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In data assimilation using ensemble Kalman filter methods, lo-
calization is an important technique to get good assimilation
results. For the LETKF [1], the domain localization (DL) and
observation localization (OL) are typically used. Depending on
the localization method, one has to choose appropriate values
for the localization parameters, such as the localization length,
the inflation factor or the weight function. Although being fre-
quently used, the properties of the localization techniques are
not fully investigated. Thus, up to now an optimal choice for
these parameters is a priori unknown and they are generally
found by doing expensive numerical experiments.
The relationship between the localization length and the en-
semble size in DL and OL is studied using twin experiments
with the Lorenz-96 model [3]. It is found that for DL the optimal
localization length depends linearly on the local observation
dimension. This also holds for the localization length at which
the filter diverges. A similar behavior was observed for OL by
considering an effective local observation dimension.

Domain localization (DL)
• Decompose the whole domain G in smaller domains Gi.

• Choose a domain Di in observation space within the obser-
vations are relevant for the analysis in Gi.

• For all different domains Gi calculate an analysis with the
observations in Di.

• Restore the global state for the next forecast.

Global domain

Model grid

Local domain

Local observations

Observations

Observation Localization (OL)
• Decompose the whole domain G in smaller domains Gi.

• Weight the observations depending on the distance to the
analysis point (e.g. with the 5-th order polynomial [3]).

• For all different domains Gi calculate an analysis with the
observations in Di.

• Restore the global state for the next forecast.
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Right: The weight functions
used for DL (red) and for OL
(blue).

Filter Configuration

Assimilations were performed by using the LETKF [1] with DL and OL. In each step
the whole state was observed. The ensemble was generated by choosing random
states from a long model run. The domain decomposition was made by calculating
a separate analysis for every single state component. Observations within the local-
ization radius l were used for the assimilation each model grid point. The localization
radius l was varied from 1 to 20 and the number of ensemble members from 5 to 30.
For OL, the observations were weighted by using the fifth order polynomial intro-
duced by Gaspari and Cohn [3], for several localization radii.

Description of experiments

Twin experiments for various sets of parameters for OL have been performed. The
observations, generated with a standard deviation σo = 1, have been assimilated
for 5000 consecutive time steps. For statistical significance, all experiments were
repeated 10−20 times. The experiments have been performed with PDAF [4].
The results have been evaluated by calculating the mean RMS error of the analysis
estimates
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MRMSE for the DL after 5000 assimilation times
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Below Each field in the matrix stands for the
mean RMS error (MRMSE) of a certain con-
figuration. A white entry means filter diver-
gence. In most cases filter divergence hap-
pens if the number of observations exceeds
the number of ensemble members.
The gain by increasing the ensemble size
is very limited if the localization radius l is
kept constant. More improvement can be
achieved by choosing the optimal localiza-
tion radius.
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Dependence of optimal localization raduis on ensemble size

 

 

lopt

The optimal localization radius is nearly lin-
ear dependent on the number of ensemble
members. The region where the difference is
less than 1% from the optimal configuration
widens for increasing ensemble size. In the
case where the localization radius is much
smaller then the ensemble size, the optimal
interval is very narrow and the localization ra-
dius has to be carefully chosen in order to get
optimal results.
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MRMSE for the OL after 5000 assimilation times
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Below The relationship between the ensem-
ble size r and the localization radius l for OL
is similar to DL. If the localization radius is
increased too much, the filter diverges. In
contrast to DL, l can be chosen bigger be-
fore this happens.
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If the localization radius l is small compared
to the ensemble size r there is a linear de-
pendence of lopt and r. As for OL, the optimal
interval widens for increasing l. Compared to
OL, lopt can be chosen slightly bigger.
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Left By considering the sum of the
weights of the weighting function as
an approximation to the observa-
tion dimension, it is possible to re-
late the results for both localization
techniques. For both methods the
curves show similar behavior. This
explains the difference in observed
behavior between the two methods.
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Left The improved analysis corre-
lates with an improved estimate of
the covariance matrix. This was ob-
served by considering the difference
δ2 between an ideal covariance ma-
trix and the estimate. If the localiza-
tion radius is to small, the analysis is
improved, but the covariance is not
well estimated. For moderate local-
ization radii the covariances are bet-
ter estimated, therefore the analysis
becomes better.

Domain localization

Observation localization

[1] Hunt, B.R., E.J. Kostelich, and I. Szun-

yogh (2007). Efficient data assimilation

for spatiotemporal chaos: A local ensem-

ble transform Kalman filter. Physica D

230: 112–126

[2] G. Gaspari, S. E. Cohn (1999). Con-

struction of correlation functions in two

and three dimensions Q. M. R.

DOI: 10.1002/qj.49712555417

[3] . E.N. Lorenz (1996). Predictability: a problem

partly solved

In: Proceedings of the Seminar on Predictability

ECMWF , Reading , UK, 1-18

[4]L. Nerger and W.Hiller (2012).

Software for Ensemble-based Data

Assimilation Systems. Comput-

ers and Geosciences. In press.

doi:10.1016/j.cageo.2012.03.026

Introduction Localization Techniques for LETKF

Experimental Setup Results

Sampling quality

Conclusion

References


