Stress fluctuation and microrheology in endothelial cells, Biophys J 90(Suppl 1)


Contact
Daniel.Zitterbart [ at ] awi.de

Abstract

Important processes of living cells, including intracellular transport, cell crawling, contraction, division, and mechanochemical signal transduction, are controlled by cytoskeletal (CSK) dynamics. CSK dynamics can be measured by tracking the motion of CSK-bound particles. Particle motion has been reported to follow a superdiffusive behavior that is believed to arise from ATP-driven intracellular stress fluctuations generated by polymerization processes and motor proteins. The power spectrum of intracellular stress fluctuations has been suggested to decay with 1/2 (Lau et al, Phys Rev Lett 91:198101). Here we report direct measurements of cellular force fluctuations that are transmitted to the extracellular matrix, and compared them with the spontaneous motion of CSK-bound beads. Fibronectin coated fluorescent beads (Ø 1 m) were bound to the CSK of confluent human vascular endothelial cells. Forces transmitted to the extracellular matrix (ECM) were quantified by plating these cells onto a collagen coated elastic polyacrylamide hydrogel, and measuring the gel deformation from the displacement of embedded fluorescent beads (Ø 0.5 m). Bead motion of both CSK-bound and ECM-bound beads were measured with nanometer-resolution and expressed as mean square displacement (MSD). The MSD of both CSK-bound and ECM-bound beads displayed a superdiffusive behavior that was well described by a power law: MSD = a*t^b. Surprisingly, we found an identical power law exponent for both CSK-bound and ECM-bound beads of b = 1.6. This finding suggests that the spontaneous motion of CSK-bound beads is driven by stress fluctuations with a 1/ b+1 power spectrum. This result is consistent with the notion that CSK dynamics and CSK stress fluctuations are closely coupled.



Item Type
Book
Authors
Divisions
Programs
Publication Status
Published
Eprint ID
30936
Cite as
Zitterbart, D. P. , Raupach, C. , Pauli, J. , Mierke, C. T. , Kollmannsberger, P. , Metzner, C. , Goldmann, W. H. and Fabry, B. (2006): Stress fluctuation and microrheology in endothelial cells, Biophys J 90(Suppl 1) , Biophysical Society .


Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item