et al. 2001; NorthGRIP-members 2004) on the new synchroni-
sed ice core age scale (Lemieux-Dudon et al. 2010). Previous (blue) and new (cyan) EDC
CO, data (Monnin et al. 2001; Lourantou et al. 2010). Sea level in MIS 3 from a compi-
lation (magenta) based on coral reef terraces (Thompson & Goldstein 2007), and the syn-
thesis (green) from the Red Sea method (Siddall et al. 2008) and for Termination | from
corals (green) on Barbados, U-Th dated and uplift-corrected (Peltier & Fairbanks 2007),
and coast line migration (magenta) on the Sunda Shelf (Hanebuth et al. 2000). Vertical
lines in (B) mark the jump in CO; into the B/A as recorded in EDC.
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Left: Gas age distribution as function of climate state, here pre-industrial (PRE),
Bglling/Allergd (B/A) and LGM conditions. Calculation with a firn densification mo-
del (Joos & Spahni 2008) (solid lines, for PRE and LGM) and approximations of all
three climate states by a lognormal function (broken). Right: The evolution of the
mean gas age (£1o) during the last 20 kyr calculated with a firn densification mo-
del including heat diffusion (Goujon et al. 2003). Green diamonds represent the re-
sults for the LGM and pre-industrial climate with another firn densification model
(Joos & Spahni 2008). Please note reverse y-axis. Top: EDC CO, (Monnin et al. 2001;
Lourantou et al. 2010). Bottom: EDC 6D data (Stenni et al. 2001). All records on the
new age scale (Lemieux-Dudon et al. 2010).
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Left: Simulations of the carbon cycle model BICYCLE for an injection of 125 PgC into the
atmosphere. Injected carbon was either of terrestrial (T: 63C = —22.5%0) or marine (M:

813C = —8.5%q) origin. Release of C occurred between 50 and 300 years. (A) Atmosphe-
ric CO; from simulations and from ice cores. Siple Dome (Ahn et al. 2004) (SD, own age
scale on top x-axis) and Taylor Dome (Smith et al. 1999) (TD, on revised age scale as in
(Ahn et al. 2004)). All CO, data synchronised to the CO; jump. (B) Simulated CO; va-
lues of (A) after the application of the gas age distribution potentially be recorded in EDC
and EDC data. (C, D) Same simulations for atmospheric 53C0,, cyan dots are new EDC
§13CO, data (Lourantou et al. 2010). Right: Greenhouse gas records (Talos Dome N,O,
EDC CO,, Greenland composite CH4) and their radiative forcing during Termination I.
Black lines are running means over 290 yr (to reduce sampling noise) of resamplings with
10 yr equidistant spacing. The two CO;, jump scenarios are the minimum and maximum
injection scenarios from our BICYCLE simulations which are still in line with the in-situ
CO; data in EDC. The 50-yr and 200-yr injection scenario contains a constant injection
flux of either 2.5 and 0.625 PgC yr™", respectively, over the given time window. The
calculated radiative forcing uses equations summarised in (K&hler et al. 2010) including
a 40% enhancement of the effect of methane (Hansen et al. 2008).

Meltwater Pulse 1A: The Flooding Hypothesis
Meltwater Pulse 1A (MWP-1A) changed the relative sea level from at maximum —96 m
to =70 m. The onset in atmospheric CO, falls together with the earliest timing of MWP-
1A (grey band) (Hanebuth et al. 2000; Kienast et al. 2003; Deschamps et al. 2009) and
might explain 51-93% of the C necessary to be injected into the atmosphere.



